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Abstract

The computation of appropriately balanced shots in
synthetic animation movies is crucial both to properly
convey the content and meaning of a 3D scene, and to
conform to classical aesthetic criteria. Visual balance in
shots can be defined as the arrangement of pictorial el-
ements to form a unified harmonious whole in a pic-
ture. Current techniques used in automated viewpoint
computation typically encode a set of established rules
and conventions from literature in photography and cin-
ematography into metrics to assess the quality of on-
screen composition and balance. In this paper, we move
beyond these representations by proposing an elaborate
model of on-screen visual balance that learns from an-
notated shots in real movies. The model includes fea-
tures such as size, silhouette, position and luminance of
target objects, together with metrics related to actors’
positions, orientations and gaze. We then show how the
model relies on data from real shots to evaluate balance
in synthetic shots.

Introduction
Aesthetics is a central criteria when considering the quality
of shots in both real and virtual environments. Proposing re-
liable and automated techniques to estimate and to enforce
aesthetics in real or synthetic shots is a challenging task
due to the difficulty of defining and formalizing aesthetics
in a reliable and efficient computational model. Despite the
difficulty, some aspects of aesthetics have been addressed
in both image analysis and computer graphics communi-
ties. In image analysis, the objective is to evaluate the qual-
ity of a real shot (photography) and propose modifications
in its framing (Liu et al. 2010) or content (Zhang, Wang,
and Hu 2013) that conform to common aesthetic conven-
tions. In computer graphics, the objective is to search for
the best shot satisfying such conventions (Bares et al. 2000;
Abdullah et al. 2011) by changing the viewpoint or the loca-
tion of objects in the scene to modify the shot layout.

Aesthetics is strongly dependent on the appropriate com-
position of pictorial elements on the screen, and visual bal-
ance plays a key role in this composition (Mascelli 1965).
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Balance represents the equilibrium of visual weights in the
screen, i.e. equilibrium of the visual interests one perceives.

This aspect has been relatively under-addressed. Model-
ing the sense of balance in shots requires to compute the
weight (or leverage) of each visual feature in the global pic-
ture balance, including luminance, actors positions, silhou-
ettes, size on the screen, eyes position of actors and gaze.
Currently most contributions in the domain rely on a sim-
plified model of balance (location and area of visual enti-
ties on the screen in (Swanson, Escoffery, and Jhala 2012;
Bares 2006) or in (Zhang, Wang, and Hu 2013)).

In this work, we propose an elaborate model of bal-
ance based on multiple visual features. Our hypothesis is
that each of these features carries a part of an object vi-
sual weight and that the aggregation of these weights in the
screen provides the sense of balance, i.e. an equilibrium of
visual weights. The principle of our model consists in evalu-
ating the visual balance of synthetic shots by learning from a
selection of well balanced shots extracted from real movies
using a balance feature space. Given that the general bal-
ance estimation problem is strongly related to the semantics
of entities on the screen, we restrict our analysis to the subset
of shots only containing actors.

Given that balance is a complex combination of these fea-
tures, we first propose to use a collection of annotated shots
from real movies that we consider properly balanced, to as-
sess the relative importance between the features in each im-
age. The balance assessment for these pictures is done by an
expert who grades them with a binary value: balanced or not
balanced. This provides us with a feature-space in which we
can position each annotated shot with its particular combi-
nation of weights. In a second step, we use this feature-space
to propose a distance metric between shots in terms of bal-
ance. Any new shot can be positioned in this feature-space
and its distance to existing shots can be measured using a
weighted combination of the nearest annotated shots. This
distance metric can therefore be used to evaluate the balance
of the new shot. Results show that the technique effectively
characterizes well-balanced shots with one and two actors.

In its implementation, our method does not rely on shot
similarities in terms of content but on more low level fea-
tures such as luminance, silhouette, eye position and gaze.
Our approach finds applications in automated viewpoint
computation and automated cinematography which are re-
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ceiving a strong interest given the complexity and visual
quality of nowadays 3D environments, and the necessity of
conveying such contents.

