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Abstract

The Kalman Filter (KF) is pervasively used to control
a vast array of consumer, health and defense products.
By grouping sets of symmetric state variables, the Re-
lational Kalman Filter (RKF) enables to scale the exact
KF for large-scale dynamic systems. In this paper, we
provide a parameter learning algorithm for RKF, and a
regrouping algorithm that prevents the degeneration of
the relational structure for efficient filtering. The pro-
posed algorithms significantly expand the applicability
of the RKFs by solving the following questions: (1) how
to learn parameters for RKF in partial observations; and
(2) how to regroup the degenerated state variables by
noisy real-world observations. We show that our new
algorithms improve the efficiency of filtering the large-
scale dynamic system.

1 Introduction
Many real-world systems can be modeled by continuous
variables and relationships (or dependences) among them.
The Kalman Filter (KF) (Kalman 1960) accurately estimates
the state of variables in a linear dynamic system with Gaus-
sian noise given a sequence of control-inputs and observa-
tions. The KF has been applied in a broad range of domains
such as robotics, finance (Bahmani-Oskooee and Brown
2004) and environmental science (F.P. and Bierkens 2001;
Clark et al. 2008). Given a sequence of observations and lin-
ear dependences with Gaussian noise between variables, the
KF calculates the conditional probability density of the state
variables at each time step.

Unfortunately, the KF computations are cubic in the num-
ber of state variables, which limits the use of existing ex-
act methods to domains with a large number of state vari-
ables. This has led to the combination of approximation and
sampling in the Ensemble Kalman Filter (Evensen 1994),
and recently to the Relational Kalman Filters (RKFs) over
grouped state variables (Choi, Guzman-Rivera, and Amir
2011; Ahmadi, Kersting, and Sanner 2011). The RKFs
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leverage the ability of relational languages to specify mod-
els with size of representation independent of the size of
populations involved (Friedman et al. 1999; Poole 2003;
Richardson and Domingos 2006).

Lifted inference algorithms for relational continuous
models (Wang and Domingos 2008; Choi, Hill, and Amir
2010; Ahmadi, Kersting, and Sanner 2011) degenerate (or
split) relational structures upon individual observations.
Lifted RKF (Choi, Guzman-Rivera, and Amir 2011) main-
tains relational structure when the same number of obser-
vations are made. Otherwise, it also degenerates (possibly
rapidly) the relational structure, thus lifted RKF may not be
useful with sparse observations.

The main contributions of this paper are (1) to regroup
the degenerated state variables from noisy real-world obser-
vations with a tight error bounds; and (2) to learn parameters
for RKFs.

We propose a new learning algorithm for RKFs. We show
that the relational learning expedites filtering, and achieves
accurate filtering in theory and practice. The key intuition is
that the Maximum Likelihood Estimate (MLE) of RKF pa-
rameters is the empirical mean and variance over state vari-
ables included in each group. For partial observations, the
parameters can be calculated similarly. We show that under
reasonable conditions variances of degenerated state vari-
ables on partial observations converge exponentially. Thus,
our approximate regrouping algorithm has bounded errors
compared to the exact KF. We could show that the RKF with
regrouping is more robust against degeneracy than the Lifted
RKF in practice with partial observations.

2 Relational Linear Dynamic Systems
In this section, we define relational linear dynamic systems.
Dependencies among variables are represented using rela-
tional atoms, or just atoms.1 The relational atoms are use-
ful when the joint probability of variables involves common
types of functions. When representing the joint probability

1For comprehensive definitions, see (Poole 2003;
de Salvo Braz, Amir, and Roth 2005)
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distribution, there are products of the parameterized func-
tions (or potentials).
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Figure 1: Republican River Basin covering portions of east-
ern Colorado, northwest Kansas and southwest Nebraska.
This figure shows two clustered water wells; region1(r1) and
region2(r2). Water wells in each region have the same (linear
Gaussian) relationships with wells in other regions.

