
Search in Imperfect Information Games Using Online
Monte Carlo Counterfactual Regret Minimization

Marc Lanctot1, Viliam Lisý2, and Michael Bowling3

1Department of Knowledge Engineering, Maastricht University, The Netherlands
2Department of Computer Science, FEE, Czech Technical University in Prague

3Department of Computing Science, University of Alberta, Canada
marc.lanctot@maastrichtunviersity.nl, viliam.lisy@agents.fel.cvut.cz, bowling@cs.ualberta.ca

Abstract

Online search in games has always been a core interest of arti-
ficial intelligence. Advances made in search for perfect infor-
mation games (such as Chess, Checkers, Go, and Backgam-
mon) have led to AI capable of defeating the world’s top hu-
man experts. Search in imperfect information games (such
as Poker, Bridge, and Skat) is significantly more challeng-
ing due to the complexities introduced by hidden information.
In this paper, we present Online Outcome Sampling (OOS),
the first imperfect information search algorithm that is guar-
anteed to converge to an equilibrium strategy in two-player
zero-sum games. We show that OOS avoids common prob-
lems encountered by existing search algorithms and we ex-
perimentally evaluate its convergence rate and practical per-
formance against benchmark strategies in Liar’s Dice and a
variant of Goofspiel. We show that unlike with Information
Set Monte Carlo Tree Search (ISMCTS) the exploitability
of the strategies produced by OOS decreases as the amount
of search time increases. In practice, OOS performs as well
as ISMCTS in head-to-head play while producing strategies
with lower exploitability given the same search time.

Introduction
In many sequential multi-agent interactions, agents have
some initial time to prepare for the interaction and then
after each decision, have additional thinking time to de-
cide about their next move. When preparation time is abun-
dant and the computational resources are sufficient, an equi-
librium strategy for a smaller abstract game can be pre-
computed and then used during the game play. This of-
fline approach has been remarkably successful in Com-
puter Poker (Sandholm 2010; Rubin and Watson 2010;
Gilpin 2009; Johanson 2007). However, the preparation time
is often very limited. The exact model of the game may be-
come known only shortly before acting is necessary, such
as in general game-playing, security enforcement in a previ-
ously unknown environment, and general-purpose robotics.
In a short time, only a very small abstract game could be
solved in advance. Moreover, it might not even be possible
to create a sufficiently small and still useful abstraction to
be solved in time. In these cases, agents may need to de-
cide online: make initial decisions quickly and then put ad-

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ditional effort to improving their strategy in the current situ-
ation while the interaction is taking place.

Some of the first imperfect information search algorithms
were inspired by the application to Bridge (Frank, Basin, and
Matsubara 1998; Ginsberg 1996), and notably by the success
of GIB (Ginsberg 2001). In GIB, perfect information search
is performed on a determinized instance of the game: one
where all players can see usually hidden information, a con-
cept originally proposed in (Levy 1989). This approach has
also performed well in other games like Scrabble (Sheppard
2002), Hearts (Sturtevant 2008), and Skat (Buro et al. 2009).

There are several problems that have been identified with
Perfect Information Monte Carlo (PIMC) search techniques
on determinized samples. The most common are strategy fu-
sion and non-locality (Frank, Basin, and Matsubara 1998).
Strategy fusion occurs when an algorithm is allowed to
choose two different actions from two different states in the
same information set, which is inconsistent with the con-
straints imposed by the game’s information structure. Non-
locality occurs due to the assumption that subgames are
well-defined and that hence search can be recursively ap-
plied by computing and comparing values of subgames.

Strategy fusion can be overcome by imposing the
proper information constraints during search, as was
done in Kriegspiel (Ciancarini and Favini 2010), Kuhn
Poker (Ponsen, de Jong, and Lanctot 2011), pursuit-evasion
games (Lisy, Bosansky, and Pechoucek 2012), card games
and other phantom games (Cowling, Powley, and White-
house 2012). Non-locality, however, is a fundamental prob-
lem that prevents the usual minimax formulation of opti-
mal payoffs defined strictly over children subtrees. There
is empirical evidence suggesting that some of these tech-
niques will not converge to the optimal solution even in very
small games like Biased Rock-Paper-Scissors and Kuhn
poker (Shafiei, Sturtevant, and Schaeffer 2009; Ponsen, de
Jong, and Lanctot 2011).

Game-tree search techniques have also been applied to
Poker (Billings et al. 2004). In recent years, however, the
most common approach to producing strong Poker AI has
been use advances in equilibrium approximation algorithms
to compute a near-optimal equilibrium of an abstract game
and subsequently use the abstract strategies when playing
the full game (Sandholm 2010). We refer to this as the offline
approach because it requires designing domain-specific ab-

Computer Poker and Imperfect Information: Papers from the AAAI-14 Workshop

34

stractions and precomputing approximate equilibria offline
in advance, which could take several weeks or even months.
In the offline approach, during actual play an agent simply
looks up its precomputed strategy stored in a large table.
This offline approach is often not possible. For example, an
agent may be required to act shortly after discovering the
rules, such as in general game playing, which leaves very
little time for precomputation of equilibria or designing of
domain-specific abstractions. Also, due to the size of the ab-
stractions required for strong play (Johanson et al. 2013),
there may not be enough space to store the precomputed
strategy, such as in gaming apps on mobile devices.