Related Work
Automated computation of viewpoints in 3D environments
started to receive a strong interest in the computer graph-
ics community given the increase in amount and quality of
3D models and the necessity to properly convey these 3D
contents. The objectives of automated viewpoint computa-
tion techniques are strongly pertained to the targeted appli-
cation. For example in medical visualization, the techniques
will help to focus on a specific organ of a body, ensuring its
visibility and relation to other organs in a focus-plus-context
approach (Mühler et al. 2007). In information visualization,
appropriate viewpoint computation supports for example the
exploration of historical data (Stoev and Strasser 2002).

Viewpoint computation has generally been expressed in
terms of viewpoint entropy, which is a measure of the infor-
mation provided by a point of view (Vázquez et al. 2001).
Viewpoint computation therefore aims at optimizing the
viewpoint to maximize the amount of information it conveys
and has been well addressed by evaluating visibility, pro-
jected surface or complexity of the silhouette (Vieira et al.
2009),(Vázquez et al. 2003). However, the relevant display
of information from a viewpoint also relies on the proper
layout of visual elements on the screen (referred to as visual
composition or simply composition).

Approaches that tackle viewpoint composition generally
encode classical photographic composition rules and cast
the problem as an optimization one: composition rules are
expressed as cost functions over the camera parameters, and
the optimization technique searches within the camera pa-
rameters for the viewpoint minimizing the aggregated cost
functions. For example, Olivier et al. (Olivier et al. 1999)
propose an extended composition language (enforcing the
location, orientation and size of an object on the screen) and
adopt a meta-heuristic search algorithm (namely a genetic
algorithm due to the presence of many local minima). Other
approaches follow a similar principle with variations in the
language and algorithms (Bares et al. 2000)(Jardillier and
Languénou 1998). Issues are related to the necessary ab-
straction of complex objects as points or simple primitives
on the screen for means of efficiency in computations.

Visual balance in composition, defined as the arrangement
of pictorial elements to form a unified harmonious whole,
has been relatively under-addressed due to the difficulty in
formalizing and therefore evaluating balance. Interestingly,
in the domain of image analysis, multiple metrics have been
defined to re-frame or re-compose existing pictures (Zhang,
Wang, and Hu 2013). Typically Ligang et al. and Zhang et
al. simply represent the notion of balance as the distance
from the center of mass of all objects to the image cen-
ter (Liu et al. 2010)(Zhang, Wang, and Hu 2013). The in-
trinsic complexity of formally defining visual composition
and balance has pushed the research community to consider
learning techniques from a database of annotated shots, and
our approach follows this trend. In (Swanson, Escoffery,
and Jhala 2012), the authors rely on a data collection with

crowd-sourcing annotation to study visual composition pref-
erences, using metrics of balance, thirds alignment, symme-
try and spacing. However, the definition of metrics to es-
timate balance requires to properly define the mass of ob-
jects using their luminance, silhouette, size and position on
screen. Furthermore mass depends on the nature and seman-
tics of the targets.

This paper proposes a formalization of visual balance in
composition by restricting the problem to viewpoints with
actors for which the semantics are well defined. To estimate
balance in shots, we rely on the annotation of real shots from
movies to construct a feature space in which the feature dis-
tance to a real shot characterizes its degree of balance.

Overview
Our overall process encompasses two stages (see Figure 1).
The first stage consists in extracting the features involved in
visual balance. In section Visual Features, we show how the
features are extracted and annotated from real movies in or-
der to create a feature space that describes the best feature
associations to create well balanced shots. Although this fea-
ture space provides us with a collection of feature vectors for
each shot, it does not carry any information on the relative
importance of the features of one balanced shot.

In the second stage, we measure the relative importance of
these features by setting up a theoretical center of mass lo-
cated in the center of each picture. An optimization method
is used to compute the leverage value associated to each fea-
ture such that the computed center of mass is the same as the
theoretical center of mass. These leverage values are weights
that reflect the influence of the feature in the balance value.
The position of the center of mass is expressed as a weighted
linear combination of the features. The process is described
in section Optimization. Our hypothesis is therefore that the
association of good features with the correct leverage values
provides well balanced shot. We can then assess balance in a
new shot by comparing its features with the closest balanced
shots in our balance feature space. We compute the new cen-
ter of mass by interpolating the leverage vectors associated
with those balanced shots as described in section Evaluation
of balance in synthetic shots. Finally, the degree of balance
is given by the distance between the new center of mass and
the theoretical center of mass (center of the screen).