Relational atoms represent the set of state variables cor-
responding to all ground substitutions of its parameter vari-
ables. For example, letXr1(Latitude,Longitude) be an atom
for the (water level of) wells in region1, θ=(40.2N,103W ).
When we substitute Latitude and Longitude with θ,
the atom becomes a state variable Xr1(40.2N, 103W )
which represents the level (or prediction) of well head at
(Latitude=40.2N, Longitude=103W ). Formally, applying a
substitution θ to an atom X(L) yields a new atom X(Lθ)
where Lθ is obtained by renaming the parameter variables
in L according to θ. If θ is a ground substitution, X(Lθ) is
a ground state variable like Xr1(40.2N, 103W ).2 |X(L)| or
just |X| denotes the the number of distinct state variables
generated from X by all substitutions.

A pairwise Gaussian parfactor ((X,X′), φ) is com-
posed of a pair of two atoms (X, X′) and a linear Gaussian
potential φ between two atoms in the following form.

φ(X,X′) ∝ exp

[
(X−X′ − µ)2

σ2

]
For example, a pairwise Gaussian parfactor
φr1,r2(Xr1, Xr2) represents the linear Gaussian rela-
tionship between two ground variables chosen from region1
and region2 respectively.

2Here, we assume that the ground state variables are univariate,
e.g., domain of x is R. However, it is straightforward to extend this
model to the one with multivariate ground variables.

A pairwise Gaussian factor, or just a factor, f =
((x,x′), φ) is a pair where φ is a potential function on
(x,x′) from R2 to R+ where (x,x′) is a pair of ground
random variables derived by ground substitutions from
(X(Lθ),X′(L′θ′)). A factor f defines a weighting function
on a valuation (x, x′) = (v, v′): wf (x, x′) = φ(v, v′). The
weighting function for a parfactor g is the product of the
weighting functions over all of its ground substitutions (fac-
tors), wg(v) =

∏
f∈g wf (v). Hence, a set of parfactors G

defines a probability density,

wG(v) =
1

Z

∏
g∈G

∏
f∈g

wf (v),

where Z is the normalizing constant.3 In this way, we can
represent the joint probability of all random variables (e.g.
all wells in region1 and region2).

Relational Transition Models (RTMs) characterize the
dependence of relational atoms between time steps. Xi

t(a)

and Xj
t+1(a′) are relational atoms at time step t and t + 1

respectively when a and a′ are ground substitutions, e.g.,
θ′=(40.2N,98W). U it (a) is the control-input information. A
RTM takes the following form,

Xj
t+1(a′) = BijXX

i
t(a) +BijU U

i
t (a) +GijRTM , (1)

where GijRTM∼N (0, σijRTM
2
) and N (m,σ2) is the normal

distribution with mean m and variance σ2. BijX and BijU are
the linear transition coefficients.

In the linear Gaussian representation, the transition mod-
els take the following form,

φRTM (Xj
t+1(a′)|Xi

t(a), U it (a))

∝ exp

[
−

(Xj
t+1(a′)−BijXXi

t(a)−BijU U it (a))2

2σijRTM
2

]
.(2)

The most common transition is the one from the state
Xi
t(a) to the state itself Xi

t+1(a) at the next time step,

Xi
t+1(a) = BiXX

i
t(a) +BiUU

i
t (a) +GiRTM . (3)

Relational Observation Models (ROMs) represent the
relationships between the hidden (state) variables, Xi

t(a),
and the observations made directly on the related variable,
Oit(a) (direct observations),

Oit(a) = Hi
tX

i
t(a) +GiROM , G

i
ROM∼N (0, σiROM

2
) (4)

Hi
t is the linear coefficient from Xi

t(a) to Oit(a).
ROMs also represent the relationships between the hid-

den variables Xi
t(a) and the observations made indirectly

on a variable in the atom Oit(a
′) where a6=a′ (relational ob-

servations),

Oit(a
′) = H ′it X

i
t(a)+G′iROM , G

′i
ROM∼N (0, σ′iROM

2
) (5)

3The codition of being a probability density is that at least a
random variable has a prior distribution, see (Choi, Hill, and Amir
2010).



in most cases, it is reasonable to set the variance of direct
observation var(GiROM ) is smaller than the variance of rela-
tional one var(G′iROM ) s.t. σiROM�σ′iROM . For the well ex-
ample, Xr1

t (40.2N, 103W ), an observation made at the ex-
act location Or1t (40.2N, 103W ) will have the smaller vari-
ance (more certain) than an observation made at a nearby
location Or1t (40.5N, 103W ).