In this paper, we focus on the online setting. We pro-
pose a Monte Carlo Tree Search (MCTS) (Browne et al.
2012) algorithm that uses Monte Carlo Counterfactual Re-
gret Minimization as its basis rather than Upper Confidence
Bounds (Auer, Cesa-Bianchi, and Fischer 2002; Kocsis and
Szepesvári 2006). We introduce Online Outcome Sampling
(OOS), a simulation-based algorithm that builds its search
tree incrementally, like MCTS. We show that OOS con-
verges to an equilibrium strategy as search time per move
increases, making it the first known imperfect information
search algorithm satisfying this property, which we call con-
sistency. We show the empirical convergence rates and per-
formance of OOS, comparing them to benchmark players
and to ISMCTS (Cowling, Powley, and Whitehouse 2012),
a recent algorithm currently used in a popular mobile phone
implementation of Spades (Whitehouse et al. 2013).

Extensive-Form Games
Here, we define the relevant game-theoretic terminology that
forms the basis of our analysis. The notation used here is
based on (Osborne and Rubinstein 1994).

In this paper, we focus on two-player zero-sum exten-
sive form games, which model sequential decision making
of agents called players denoted i ∈ N = {1, 2}. In turn,
players choose actions leading to sequences called histories
h ∈ H . A history z ∈ Z, where Z ⊆ H , is called a termi-
nal history and represents a full game from start to end. At
each terminal history z there is a payoff ui(z) in [−∆,∆] to
each player i. At each nonterminal history h, there is a single
current player to act, determined by P : H\Z → N ∪ {c}
where c is a special player called chance (sometimes also
called nature) that plays with a fixed stochastic strategy. For
example, chance is used to represent rolls of dice and card
draws. The game starts in the empty history ∅, and at each
step, given the current history h, the current player chooses
an action a ∈ A(h) leading to successor history h′ = ha;
in this case we call h a prefix of h′ and denote this relation-
ship by h @ h′. Also, for all h, h′, h′′ ∈ H , if h @ h′ and
h′ @ h′′ then h @ h′′, and h @ h. Each set N , H , Z, and
A(h) for every h ∈ H are finite and every history has finite
length.

Define I = {Ii | i ∈ N} the set of information partitions.
Ii is a partition over Hi = {h | P (h) = i} where each
part is call an information set. Intuitively, an information set
I ∈ Ii that belongs to player i represents a state of the game
with respect to what player i knows. Formally, I is a set of
histories that a player cannot tell apart (due to information

hidden from that player). For all h, h′ ∈ I , A(h) = A(h′)
and P (h) = P (h′); hence, often we naturally extend the
definition to A(I), P (I), and denote I(h) the information
set containing h.

A behavioral strategy for player i is a function map-
ping each information set I ∈ Ii to a probability distri-
bution over the actions A(I), denoted by σi(I). Given a
profile σ, we denote the probability of reaching a terminal
history z under σ as πσ(z) =

∏
i∈N πi(z), where each

πi(z) =
∏
ha@z,P (h)=i σi(I(h), a) is a product of proba-

bilities of the actions taken by player i along z. We also
use πσi (h, z) and πσ(h, z) to refer to the product of only
the probabilities of actions along the sequence from the end
of h to the end of z, where h @ z. Define Σi to be the set of
behavioral strategies for player i. As is convention, σ−i and
πσ−i refer to player i’s opponent strategy and products of the
opponent’s and chance’s actions. An ε-Nash equilibrium,
σ, is a set of σi for i ∈ N such that the benefit of switching
to some alternative σ′i is limited by ε, i.e.,

max
σ′
i∈Σi

ui(σ
′
i, σ−i)− ui(σ) ≤ ε (1)

holds for each player i ∈ N . When ε = 0, the pro-
file is simply called a Nash equilibrium. When |N | = 2
and u1(z) + u2(z) = k for all z ∈ Z, then the game
is a two-player zero-sum game; these games form an im-
portant subset of extensive-form games due to their worst-
case guarantees: different equilibrium strategies result in the
same expected payoff against any arbitrary opponent equi-
librium strategy and at least the same payoff for any oppo-
nent strategy at all. In this paper, we define the exploitabil-
ity of a profile to be the sum of both distances from Eq. 1,
εσ = maxσ′

1∈Σ1
u1(σ′1, σ2) + maxσ′

2∈Σ1
u2(σ1, σ

′
2).

Counterfactual Regret Minimization
Counterfactual Regret (CFR) is a notion of regret at the in-
formation set level for extensive-form games (Zinkevich et
al. 2008). The CFR algorithm iteratively learns strategies in
self-play, converging to an equilibrium. The counterfactual
value of reaching information set I is the expected payoff
given that player i played to reach I , the opponents played
σ−i and both players played σ after I was reached:

vi(I, σ) =
∑

(h,z)∈ZI

πσ−i(h)πσi (h, z)ui(z), (2)

where ZI = {(h, z) | z ∈ Z, h ∈ I, h @ z}. Suppose,
at time t, player i plays with strategy σti . Define σtI→a as
identical to σt except at I action a is taken with probabil-
ity 1. The counterfactual regret of not taking a ∈ A(I) at
time t is rt(I, a) = vi(I, σ

t
I→a) − vi(I, σt). The algorithm

maintains the cumulative regret RT (I, a) =
∑T
t=1 r

t(I, a),
for every action at every information set of every player.
Then, the distribution at each information set for the next
iteration σT+1(I) is obtained individually using regret-
matching (Hart and Mas-Colell 2000). The distribution is
proportional to the positive portion of the individual actions’
regret:

σT+1(I, a) =

{
RT,+(I, a)/RT,+sum(I) if RT,+sum(I) > 0
1/|A(I)| otherwise,

35

where x+ = max(0, x) for any term x, and RT,+sum(I) =∑
a′∈A(I)R

T,+(I, a′). Furthermore, the algorithm main-
tains for each information set the average strategy profile

σ̄T (I, a) =

∑T
t=1 π

σt

i (I)σt(I, a)∑
t=1 π

σt

i (I)
, (3)

where πσ
t

i (I) =
∑
h∈I π

σt

i (h). The combination of the
counterfactual regret minimizers in individual information
sets also minimizes the overall average regret (Zinkevich et
al. 2008), and hence the average profile is a 2ε-equilibrium,
with ε→ 0 as T →∞.

Monte Carlo Counterfactual Regret Minimization (MC-
CFR) applies CFR to sampled portions of the games (Lanc-
tot et al. 2009). In the outcome sampling (OS) variant of
the algorithm, a single terminal history z ∈ Z is sampled in
each iteration. The algorithm updates the regret in the infor-
mation sets visited along z using the sampled counterfac-
tual value,

ṽi(I, σ) =

{
1
q(z)π

σ
−i(z)π

σ
i (h, z)ui(z) if (h, z) ∈ ZI

0 otherwise,

where q(z) is the probability of sampling z. As long every
z ∈ Z has non-zero probability of being sampled, ṽi(I, σ) is
an unbiased estimate of v(I, σ) due to the importance sam-
pling correction (1/q(z)). For this reason, applying CFR up-
dates using these sampled counterfactual values on the sam-
pled information sets values also eventually converges to the
approximate equilibrium of the game with high probability.
The required number of iterations for convergence is much
larger, but each iteration is much faster.

In Poker, CFR and MCCFR have been used with remark-
able success as offline methods for pre-computing approx-
imate equilibria in abstract games (Zinkevich et al. 2008;
Johanson et al. 2012a); the same general approach has
also been used in Liar’s Dice (Neller and Hnath 2011;
Lanctot et al. 2012).

Subgames and Online Search
In a match (online game), each player is allowed little or
no preparation time before playing (preventing the offline
advance computation of approximate equilibria solutions).
There is a current match history, h, initially the empty his-
tory ∅ representing the start of the match. Each turn, the
agent controlling P (h) is given t time units to decide on a
match action a ∈ A(h) and the match history then changes
using h ← ha. There is a single referee who knows h, sam-
ples chance outcomes as needed from σc(h), and reveals
I(h) to P (h) on their turn. The players play until the match
is terminated, giving each player i a payoff of ui(z).

A perfect information game can be broken down into sub-
games and solved independently. Every perfect information
game has a pure subgame perfect equilibrium, which can be
found by backward induction. Search algorithms simply aim
to identify the single optimal action at the search tree’s root.
Imperfect information games cannot be easily broken down
into subgames. In general, the optimal strategies in an inner
information set could be mixed and depend on the probabil-
ities that individual nodes in the information set are reached.

1 0

0.5

3 0 0 3

0.5

I

Figure 1: An example game with maximizing 4, minimiz-
ing 5 and chance © players. The optimal (Nash equilib-
rium) strategy is for 4 to play (0.5,0.5) and for 5 to play
(left,right) with probabilities (1

3 , 2
3). Its value is 1.0.

These probabilities depend on the strategies of the players in
the tree above the information set, which in turn depend on
the payoffs obtained from other parts of the tree.

Some previous work has been done for accelerating equi-
librium computation by solving or approximately solving
subgames, particularly in end-game situations (Gilpin and
Sandholm 2006; 2007; Ganzfried and Sandholm 2013).
These techniques tend to help in practice, but as shown
in (Ganzfried and Sandholm 2013), non-locality prevents
these methods from producing equilibrium strategies in gen-
eral. Using CFR to solve decomposed subgames has also
recently been investigated (Burch, Johanson, and Bowling
2014). Whether this decomposition could be used in Monte
Carlo simulations is an interesting topic of future work.

Information Set Monte Carlo Tree Search
The implementation details of ISMCTS described in (Cowl-
ing, Powley, and Whitehouse 2012) have impact on effi-
ciency of the method for various games, but in essence, the
multi-observer variant of the algorithm incrementally builds
the game tree similarly to MCTS, but it places a multi-armed
bandit algorithm at each information set rather than at each
state. After a non-root information set is reached during the
match, further simulations are run from a random node in
this information set with uniform probability. This prevents
the algorithm from converging to the optimal solution in
the game. Consider the game in Figure 1. Suppose ISM-
CTS searches from information set I . Because utilities for
actions taken from both states are combined, ISMCTS will
choose left and right action equally often. However, mixing
uniformly at I is not part of an equilibrium in this game,
since it would lead to an expected utility of 3

4 to the maxi-
mizing player for playing right, which would give an incen-
tive to the maximizer to always play left and in that case,
the minimizer would be better of playing right, reaching ex-
pected reward of 0.5.

Online Outcome Sampling
When outcome sampling is used in the offline setting, data
structures for all information sets are allocated and created
before the first iteration starts. In each iteration, every infor-
mation set that is sampled gets updated.

We make two essential modifications to adapt outcome
sampling to the online search setting.