Visual Features
Following Mascelli (Mascelli 1965), we propose to define
visual balance in a picture as a combination of the visual
weights of the entities it encompasses. In our context, vi-
sual weight is influenced by 2-dimensional features on the
actors and on their screen positions. We referred to general
recommendations in literature to propose a list of features
that were considered significant in visual balance (see Ta-
ble 1). A semantic level was introduced that distinguishes
the main actor from secondary and auxiliary actors (see Fig-
ure 2). The main actor performs the action. For example if
the current action is “A talks to B” actor A will be considered
as the main actor in the shot. The secondary actor is the one
who participates in the action. For example if the current ac-
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Figure 1: Estimating and correcting visual balance in synthetic shots.

Feature Symbol
actor’s luminance L
actor’s isolation Is
actor’s sizes in the 2D picture O
actor’s on-screen position P
main actor’s gaze direction Ed
main actor’s body orientation Bd
main actor’s head direction Hd
main actor’s face size Hs
main actor’s head center Hpx,y
picture intrinsic areas masses Ma
actor’s importance in the action Imp
actor’s eye i position in height and width Epix

Table 1: Significant visual features in terms of visual weight
and their symbols.

tion is “A talks to B”, B is the secondary actor. The auxiliary
actors do not participate in the current action. They can be
performing background tasks which may be essential to un-
derstanding the current action and participate in the balance.

Image balance results from a combination of these fea-
tures. To be able to quantify balance in images, we pro-
pose to extract all these features from real shots taken from
movies and approved by an expert. In the following para-
graphs, we will explain how these features are extracted and
the post-processing we perform on the extracted data.

Extraction
Areas’ masses extraction The principle behind this fea-
ture is that the screen is divided in multiple areas. Some
areas in the screen are more attractive to the eye than oth-
ers. Thus, the location of pictorial elements on the screen
influences their weight. For example (Mascelli 1965) under-
lines that an object placed in the center of the image has less
weight than an object placed away from the center. A direct

Figure 2: Actor’s importance: the red actor is the Main actor.
He is talking to the blue actor who is the secondary actor.
The green actor is an auxiliary actor as he does not take part
in the current action: he can be replaced by any other actor
but participates in the balance.

consequence of this is that a heavy object should be closer
to the center whereas a lighter object should be away from
the center. The areas’ masses we introduce here are weight
attenuation factors applicable to an object when positioned
at a certain location on the screen. The areas’ masses are
to be learnt during the optimization step for every picture.
Figure 3 displays an example of area masses.

Luminance Light is an important component in pictorial
unity (Mascelli 1965). Well illuminated actors tend to have
a more important weight in pictorial balance as they attract
the observer’s eye. In our approach, an actor’s mean lumi-
nance is normalized with respect to the entire shot average
luminance. Luminance is computed from the RGB values by
converting into XYZ space where Y is the luminance. An
actor’s luminance is computed with the following equation:
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Figure 3: Example of average areas’ masses distribution on
the picture. The values are normalized in the interval [0,1].
The dark areas will apply less attenuation to the objects (e.g.
provide more weight to objects) whereas brighter areas will
apply more attenuation (e.g. provide less weight to objects).
In this example, we divided our picture in 32 (8x4) areas.

Li =

∑height
w=0

∑width
w=0

{
L(I(h,w)) if I(h,w) ∈ A

0 else∑height
w=0

∑width
w=0 L(I(h,w))

(1)
With:
• I , the image we process,
• h, w, the coordinates of a pixel in the image,
• A, the actor being processed in the image,
• height, width, the size of the image,
• L(I(h,w)) the luminance computed at pixel I(h,w).
Figure 4 shows luminance values in function of the actor’s
importance.

Figure 4: Distribution of actors’ relative luminance (ratio be-
tween the actors’ luminance and the entire shot luminance
on the x-axis). Main actors appear to be better illuminated
than secondary actors. In addition, on one actor shots, the
ratio of mean actor luminance on mean shot luminance is
always higher than 0.25.