In the linear Gaussian representation, ROMs take the fol-
lowing form,

φROM (Oit(a)|Xi
t(a)) ∝ exp

[
− (Oit(a)−Hi

tX
i
t(a))2

2σiROM
2

]
.

Relational Pairwise Models (RPMs) represent linear de-
pendences between pairs of relational atoms,

Xi
t(a) = Rijt X

j
t (a′) +GijRPM , G

ij
RPM ∼ N (0, σijRPM )

(6)
Rijt is the coefficient.

Note that RTMs and ROMs represent the nature of dy-
namic systems (e.g. the state at the next time step depends
on the current time step). The product of RPMs is an effi-
cient way to represent the relational structure over atoms,
groups of state variables.

Relational Kalman Filter (RKF) is a filtering procedure
with a relational linear dynamic system which is composed
of RTMs, ROMs and RPMs. That is, the joint probability
of state variables are represented by the product of pair-
wise Gaussian parfactors. Lifted RKF computes the pos-
terior of the state variables given a prior (current) belief
and full or partial observations. The input to the problem
is: (1) relational parfactors (RTMs, RPMs and ROMs); (2)
current belief over atoms (Xi

0); (3) a sequence of control-
inputs (U i1, . . . , U

i
T ); and (4) a sequence of observations

(Oi1, . . . , O
i
T ). The output is the multivariate Gaussian dis-

tribution over the atoms (Xi
T ) at each time step T. The fil-

tering problem is solved by algorithms represented (Choi,
Guzman-Rivera, and Amir 2011; Ahmadi, Kersting, and
Sanner 2011). Here, we turn our focus to the parameter
learning problem.

3 Learning Relational Kalman Filter
The two important parameters of the RKF are the transition
models and observation models. In this section, we present a
learning algorithm that derives the maximum likelihood es-
timates of RTMs and ROMs. For simplicity, we will present
a solution with fully observed model, first. A solution for
partial observations can be derived with a slight modifica-
tion.

3.1 Algorithm LearningRKF
Algorithm LearningRKF estimates the parameter of RKF
given a sequence of observations such as measurements of
water wells for several years. The overall procedure is simi-
lar to the one with the parameter learning for the ground KF.
Here, the main difference is that the coefficients and covari-
ances of RTMs and ROMs are the block matrices. A sub-
routine, BlockAverage, averages out the diagonal and non-
diagonal entries of an input matrix, and then ouputs a block

matrix where each block includes the empirical means, vari-
ances and covariances in each block. In the following sec-
tions, we will show that the block matrix computed by
BlockAverage is the MLE estimate.

Algorithm 1 LearningRKF

input: a sequence of obs (O1, · · · , OT )
(B,ΣT ,C,ΣO)← (I, I, I, I)
currentLL←∞
repeat

prevLL← currentLL
(B′,Σ′T ,C

′,Σ′O)←LearnGroundTM(Ot,B,ΣT ,C,ΣO)
(B,ΣT ,C,ΣO)← BlockAverage(B′,Σ′T ,C

′,Σ′O)
currentLL←

∑
t logP (Ot|Xt,B,ΣT ,C,ΣO)

until | prevLL - currentLL | < ε
output: estimated parameters (B,ΣT ,C,ΣO)

3.2 Learning Transition Models
Here, we derive the parameter of the RTMs: linear coeffi-
cient B and Gaussian noise GRTM .