36

Incremental Game Tree Building. Before the match be-
gins, only the very first (root) information set is added to
memory. In each iteration, a single information set (at most)
is added the information set tree (memory) each iteration.
In particular, when an information set is reached that is not
in memory, it is added to memory and then a default play-
out policy (e.g. uniform random) takes over for the remain-
der of the simulation. Along the playout portion (tail) of the
simulation, information sets are not added to memory nor
updated. Along the tree portion (head) of simulation, infor-
mation sets are updated as normal. This way, only the in-
formation sets with relevant statistics will be stored in the
memory.

In-Match Search Targeting. Suppose several moves
have been played since the start of the match leading to h.
Plain outcome sampling would continue to sample from the
root of the game (not the current match history h), entirely
disregarding the region of the game space that the match has
headed toward. Hence, the second modification we propose
is directing the search towards the histories that are more
likely to occur during the match currently played. Note that
this history is typically unknown to the players, who know
only their information sets it leads to. Furthermore, unlike
in ISMCTS, OOS always runs samples form the root of the
game tree, even with non-empty match history.

We now describe two specific targeting methods.

Information Set Targeting (IST)
Suppose the match history is h. IST samples histories reach-
ing the current information set (I(h)), i.e., (h, z) ∈ ZI(h),
with higher probability than other histories. The intuition is
that these histories are particularly relevant since the search-
ing player knows that one of these z will describe the match
at its completion. However, focusing fully only on these his-
tories may cause problems, since convergence guarantees
are lost. Consider again the game in Figure 1. If the minimiz-
ing player knows it is in the information set I and focuses
all its search only to this information set for sufficiently
long, she computes the uniform strategy, which is optimal
in the right (coordination) part of the game. However, if the
minimizing player plays uniformly, the maximizing player
prefers to switch to always play the left action to increase
its payoff in case of not playing the coordination game. Any
fixed non-zero probability of sampling the left chance action
will eventually solve the problem. The regrets are multiplied
by the reciprocal of the sampling probability; hence, they
influence the strategy in the information set proportionally
stronger if the samples are rare.

Note that previous methods, such as PIMC and ISMCTS,
always target I(h), i.e. with probability 1, and do not update
predecessors of I(h). In contrast, in IST all information sets
in memory reached during each iteration requires updating
to ensure eventual convergence to an equilibrium.

Public Subgame Targeting (PST)
A public action is an action in the “public tree” defined in
(Johanson et al. 2012b). Informally, an action is said to be
public if it is observable by all players (e.g., a bid in Liar’s
Dice or Poker is public). Formally, an action a is public, iff

∀i,∀I ∈ Ii,∀h1, h2 ∈ I : a ∈ h1 ⇔ a ∈ h2. For example,
the extensive-form version of Rock, Paper, Scissors has two
information sets I1 = ∅ and I2 = {r, p, s}; it has no public
actions, because each history in I2 contains a single unique
action (the unobserved ones taken by the first player).

Given a history h, let p(h) be the sequence of public ac-
tions along h in the same order that they were taken in h. De-
fine the public subgame induced by I to be the one whose
terminal history set is

Zp,I(h) = {(h′, z) | z ∈ Z, h′ ∈ H, p(h′) = p(h), h′ @ z}.

Now, suppose the match history is h. Public subgame target-
ing samples z ∈ Zp,I(h) with higher probability than termi-
nal histories outside this set.

A public subgame then, contains all the terminal histories
consistent with the bidding sequence played over the match
and each combination of private chance events for both play-
ers. So, in a game of two-player limit Texas Hold’em poker,
suppose first player bets and second player calls, and then
flop is revealed. At this point, the public actions are: bet,
call. The public subgame described by Zp,I(h) contains ev-
ery terminal history (including every combination of private
chance outcomes for all players) with at least two public ac-
tions, whose first two public actions are: bet, call.

Algorithm
The algorithm is iterative and samples a single trajectory
from the root ∅ to some terminal history. At each information
set in memory, I , there are two tables maintained: rI stores
cumulative regret for each action a ∈ A(I), and sI stores
the cumulative average strategy probability of each action.

Depending on the targeting method that is chosen (IST
or PST), Zsub is one of ZI(h) or Zp,I(h). The pseudo-code
is presented as Algorithm 1. Each iteration is represented
by two calls of OOS where the update player i ∈ {1, 2} is
alternated. Before each iteration, a scenario is decided: with
probability δ the iteration targets the subgame and chooses
z ∈ Zsub and with probability (1−δ) the usual OS sampling
determines z ∈ Z. The first parameter of OOS is the current
history. The next two are strategy’s reach probabilities for
the update player i and the opponent. The third and fourth
parameters are overall probabilities that the current sample
is generated, one for each scenario: first the targeted and then
the untargeted. The last is the update player. Initial calls have
the form OOS(∅, 1, 1, 1, 1, i). For the return values, x is a
suffix/tail reach probability for both players, l is the root-to-
leaf sample probability, and u is the payoff of the trajectory
in view of the update player.

In outcome sampling, an ε-on-policy sampling distribu-
tion used at each information set is defined as

Φ(I, i) =

{
ε · Unif(A(I)) + (1− ε)σi(I) if P (I) = i
σi(I) otherwise,

and denote Φ(I, i, a) the probability of sampling a ∈ A(I).
The sampling at chance’s choices on line 5 depends on

the method and the scenario being used. For example, when
using information set targeting, the outcome that is sampled
must be consistent with match history.