Isolation It is admitted (Mascelli 1965) that stacked ob-
jects have less impact on eye attraction. Indeed it is hard
to separate the object of interest from distracting objects.
The rule proposed by Mascelli is to say that stacked objects
would have less weight than isolated objects. In our frame-
work we use a boolean value to describe isolation. We made
this choice because isolation is hard to define. It is either a
distance in 2D between objects or the distance in 3D. This
value highly depends on the operator’s appreciation. For the
most, we selected pictures with good isolation (e.g. , the ac-
tors are fully visible and not crowded with distracting actors
or object). Isolation value is 1 for good isolation and 0 for
bad isolation.

Importance of the actor The central actor of interest of
the picture is encoded by three values, Main = 2, Secondary
= 1, Auxiliary = 0. The main actor generally attracts the most
visual attention.

On-screen size and position This is one of the most im-
portant features as it provides information on camera angles
and on actor size projected on the screen. Alone, size sig-
nificantly contributes to balance but a director can balance
big objects with small ones. Since big objects are more im-
portant in terms of visual weight, balancing small objects
should have other properties as better illumination, position
or movement to compensate. Size is represented as the ratio
of the number of pixels covered by the actor and the image
size in pixel. We also save the projected pixels of the actor
in the 2D picture to access the on-screen position. Figure 5
shows the distribution of on-screen positions of one actor
shots and Figure 6 displays main and secondary actors on-
screen positions in two actors shots.

Figure 5: Distribution of positions in a one actor shot. The
green part is the area where there are less than 33% of pres-
ences, the blue one is for less than 66% and the red one is
for more than 66%.

Head center, Eyes position and Head Size The Head
center depicts the actors head position. It is an important po-
sitional feature since in good compositions, the actor’s head
ought to be located around the image’s more powerful points
(for example thanks to rule of thirds). In a similar way, eyes
position are essential in balance as they are also often lo-
cated on the image more powerful points (Mascelli 1965).
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Figure 6: Distribution of positions in two actors shots. The
upper picture is for the Main actor and the lower one is for
the Secondary actor. The green part is the area where there
are less than 33% of the actors, the blue one is for less than
66% and the red one is for more than 66%.

Combined to the actors head size, they provide information
on shot length (close up, long,. . . ).

Gaze and Head direction The gaze direction influences
image balance as it guides the spectator’s eyes through the
scene and adds weight to the objects or directions targeted
by the actor’s gaze. It can differ from the orientation of the
head (see shot 8 in Figure 8 ). Gaze and head direction are
computed using the same principle. Their value is the angle
between the vertical of the picture and a vector representing
the direction of gaze or head orientation. This value is scaled
to the interval [0, 1]. The gaze is oriented toward the virtual
location of the action’s protagonist (it can be an off-screen
object, see Figure 7). The head direction is oriented in the
direction faced by the actor on the picture.

Body orientation Body orientation is the estimated ori-
entation of the actors body on the screen. We represent ori-
entation as a scalar value according to the rules defined in
Figure 8.

Feature Space
As a result, we have obtained a collection of over 100 anno-
tated shots for one-actor and two actors shots. The shots are
organized in a feature space where each shot is represented
by its extracted features. All the extraction was performed
manually with a software we developed. For example to de-
termine actor position we performed manual delineation of
the actor and used a region growing segmentation algorithm

Figure 7: The actor’s head seems centered but the gaze di-
rection goes from right to left. The value we use is the blue
angle between the vertical direction and the gaze direction.

Figure 8: Example of body orientation: in shot 1 the actor is
seen from front which corresponds to camera position 1 in
sub-picture 9. Pictures 2 to 8 correspond respectively to po-
sition 2 to 8 in sub-picture 9. These positions are normalized
in the interval [0, 1].

to extract the projection. All the positional features are nor-
malized by the picture size.

Optimization
By considering that all the annotated shots in our collection
are well-balanced shots, we formulate the hypothesis that
there exists a virtual balance point located in the center of
these shots (in a way, the center of balance in the image or
theoretical center of mass). We define this theoretical center
of mass as a linear combination of the visual weights rela-
tive to the extracted features. However, we need to assess the
relative contribution of each feature in the final balance. To
this end, we associate a leverage value to each feature. This
leverage value actually represents the contribution of the fea-
ture to balance. We refer to this value as a leverage value and
not as a weight to avoid confusion with visual weights. We
then rely on an optimization process to compute, for each
image (shot), the set of leverage values such that the theo-
retical center of mass is located at the center of the screen.
This process provides us with a feature/leverage value space
that will be used later to assess and correct balance in pic-
tures. To compute these leverage value, we follow a three
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stages process: first, definition of features’ domain of appli-
cation or scope, then definition of the cost function which
value needs to be optimized, eventually optimization of the
leverage value set for each image.