Learning Transition Noise is to calculate the mean and
the covariance matrix in the following block forms,

µT =


µ1

µ2

...
µn

 ,ΣT =


Σ1,1 Σ1,2 · · · Σ1,n

Σ2,1 Σ2,2 · · · Σ2,n

...
...

. . .
...

Σn,1 Σn,2 · · · Σn,n

 (7)

Where µi is a vector of size |Xi| (=ni); Σi,j is a matrix of
size ni by nj .

Given a prior, a linear coefficient B and a sequence of
full observations, we derive the estimate Xt at time step t
assuming the Gaussian noise in the transition model. The
MLE estimation of µ and Σ for the RTM can be derived:

(µTmax,ΣTmax) = arg max
µT ,ΣT

∑
t=2,··· ,T

log fN ( ~Xt;µT ,ΣT )

where ~Xt=Xt−BXt−1.
Proposition 1. Given a RKF with a single atom, the max-
imum likelihood estimates of the Gaussian transition noise
are the empirical mean, variance and covariance as follows,

µMLE =


m
m
...
m

 ,ΣMLE =


σ2 σ′ · · · σ′

σ′ σ2 · · · σ′

...
...

. . .
...

σ′ σ′ · · · σ2


such that,

m=
1

nT̄

T∑
t=2

∑
a∈A

~Xt(a), σ2=
1

nT̄

T∑
t=2

∑
a∈A

(
~Xt(a)−m

)2

σ′=
1

n(n−1)T̄

T∑
t=2

∑
a,a′∈A
a6=a′

(
~Xt(a)−m

)(
~Xt(a

′)−m
)
.

where n = | ~Xt(A)| and T̄=T−1.
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Proof. The MLEs of the parameters (µT ,ΣT ) are derived
by the partial derivatives of the log likelihood,

∂

∂µT

T∑
t=2

log fN ( ~Xt;µT ,ΣT )=0,

∂

∂ΣT

T∑
t=2

log fN ( ~Xt;µT ,ΣT )=0.

All ground variables generated from the atom ~Xt have the
same mean, variance and covariances as shown in Equa-
tion (8). Now, we can specify the following linear con-
straints;

m =
1

T̄

∑
t

~Xt(a1) = · · · = 1

T̄

∑
t

~Xt(an).

That is, m= 1
nT̄

∑
t

∑
a
~Xt(a).

The covariance matrix of the RTM is also calculated from
the empirical covariance matrix. The diagonal entries σ2 are
derived for the variances;

σ2=
1

T̄

∑
t

( ~Xt(a1)−m)2=· · ·= 1

T̄

∑
t

( ~Xt(ani)−m)2

Thus, σ2= 1
nT̄

∑
t

∑
a

(
~Xt(a)−m

)2

. Non-diagonal entries
(covariances) are derived similarly with n(n−1) empirical
covariances.4

This result is consistent with the result in non-relational
KF because the MLE estimates of the ground KF (µT and
ΣT ) are known to be the empirical mean and the empirical
covariance matrix (Roweis and Ghahramani 1999).

In the general case, when we have multiple atoms, the
mean vector and the covariance matrix are block forms as
shown in Equation 7. That is, the mean and covariance val-
ues are same in each subblock. In case of, two atomsXi and
Xj , the means and covariances are as follows:

µT =

[
µ1

µ2

]
,ΣT =

[
Σ1,1 Σ1,2

Σ2,1 Σ2,2

]
The MLE parameters of the RTM are derived similarly

with empirical means and covariances of subblocks.
Proposition 2. Given a RKF with multiple atoms, the max-
imum likelihood estimates of the Gaussian transition noise
are the empirical means, variances and covariances,

µi = [mi, · · · ,mi]
T s.t. mi =

1

niT̄

T∑
t=2

∑
a

~Xt
i
(a),

Σi,i =


σ2 σ′ · · · σ′

σ′ σ2 · · · σ′

...
...

. . .
...

σ′ σ′ · · · σ2

Σi,j =

σ
′′ · · · σ′′

...
. . .