37

1 OOS(h, πi, π−i, s1, s2, i):
2 if h ∈ Z then
3 return (1, δs1 + (1− δ)s2, ui(z))
4 else if P (h) = c then
5 Sample an outcome a and let ρ1, ρ2 be its

probability in targeted and untargeted setting
6 return OOS(ha, πi, ρ2π−i, ρ1s1, ρ2s2, i)
7 I ← getInfoset(h, P (h))
8 Let (a, s′1, s

′
2)← Sample(h, I, i, ε)

9 if I is not in memory then
10 Add I to memory
11 σ(I)← Unif(A(I))
12 (x, l, u)← Playout(ha, δs1 + (1− δ)s2)
13 else
14 σ(I)← RegretMatching(rI)
15 π′P (h) ← σ(I, a)πP (h)

16 π′−P (h) ← π−P (h)

17 (x, l, u)← OOS(ha, π′i, π
′
−i, s

′
1, s
′
2, i)

18 c← x
19 x← xσ(I, a)
20 for a′ ∈ A(I) do
21 if P (h) = i then
22 W ← uπ−i / l
23 if a′ = a then
24 rI [a

′]← rI [a
′] + (c− x)W

25 else
26 rI [a

′]← rI [a
′]− xW

27 else
28 sI [a

′]← sI [a
′] + 1

δs1+(1−δ)s2π−iσ(I, a′)

29 return (x, l, u)

Algorithm 1: Online Outcome Sampling.

A critical part of the algorithm is the action chosen
and sample reach updates on line 8. In the targeted sce-
nario, the current history h is always in the targeted part
of the game and an action from {a | ∃z ∈ Z (ha, z) ∈
Zsub} is selected using the distribution Φ(I(h), i) normal-
ized to one on this subset of actions. If we define sum =∑

(ha,z)∈Zsub
Φ(I, i, a) then s′1 = s1Φ(I, i, a)/sum. In the

untargeted scenario, any action a ∼ Φ(I, i) can be sam-
pled. If the action is not leaving the targeted part of the game
(i.e., (ha, z) ∈ Zsub) then s′1 = s1Φ(I, i, a)/sum otherwise
s′1 = 0. In all cases s′2 = Φ(I, i, a)s2.

These sample reach probabilities are combined into one
true reach probability at a terminal history on line 2, start-
ing the playout on line 12 and when updating the average
strategy on line 28.

The playout on line 12 samples to the end of the game
with some playout policy at each step; we use uniform ran-
dom, but in general one could use a informed policy based
on domain knowledge as well. Unlike MCTS, the playout
policy in OOS must compute l when reaching a terminal
and update the tail probability x when returning as done on
line 19. Lines 15 and 16 simply modify the P (h)’s reach
probability by multiplying it by σ(I, a), keeping the value
of the other one the same.

Lines 18 to 24 contain the usual outcome sampling up-
dates. Note that regrets are updated at the update player his-
tories, while average strategy tables at opponent histories.
Theorem 1. Let σ̄tm(δ, h) be a strategy produced by OOS
with scheme m ∈ {IST,PST} using δ < 1 started from h
run for t iterations, with exploration ε > 0. For any p ∈
(0, 1], ε > 0 there exists t < ∞ such that with probability
1− p the strategy σ̄tm(δ, h) is a ε-equilibrium strategy.

Since every terminal history has non-zero probability of
being sampled, eventually every information set will be
contained in memory. Then, the algorithm becomes MC-
CFR with a non-uniform sampling scheme. Consequently
by (Lanctot et al. 2009, Theorem 5) OOS minimizes exter-
nal regret with high probability.

Note that due to non-locality, this consistency property
cannot hold generally for any search algorithm that does not
modify σ(I) at previous I(h) such that h @ h. However, it
is an open question as to whether any of the previous algo-
rithms could be modified to ensure consistency.

Empirical Evaluation
We now compare the head-to-head performance and ex-
ploitability of OOS and ISMCTS on two games.

Liar’s Dice, LD(D1,D2), also known as Dudo, Perudo,
and Bluff is a dice-bidding game. Each die has six sides with
faces to and a star ?. Each player i rollsDi of these dice
and looks at them without showing them to their opponent.
Each round, players alternate by bidding on the outcome of
all dice in play until one player “calls liar”, i.e. claims that
their opponent’s latest bid does not hold. A bid consists of
a quantity of dice and a face value. A face of ? is consid-
ered wild and counts as matching any other face. To bid, the
player must increase either the quantity or face value of the
current bid (or both). The losing player discards a number
of dice equal to how many dice were missing to have a valid
bid. The players continue until one player has no more dice.

Imperfect Information II-Goofspiel(N) is a two-player
card game where each player is given a private hand of bid
cards with values 1 to N . A different deck of N point cards
is placed face up in a stack On their turn, each player bids
for the top point card by choosing a single card in their hand.
The highest bidder gets the point card and adds the point to-
tal to their score, discarding the points in the case of a tie.
This is repeated N times and the winner is the player with
the highest score. In, II-Goofspiel the players only discover
who won or lost a bid but not the bid cards played. Also, we
assume the point-stack is strictly increasing: 1, 2, . . . N .

We will focus our experiments on LD(1,1) and II-
Goofspiel(6). While these games are considered small by
search algorithm standards, it is still possible to compute
best response strategies to measure exploitability, allowing
us to show the observed convergence of the strategies pro-
duced by OOS. We include preliminary results in LD(2,2).