Features scope
We distinguish two types of features: those which are rela-
tive on the actor and those which are applied on a part of
the image. The first category includes on-screen size, lumi-
nance, head size, isolation, center of interest and body direc-
tion for all actors. We normalize their values according to the
actor size in pixels to account for their relative importance.
Head direction and eyes direction are applied to a specific
area of the picture. This area position and size depends of
their value. The algorithm 1 describes the method to com-
pute these areas. The algorithm is given for head direction
but the exact same rules are applied for eyes direction.

Algorithm 1: Head direction : decides if a the head di-
rection is defined for the pixel x.

Input: Hpx : The head position.
Input: Hd : The head direction normalized in [0, 1].
Input: x : a pixel width coordinate.
Output: Hdir ={

1 if HD applicable to x
0 otherwise

if Hd < 0.45 ∧Hd > 0.05 then
if x < Hpx then

Hdir ← 1;
else

Hdir ← 0
end

end
if Hd > 0.55 ∧Hd < 0.95 then

if x > HPX then
Hdir ← 1;

else
Hdir ← 0

end
end
return Hdir

Cost function
The cost function to be optimized is expressed as a lin-
ear combination of the features. Their leverage values are
combined with the areas masses presented in Figure 3. The
area masses are not known before the optimization, they are
learnt by the optimization method. In the following we will
explain the optimization process for one picture. For a given
picture, a weight is associated to each actor, this weight rep-
resents the perceptual impact of the actor on the spectator.
We consider this weight as linear combination or various
features presented in section Visual Features. Let feati be a
vector of features associated to an actor

f = [O,L,Hd,Ed,Hs,Epix, Is,Hpx, Imp,Bd,Rs]
(2)

and parami a vector of the same size containing the
leverage values of feat. The weight Wi of the actor i is
given by:

wi = fi ∗ pi (3)
for each area of the screen Wz the weight is given by the
union of the weight of all the actors on the area, weighted
by the mass of the area.

Wz = Maz ∗
∑

i(if object i∈area)
(wi) (4)

with :
∑

z Wz = 10.

The current center of mass is given by (assuming our im-
age’s coordinates range from (0, 0) to (1, 1)):

Br =
1∑

i=0

1∑
j=0

Wi,j

[
i
j

]
(5)

Our optimization method consists in minimizing the dis-
tance between the current center of mass and the theoretical
center of mass. Finally our cost function is:

argminf ||Br −Brt|| (6)

with : Brt the theoretical center of mass.

The algorithm 2 describes the way we compute our cost
function. In addition to the extracted features, the input vari-
ables are the following : Rs : the Hs

O ratio, I : the input
image, Br : the current center of mass, Brt : the theoretical
center of mass.

Algorithm 2: Balance function
Input: O,L,Hd,Ed,Hs,Epix, Is.
Input: Hpx, Imp,Bd,Rs, p,Ma, P.
Output: cost
const = po ∗O + pl ∗ L+ phs ∗Hs+ pImp ∗ COI +
pis ∗ Is+ prs ∗Rs+ pbd ∗Bd
Br := [0, 0]
Brt := [0.5, 0.5]
for h := 1 to Height(I) do

for w := 1 to Width(I) do
Mass←Ma(h,w)

Ihw ←
{

I(h,w) if I(h,w) ∈ P
0 else

V ar ← Hd ∗ x(3) + x(4) ∗Ed+ x(8) ∗HP +
x(6) ∗ Eix /* where they apply
*/

Wz ←Mass ∗ (Ihw ∗ const+ V ar)
Br ←
Br +Wz ∗ [h/Height(P ), w/Width(P )]

end
end
return ||Br −Brt||

The process is the same for two actors except that new
features are added: the second actor’s on-screen size, bright-
ness, isolation, importance, and position.
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Optimization in practice
We used a constrained nonlinear optimization technique to
solve the set of leverage values for each image. The first con-
straint is to set the sum of all parameterized features to 10.
The second constraint is to set the sum of all screen positions
to 10. We made these choices to make sure that the interval
for our leverage values is wide enough to represent them all
and to reach a solution. We computed 132 leverage values
for one actor and 136 for 2 actors. Among those, 120 were
screen position values. In a more practical way, we used the
Matlab’s fmincon interior-point minimization algorithm to
compute the leverage values. We limited our objective func-
tion to 10−5 and we set the maximum number of iterations
to 20000.