...
σ′′ · · · σ′′


4One gets the same result when differentiating m, σ2 and σ′

directly from the log-likelihood.

σ2 =
1

niT̄

T∑
t=2

∑
a

(
~Xi
t(a)−mi

)(
~Xi
t(a)−mi

)
σ′ =

1

ni(ni−1)T̄

T∑
t=2

∑
a,a′∈A
(a6=a′)

(
~Xi
t(a)−mi

)(
~Xi
t(a
′)−mi

)
,

σ′′ =
1

ninj T̄

T∑
t=2

∑
a∈A,b∈B

(
~Xi
t(a)−mi

)(
~Xj
t (b)−mj

)

where ni = | ~Xi
t | and T̄=T−1.

Proof. The principles used in the proof of Proposition 1 are
applied because the Σi,i and Σi,j are block matrices.

Learning Linear Coefficient is to estimate the linear co-
efficient B between Xt−1 and Xt. In this case, given other
parameters, Gaussian noise of RTMs and ROMs, the MLE
of B is derived as follows (Roweis and Ghahramani 1999),

B̂ =

 ∑
t=2,··· ,T

XtX
T
t−1

 ∑
t=1,··· ,T−1

XtX
T
t

−1

Here, we call the B̂ linear coefficient of the ground TM, and
B̂ is reshaped as a block matrix by averaging the coefficient
in each subblock. When B̂i,j denotes the subblock for the
linear transition from Xj

t−1 to Xi
t . The MLE of the block

coefficient is represented as follows,

Bi,i =


b b′ · · · b′

b′ b · · · b′

...
...

. . .
...

b′ b′ · · · b

Bi,j =

b
′′ · · · b′′

...
. . .

...
b′′ · · · b′′


such that,

b= 1
ni

∑ni

k=1 B̂
i,i
k,k, b

′= 1
ni(ni−1)

∑(ni,ni)
(k,l)=(1,1)

k 6=l
B̂i,i
k,l,

b′′= 1
ninj

∑(ni,nj)

(k,l)=(1,1) B̂
i,j
k,l

BlockAverage in Algorithm LearningRKF denotes this
averaging-out procedure. The block coefficient matrix B is
also the MLE of RTM.

3.3 Learning Observation Models
Given RTMs and a sequence of full observations, we derive
the estimate Xt at time step t assuming that there is no ob-
servation noise.

Learning Observation Noise is to estimate the mean vec-
tor and covariance matrix for the ROM. The MLEs problem
is formulated as follows,

(µMLE,ΣMLE) = arg max
µO,ΣO

T∑
t=1

logN ( ~Ot;µO,ΣO).

where ~Oit = Ot−C·Xi
t . The derivation is similar to RTMs.

One can substitute ~Oit for ~Xi
t in Proposition 2.
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Learning Linear Coefficient C is to calculate the linear
coefficient between Xt and Ot.

Ĉ =

 ∑
t=1,··· ,T

OtX
T
t

 ∑
t=1,··· ,T

XtX
T
t

−1

Here C is also calculated from Ĉ by averaging out each sub-
block as in learning B.

4 LRKF with Regroupings
With the estimated parameters, the RKF predicts the state
variables in the relational linear dynamic models. This sec-
tion presents a new lifted Kalman filtering algorithm, which
approximately regroups degenerated relational structures.
Existing lifted Kalman filtering algorithms (Choi, Guzman-
Rivera, and Amir 2011; Ahmadi, Kersting, and Sanner 2011)
suffer degenerations of relational structures when sparse ob-
servations are made.5 Algorithm LRKF-Regroup also degen-
erates the domains of relational atoms by calling DegenAtom
when state variables are observed in different time, thus dif-
ferentObs (e.g.,Obs(i,a) 6= Obs(i,a′)). Here,Obs(i,a) stores
the most recently observed time for a ground substition a in
the i-th atom.

To overcome such degeneracy, LRKF-Regroup introduces
a new subroutine, called MergeAtom, which merges covari-
ance structures when random variables are not directly ob-
served for a certain time steps, say k.