To improve performance against irrational play, we use a
more explorative regret matching, σT+1

γ (I, a) = γ/|A(I)|+
(1 − γ)σT+1(I, a), with γ = 0.01. While this could effect
convergence, we observe in our experiments that exploitabil-
ity decreases as search time increases.

38

Head-to-Head Performance versus Exploitability
In games like Poker and Liar’s Dice, it is often critical to
play in such a way that the opponent cannot easily infer the
private information. This explains partly why CFR-based
methods have enjoyed so much success in the offline ap-
proach. In the online setting, however, since the tree is built
incrementally, only partial strategies are produced. We are
unaware of any methods for assessing the worst-case ex-
ploitability of strategies produced by an online search al-
gorithm. We therefore propose two new methods to approx-
imate the exploitability the produced strategies.

In the offline setting, measuring exploitability can be done
by a recursive walk of the game tree using expectimax. In
online search, the algorithm computes only a partial strat-
egy. The first full stitching method enumerates each I ∈ Ii
in topologically-sorted order starting at the root, running a
search from I re-using only the information computed in
previous searches from ancestors of I , saving the distribu-
tion computed at I , and passing down the state of memory
only for children of I . We do not save changes made to an-
cestors when searching at I to ensure a fair comparison be-
tween OOS and ISMCTS. Full stitching provides the best
representation of a full strategy that would eventually be pro-
duced by OOS since it builds distributions at each informa-
tion set in the same way as OOS would if they were reached
during play. However, full-stitching requires |I| searches
and memory, which is impractical on large games.

We also propose a the multi-match aggregate method.
This method first creates a global (accumulating) strategy
data structure for each player type and generates a set of
matches M . Then, each m ∈ M is simulated invoking the
appropriate search algorithm at each observed I along m.
Since m is predetermined, the choice made by the search
algorithm is discarded, but the information computed (visit
counts in ISMCTS, sI in OOS) is added into the global strat-
egy data structure belonging to the player who searched. For
a fair comparison, the first I reached along each m aggre-
gates all the information gained in the search but for future
I ′, only the information collected in each I ′′ reachable by I ′
is aggregated. Note that it is safe to combine the information
in this way: in ISMCTS the actions chosen and visits are in-
dependent of how I ′ was reached. In OOS, the accumulating
sI values of two converging ε-equilibrium average strategies
can be combined due to linearity of expected utility.

In our experiments ISMCTS uses C = 2; tuning shows
that the C value does not affect the performance. In II-
Goofspiel(6) we run searches for 1, 2, and 4 seconds. As
there are no public actions, we only compare IST in II-
Goofspiel. Over a range of values for δ and all time settings,
there was no statistically significant winner in head-to-head
matches between IST and ISMCTS. Exploitability is shown
in Figure 2. For reference, the exploitability values of ISM-
CTS was 0.95, 0.96, 0.91 for search times of 1, 2, and 4 sec-
onds. We observe that exploitability generally decreases as
search time increases and and changes little as δ increases,
with its lowest points at δ = 1. This result was surprising,
and we suspect it is due OOS benefiting from the reuse of
values from previous searches in the same match.

In LD(1,1), we try searches for 1, 5, and 25 seconds.

 45

 50

 55

 60

 65

 70

 0 0.2 0.4 0.6 0.8 1

delta

OOS vs. ISMCTS head-to-head in LD(1,1)

IST 1 second
IST 5 seconds

IST 25 seconds
PST 1 second

PST 5 seconds
PST 25 seconds

 45

 50

 55

 60

 65

 70

 0 0.2 0.4 0.6 0.8 1

delta

OOS vs. ISMCTS head-to-head in LD(1,1)

IST 1 second
IST 5 seconds

IST 25 seconds
PST 1 second

PST 5 seconds
PST 25 seconds

50% mark

 40

 45

 50

 55

 60

 0 0.2 0.4 0.6 0.8 1

delta

OOS vs. 0.001-equilibrium head-to-head in LD(1,1)

IST 1 second
IST 5 seconds

IST 25 seconds
PST 1 second

PST 5 seconds
PST 25 seconds

 40

 45

 50

 55

 60

 0 0.2 0.4 0.6 0.8 1

delta

OOS vs. 0.001-equilibrium head-to-head in LD(1,1)

IST 1 second
IST 5 seconds

IST 25 seconds
PST 1 second

PST 5 seconds
PST 25 seconds

50% mark

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1

delta

Exploitabilities for OOS in LD(1,1)

IST 1 second
IST 5 seconds

IST 25 seconds
PST 1 second

PST 5 seconds
PST 25 seconds

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.2 0.4 0.6 0.8 1

delta

Exploitabilities for OOS in II-Goof(6)

IST 1 second
IST 2 seconds
IST 4 seconds

Figure 2: Results for OOS in LD(1,1). From top: win rate
(%) of OOS vs. ISMCTS, win rate (%) of OOS vs. a
0.001-equilibrium, approximate εσ using aggregate method
in LD(1,1) and II-Goofpiel(6).