Evaluation of balance in synthetic shots
Interestingly, our approach to estimate balance can be used
on synthetic shots. Indeed, given that all the information of
a 3D environment is known before hand, we can automat-
ically extract the features needed in the computation. One
characteristic of our algorithm is that it does not rely on pic-
torial high level similarities but on low level features similar-
ities. To compute the leverage values vector for our image,
its feature is projected on the feature space. An inter-feature
distance is used to determine which images are the closest
in term of extracted features. We use a k nearest neighbors
(k-nn) algorithm to perform this task. The set of leverage
values of our synthetic shot is computed by performing an
interpolation on the leverage values associated to the k-nn.
The current center of mass is computed with the extracted
features, and the computed leverage values. Here we con-
sider that if the center of balance is in a close area around
the center of the screen, the shot is balanced (d < 0.1). In
the following, we present some of our results for one actor
shots and for two actors shots.

One actor shots
We performed our extraction over a dataset of 50 shots.
Each shot was divided in 120 areas of constant area’s mass:
12 along the height and 10 along the width of the picture.
This choice was made because a bigger resolution would
not be relevant to describe our pictures. We then applied
our method to assess the balance of synthetic shot extracted
from an automated viewpoint computation tool (Lino et al.
2011)). Figure 9 shows an example for one actor in random
camera positioning.

Two actors shots
We performed our experiment in the same conditions than
previously for two actors. We noticed about a one hour dif-
ference in computation time between one and two actors for
one shot. Figure 10 shows an example for two actors in ran-
dom camera positioning.

Figure 11 and Figure 12 show examples of balance as-
sessment in different configurations for one actor and two
actors shots.

Figure 9: Composition evaluation for a one actor shot.
Top left picture represents the shot to evaluate. Three best
matches were computed for this picture’s configuration in
feature space. The computed center of mass is here repre-
sented by the red point and the center of the picture by the
green point, showing a significant distance to a correct com-
position.

Figure 10: Example of composition evaluation on a two ac-
tor shot. We can notice in this example that the main actors
are away from the center. This cause a disequilibrium. When
we assess balance for this picture we can see that the com-
puted center of mass is far away from the center.

Conclusions and future work

We present a novel approach to evaluate balance in synthetic
shots, by proposing an evolved metric of balance. Existing
techniques only consider balance from the point of view of
the surface and location of targets on the screen, while art lit-
erature in the field provides a more general definition based
on the equilibrium of visual weights. The results we present
show that our method can more precisely assess image bal-
ance by considering features such as gaze direction, on-
screen actor position and orientation, luminance or layout
of masses in the picture. Onoing work relies on our balance
estimation technique to automatically correct balance in syn-
thetic shots through appropriate camera displacements. We
also will consider constraints due to gaze continuity and spa-
tial continuity when computing sequences of balanced syn-
thetic shots.
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Figure 11: These examples show one actor situations. In the
upper pictures we can see that disequilibrium is caused by
the nose room and the excessive luminance of the door with
respect to the actor. In the second picture in particular, the
size of the actor increases the disequilibrium. The lower two
pictures are well-balanced examples with correct sizes of ac-
tors. We can see that the luminance of the scene has an in-
fluence in the overall balance of the picture.

Figure 12: These examples show two actors situations. The
upper example shows the same scene from two different an-
gles. In the first picture the actors are out of frame and the
center of mass is pulled by the right bright area. In the sec-
ond, the framing is better but still the luminance causes a
small disequilibrium. The lower example shows the same
kind of situation. The difference of balance here is linked to
the camera angle that modifies the actors’ position in 2D.
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