Algorithm 2 LRKF-Regroup (Prediction w/ testing data)

Input: params (B,ΣT ,C,ΣO), obs (O1, · · ·, OT )
repeat
µ0 ← 0, Σ0 ← 0
(Obs(1,1),· · · ,Obs(n,ni))← (0, · · · , 0)
for t← 1 to T do

(µ′t,Σ
′
t)← Predict-RTM(µt−1, Σt−1, B, ΣT )

for all (i, a) s.t. Oit(a) is observed do
Obs(i,a) ← t

end for
(B,ΣT ,C,ΣO)←DegenAtom(Obs, B,ΣT ,C,ΣO)
(µt,Σt)← Update-ROM(µ′t, Σ′t, C, ΣO)
(B,ΣT ,C,ΣO)←MergeAtom(Obs, t, B,ΣT ,C,ΣO)

end for
until t is T
Output: state estimations ((µ0,Σ0), · · · , (µT ,ΣT ))

The MergeAtom operation iterates atoms and find all state
variables which are not observed for a certain time steps
k. The selected variables are stored in mlist. Then, the
BlockMerge respectively averages diagonal entries and non-
diagonal entries in mlist, and sets the averaged values to
state variables in mlist. In this way, it rebuilds the compact
relational structure again.

5Note that, the lifted algorithm in (Choi, Guzman-Rivera, and
Amir 2011) only valid when the same number of observations are
made at the same time steps.

Algorithm 3 MergeAtom

input: recent obs timeObs, time t, params (B,ΣT ,C,ΣO)
mlist← ∅
for i = 1 to n do

for each a s.t. Obs(i,a)+k ≤ t do
mlisti←mlisti

⋃
{a}

end for
end for
(B′,Σ′T ,C

′,Σ′O) = BlockAverage(mlist,B,ΣT ,C,ΣO)
output: merged relational structures (B′,Σ′T ,C

′,Σ′O)

Lemma 3. When (1) at least one relational observation is
made onOi at each time step; the variance of any state vari-
able Xi(a) in LRKF-Regroup is bounded by σ′iROM

2 and

converges to
√
σ′iROM

2
σiRTM

2
+
σ′i
ROM

4

4 −σ
i
RTM

2

2 .

Proof. Let the variance of the i-th atom be σiRTM and the
variances of direct and relational observations respectively
be σiROM

2 and σ′iROM
2 where σiROM < σ′iROM as Equa-

tion (4) and (5).
Let σit(a)2 be the variance of a state variable Xi(a) at

time t. This variable will be updated by at least one re-
lational observation by the LRKF-Regroup. Then, the new
variance is 1

σi
t+1(a)2

= 1
σi
t(a)2

+ 1
σ′i
ROM

2 . That is, σit+1(a)2 ≤

min(σit(a)2, σ′iROM
2
). Use the following equation for tran-

sition and update in each filtering step,

1

σit+1(a)2
≤ 1

σit(a)2 + σiRTM
2 +

1

σ′iROM
2

For the convergence, let σit+1(a)=σit(a)=σi∗(a). The vari-

ance is σi∗(a)
2

=

√
σ′iROM

2
σiRTM

2
+
σ′i
ROM

4

4 −σ
i
RTM

2

2

Theorem 4. When (1) at least one relational observa-
tion is made on Oi at each time step; and (2) no di-
rect observation is made on two state variables Xi(a)
and Xi(a′) at least for k time steps, the difference of
the variances of two state variables σit(a) and σit(a

′)

is bounded by ckσiRTM
2
(1+σi∗(a)2/σiROM

2
) where c is

σi∗(a)2/(σi∗(a)2+σ′iROM
2
) and c ≤ 1.

Proof. We follow the result of the Lemma 3 and use σi∗(a).
The variance of each time step follows the recursive form,

1

σit+1(a)2
=

1

σit(a)2 + σiRTM
2 +

1

σ′iROM
2 . (8)

An exact (non-recursive) formula for σit+1(a) is non trivial.
Thus, we introduce another simpler, converging sequence,

σ̄it+1(a)2 = c(σ̄it(a)2 + σiRTM
2
).