39

When played against a uniform random player, among all
values for delta and time settings, IST wins 79.2-86.7%
and PST wins 78.6-84.0%, with a non-noticeable differences
across δ values. ISMCTS beat uniform random 79.8-82.4%
at 1, 5, and 25 seconds. Upon further inspection, ISMCTS
very quickly converges to the same strategy every time: as
first player, with a weak roll (r = , , or) it bids 2-r in
the hope that by chance the opponent has the same roll be-
cause if it did not, the second player would have a winning
response most of the time. On a roll of r = or r = it
always bids 1-r because it wins most of time. Either way, as
second player ISMCTS selects responses based on the same
reasoning, inducing the first player’s roll based on their first
bid. This also explains the relative exploitability values in
Table 1: the first player plays overly safely and hence is hard
to exploit, meanwhile the second player best-responds to an
expected pure first player strategy, which makes it highly
exploitable. Our exploitability experiments shows a similar
skewed first vs. second player effect in II-Goofspiel.

Results for OOS variants on LD(1,1) are shown in Fig-
ure 2. Firstly, in head-to-head performance we notice OOS
wins 55-60% of games against ISMCTS, results for δ ∈
{0.1, 0.8, 0.9} seem somewhat consistent across variants
and time settings, with varied effects for δ > 0.9. Against
the 0.001-equilibrium strategy, δ = 0.5, 0.65 seems the most
robust across variants and time settings, with varied effects
when δ > 0.9. Exploitability of ISMCTS strategies com-
puted by the multi-match method was 0.88, 0.82, 0.79 at
search times of 1, 2, and 25 seconds. There are some clear
trends for the exploitability of OOS strategies. First, there
is an observed decrease in exploitability as time increases,
independent of δ. When δ is varied at the same time set-
ting, the exploitability of the global strategy increases with
δ. Then, when δ = 1 every time setting for IST converges to
the same highly-exploitable point, illustrating the theoretical
problems with full targeting manifesting in practice. Inter-
estingly, this is not the case for PST, where δ = 1 is actually
always the best-case scenario. In Liar’s Dice, this is sensi-
ble because there is no reason to believe that any histories
outside the public subgame will effect the decisions being
made when in the public subgame. The sudden drop from
δ = 0.99 to 1 could be caused by the fact that as δ increases
the variance of the importance-sampling corrections of the
off-match samples grows; when δ = 1 the sampled counter-
factual values may be biased, but have much lower variance.
PST is less affected than IST by the targeting and appears
to have lower exploitability. For each method and all values
of δ: increasing the search time decreases exploitability. The
exploitability values from Table 1 also show this trend.

We performed one head-to-head experiment consisting of
500 games of PST(δ = 0.8) vs. ISMCTS, in LD(2,2) with
25 seconds of search time per move. PST won 256 games,
showing a competitive promise on this much larger game
with roughly 352 million information sets.

Conclusion
In the paper, we have introduced Online Outcome Sampling,
the first Monte Carlo Tree Search algorithm that is guaran-
teed to produce approximate equilibrium strategies as search

Algorithm Time ε1 ε2 εσ
ISMCTS 1s 0.235 0.574 0.808

IST 1s 0.337 0.311 0.648
PST 1s 0.203 0.211 0.414

ISMCTS 5s 0.251 0.548 0.799
IST 5s 0.229 0.295 0.524
PST 5s 0.148 0.125 0.273

Table 1: LD(1,1) exploitability using full-stitching, δ = 0.9.

time per move is increased in imperfect information games.
We showed that in head-to-head performance, OOS is able
to compete with ISMCTS while producing strategies with
lower exploitability at the same search time in Liar’s Dice
and II-Goofspiel. We propose two methods for targeting rel-
evant parts of the game based on the current match history,
IST and PST. In II-Goofspiel, results are only slightly af-
fected by different targeting probabilities, whereas the effect
is stronger in LD(1,1), with PST seeming better overall.

In future work, we hope to investigate more and larger
games such as no-limit poker, and the effect of informed
playout policies. Ultimately, we want to make practical com-
parisons to other baseline algorithms such as PIMC (Long
et al. 2010), MMCTS (Auger 2011), and IIMC (Furtak and
Buro 2013). One interesting question is whether the sub-
game decomposition ideas of (Burch, Johanson, and Bowl-
ing 2014) could be adapted to the online search setting. Fi-
nally, using MCRNR (Ponsen, de Jong, and Lanctot 2011)
as the base algorithm could provide a balance between ex-
ploitability and exploitation against known opponents.

Acknowledgments. This work is partially funded by the Nether-
lands Organisation for Scientific Research (NWO) in the frame-
work of the project Go4Nature, grant number 612.000.938 and the
Czech Science Foundation, grant no. P202/12/2054.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
Learning 47(2/3):235–256.
Auger, D. 2011. Multiple tree for partially observable
Monte-Carlo tree search. In Applications of Evolutionary
Computation (EvoApplications 2011), Part I, volume 6624
of LNCS, 53–62.
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; Schaeffer, J.; and Szafron, D. 2004.
Game tree search with adaptation in stochastic imperfect in-
formation games. In In Computers and Games (CG).
Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte
Carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in Games 4(1):1–43.
Burch, N.; Johanson, M.; and Bowling, M. 2014. Solving
imperfect information games using decomposition. In 28th
AAAI Conference on Artificial Intelligence.
Buro, M.; Long, J.; Furtak, T.; and Sturtevant, N. 2009. Im-