Since σit(a)2 − σ̄it(a)2 is positive and convex when c < 1,

0≤σ̄i
t(a)≤σi

t(a)≤σi
∗(a), σi

∗(a)2−σ̄i
t(a)2 ≥ σi

∗(a)2−σi
t(a)2
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Figure 2: Variances of state variables with one observation
per 10 time steps without a relational obs. (square shaped
marks) and with relational obs. (circle shaped marks). This
figure shows the variances (y axis) in time steps (x axis).
Setting that σiRTM

2
=0.1, σiROM

2
=0.1, σ′iROM

2
=0.5, and

let observations made at different time steps. This simulation
shows the intuition of Lemma 3.

The convergence of the simpler form is slower than the orig-
inal one in Equation (8). However, it provides an exact for-
mulation and converge exponentially,

σ̄it(a)2 = ckσ̄it−k(a)2 + σiRTM
2 1− ck

1− c
WLOG, we set Xi(a′) has no direct observation longer than
Xi(a). The variance of Xi(a′) has the same formulation
with a substitution of k+α for k. Thus, variance of Xi(a′)
is σi

σ̄it(a
′)2=ck+α · σ̄it−k−α(a′)2+σiRTM

2 1−ck+α

1−c
Note that, σ̄it+α(a) ≤ σ̄it+α(a′) ≤ σ̄it+∞(a′).

|σit+α(a′)2−σit(a)2| ≤ |σit+∞(a′)2−σit(a)2|

= ck(σiRTM
2
/(1− c)−σit+k(a)2)

= ck(σiRTM
2
(1 + σi∗(a)2/σiROM

2
)−σit+k(a)2)

≤ ckσiRTM
2
(1 + σi∗(a)2/σiROM

2
).

5 Experimental Results
To compare the improve the efficiency, we implement the
Lifted RKF (Choi, Guzman-Rivera, and Amir 2011) and our
LRKF-Regroup. The algorithm is compared in two datasets
with sparse observations: one synthetic dataset and one real-
world ground water dataset. Note that, the lifted RKF will
not degenerate model on full, dense, observations. In both
experiment, we set k to be 4. That is, two state variables will
be merged if they have the same observation numbers and
types when at least a relational observation is made. With
relational observations, the variances of degenerated state
variables are reasonably small even after 4 time steps.

In the synthetic dataset, we assume that an atom with 300
ground substitutions, |Xi|=30. Then we make a sparse ob-
servations with a rate of 90%. That is, 90% of state variables
will be observed in each time step. Then, we report the num-
bers of shattered (or degenerated) groups and average filter-
ing time in the Lifted RKF and in our LRKF-Regroup. The
result is shown in Figure 3.

Figure 3: Comparions of Lifted RKF and LRKF-Regoup in
a simulation dataset.

To verify the efficiency of Lifted-Regroup, we use a re-
gional groundwater flow MODFLOW model, the Republi-
can River Compact Association (RRCA) Model (McKusick
2003). The extracted dataset is a small subset of the whole
ground water model, monthly measured head (water level) at
over 3,000 wells. We choose a closely related 200 wells and
randomly selecte 100 measurement periods (100 months).
Then, we report the degeneracies in Lifted-RKF and LRKF-
Regroup and average filtering time affected by the degener-
ations in Figure 4.

Figure 4: Comparions of Lifted RKF and LRKF-Regoup in
the groundwater model.
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6 Conclusion
This paper provides new answers and insights on (1) how
to learn parameters for RKF; and (2) how to regroup the
state variables from noisy real-world data. We propose a new
algorithm that regroups the state variables when individual
observations are made to RKF in different time steps. We
use the RKF in a simulated and a real-world dataset, and
demonstrate that the RKF improves the efficiency of filtering
the large-scale dynamic system.
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