40

proving state evaluation, inference, and search in trick-based
card games. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 1407–1413.
Ciancarini, P., and Favini, G. 2010. Monte carlo tree search
in Kriegspiel. Artificial Intelligence 174(11):670–684.
Cowling, P. I.; Powley, E. J.; and Whitehouse, D. 2012. In-
formation set monte carlo tree search. IEEE Transactions on
Computational Intelligence and AI in Games 4(2):120–143.
Frank, I.; Basin, D.; and Matsubara, H. 1998. Finding op-
timal strategies for imperfect information games. In Pro-
ceedings of the Fifteenth National Conference on Artificial
Intelligence, 500–507.
Furtak, T., and Buro, M. 2013. Recursive Monte Carlo
search for imperfect information games. In IEEE Confer-
ence on Computational Intelligence in Games (CIG 2013).
Ganzfried, S., and Sandholm, T. 2013. Improving perfor-
mance in imperfect-information games with large state and
action spaces by solving endgames. In AAAI Workshop on
Computer Poker and Incomplete Information.
Gilpin, A., and Sandholm, T. 2006. A competitive Texas
Holdem poker player via automated abstraction and real-
time equilibrium computation. In Proceedings of the 21st
AAAI Conference on Artificial Intelligence, 1453–1454.
Gilpin, A., and Sandholm, T. 2007. Better automated ab-
straction techniques for imperfect information games, with
application to Texas Holdem poker. In Proceedings of the
International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS).
Gilpin, A. 2009. Algorithms for Abstracting and Solving
Imperfect Information Games. Ph.D. Dissertation, Carnegie
Mellon University.
Ginsberg, M. 1996. Partition search. In Proceedings of the
Thirteenth National Conference on Artitificial Intelligence
(AAAI), 228–233.
Ginsberg, M. 2001. GIB: Imperfect information in a com-
putationally challenging game. Journal of Artificial Intelli-
gence Research 14:303–358.
Hart, S., and Mas-Colell, A. 2000. A simple adaptive
procedure leading to correlated equilibrium. Econometrica
68(5):1127–1150.
Johanson, M.; Bard, N.; Burch, N.; and Bowling, M. 2012a.
Finding optimal abstract strategies in extensive form games.
In Proceedings of the Twenty-Sixth Conference on Artificial
Intelligence (AAAI), 1371–1379.
Johanson, M.; Bard, N.; Lanctot, M.; Gibson, R.; and Bowl-
ing, M. 2012b. Efficient Nash equilibrium approximation
through Monte Carlo counterfactual regret minimization. In
Proceedings of the Eleventh International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS).
Johanson, M.; Burch, N.; Valenzano, R.; and Bowling, M.
2013. Evaluating state-space abstractions in extensive-form
games. In Proceedings of the 12th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS).
Johanson, M. 2007. Robust strategies and counter-
strategies: Building a champion level computer Poker
player. Master’s thesis, University of Alberta.

Kocsis, L., and Szepesvári, C. 2006. Bandit-based Monte
Carlo planning. In 15th European Conference on Machine
Learning, volume 4212 of LNCS, 282–293.
Lanctot, M.; Waugh, K.; Bowling, M.; and Zinkevich, M.
2009. Sampling for regret minimization in extensive games.
In Advances in Neural Information Processing Systems
(NIPS 2009), 1078–1086.
Lanctot, M.; Gibson, R.; Burch, N.; and Bowling, M. 2012.
No-regret learning in extensive-form games with imperfect
recall. In Proceedings of the Twenty-Ninth International
Conference on Machine Learning (ICML 2012).
Levy, D. 1989. Heuristic Programming in Artificial Intelli-
gence: The First Computer Olympiad. Ellis Horwood Ltd.
Lisy, V.; Bosansky, B.; and Pechoucek, M. 2012. Anytime
algorithms for multi-agent visibility-based pursuit-evasion
games. In Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS),
1301–1302.
Long, J.; Sturtevant, N. R.; Buro, M.; and Furtak, T. 2010.
Understanding the success of perfect information Monte
Carlo sampling in game tree search. In Proceedings of the
AAAI Conference on Artificial Intelligence, 134–140.
Neller, T. W., and Hnath, S. 2011. Approximating optimal
Dudo play with fixed-strategy iteration counterfactual regret
minimization. In Computers and Games.
Osborne, M., and Rubinstein, A. 1994. A Course in Game
Theory. MIT Press.
Ponsen, M.; de Jong, S.; and Lanctot, M. 2011. Comput-
ing approximate Nash equilibria and robust best-responses
using sampling. Journal of Artificial Intelligence Research
42:575–605.
Rubin, J., and Watson, I. 2010. Computer poker: A review.
Artificial Intelligence 175(5–6):958–987.
Sandholm, T. 2010. The state of solving large incomplete-
information games, and application to poker. AI Magazine
31(4):13–32.
Shafiei, M.; Sturtevant, N. R.; and Schaeffer, J. 2009. Com-
paring UCT versus CFR in simultaneous games. In IJCAI
Workshop on General Game-Playing (GIGA), 75–82.
Sheppard, B. 2002. World-championship-caliber scrabble.
Artificial Intelligence 134:241–275.
Sturtevant, N. R. 2008. An analysis of UCT in multi-player
games. ICGA Journal 31(4):195–208.
Whitehouse, D.; Cowling, P.; Powley, E.; and Rollason, J.
2013. Integrating Monte Carlo tree search with knowledge-
based methods to create engaging play in a commercial mo-
bile game. In 9th Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), 100–106.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2008. Regret minimization in games with incomplete
information. In Advances in Neural Information Processing
Systems 20 (NIPS 2007).

41

