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Abstract

Assistive technologies in smart environments were developed
in order to maintain and improve the quality of life of peo-
ple with dementia or other health problems. In order to pro-
vide adequate support at the opportune moment, it is neces-
sary to deploy ambient services, such as activity recognition
and assistance planning. Clinical Decision Support Systems
(CDSS) that implement clinical guidelines, allow for the right
clinical decisions, such as diagnoses and treatment choices, to
be made automatically based on patient data and other health
information. While data derived from smart home services
can be used in these CDSS, smart homes can be used to pro-
vide services related to clinical decisions. Mobile devices can
be used in conjunction with the smart home services and a
remote CDSS for sending notifications or retrieve data from
wearable or built-in sensors. However, in a context where
smart homes interacts with a remote CDSS, we must take into
account mobility (e.g. outdoors, work), failure tolerance (e.g.
connection issues with remote CDSS) and privacy concerns
in order to provide minimum quality of service. Thus, CDSS
must be locally deployed as a smart home service and on a
mobile device. In this paper we investigate a scenario where
due to the above mentioned reasons a clinical guideline com-
pliant CDSS needs to be deployed on a mobile device and as a
smart home service, where clinical data can come from either
the patient (manual input) or the smart home and mobile sen-
sors. In particular we focus on implementing and evaluating
a guideline for the diagnosis of sleep apnea. Sleep apnea di-
agnosis is a well-suited task for this purpose as attributes for
the execution of the guideline could be collected both from
the patient and sensor data inside or outside the smart home
environment. In order to illustrate the feasibility of CDSS
as smart home service and on mobile device, the Sleep Ap-
nea CDSS is validated on an Android smartphone and show
promising results.

1 Introduction
In smart homes with ambient and wearable sensors, vari-
ous services are able to provide assistance to patients diag-
nosed with dementia or other health problems, while main-
taining and improving the quality of life(Cook, Augusto, and
Jakkula 2009). Clinical Decision Support Systems (CDSS)
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are used to derive clinical conclusions from patient data, in
order to automate and help the process of diagnosing and
treating the patient (Musen, Middleton, and Greenes 2014).
One way that a CDSS can be implemented is to formalize
a clinical guideline (Fleetham et al. 2006), which is a doc-
ument detailing best practices for diagnosing and treating
patients, and use it on a knowledge base containing the pa-
tient’s data. An interesting perspective is to use CDSS in a
smart home setting, where data for the remote CDSS can be
obtained from smart home services and mobile devices using
ambient and wearable sensors. However, in order to main-
tain minimum quality of service for CDSS decision support,
the CDSS decision process must be deployed locally as a
smart home service an on mobile devices. Thus, it allows
taking into account aspects concerning mobility (e.g. the
patient going outside, being at work), failure tolerance (e.g.
connection issues with remote CDSS) and privacy concerns.
For instance, if we have connection issues with the remote
CDSS, the smart home and the mobile device are able to pro-
vide services related to clinical decisions. When the patient
is doing some activities outside the smart home environment
or is at work, the mobile device can use built-in and wearable
sensors to provide CDSS support. Finally, due to privacy is-
sues, some clinical data are not sent to the remote CDSS
or smart home services, but we are able to use smart home
or mobile CDSS to infer clinically relevant conclusions and
present them directly to the patient.

An ideal example domain for this integration scenario is
the diagnosis of sleep apnea, which is investigated in this
paper. Sleep Apnea affects at least 1 in 20 adults and its
diagnosis is currently often done using an expensive sleep
study that needs to be done in a hospital setting (Blackman
et al. 2010). While there exist some works on detecting sleep
apnea related events in smart home environments (Liu et al.
2014), both patient data, most likely collected through a mo-
bile device, as well as facts derived from sensor data are
needed in order for the current clinical guidelines on this
health condition to be implemented. According the official
Canadian guidelines for Sleep Apnea, there are a number
of attributes required in order to reach a diagnosis, many
that could be best be captured during the day, when the pa-
tient could easily be outside the smart home environment
(such as impaired concentration or daytime fatigue). Fur-
thermore, even in the cases where the patient is at home,
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certain data points, such as having an unrefreshing sleep can
easily be captured immediately by manual user input on a
mobile device that could be lying next to the bed, which is
often used as an alarm clock. While the proposed possible
integration of various sources of data (patient input, mobile
sensors, home sensors) can have a lot of potential, an im-
portant aspect to investigate whether the current guideline,
with the various data points derived from it, can be imple-
mented in a CDSS and run on a mobile device or as a smart
home service. Investigating the feasibility of such systems
is the main goal of this paper. Thus, a mobile version of the
Sleep Apnea CDSS decision process is validated on an An-
droid smartphone. Furthermore we also intend to describe,
based on this implementation, what research and implemen-
tation tasks are needed, in order to arrive at the a fully func-
tional, and generic framework, that can seamlessly take into
account the CDSS, smart homes and mobile devices aspects.

This paper is organized as follows: Section 2 presents an
overview of Clinical Decision Support Systems, with addi-
tional description of possible issues and tasks in the fields
of CDSS in smart (home) and mobile environments. After-
wards, Section 3 illustrates a CDSS within these two fields
by presenting the decision process for a Sleep Apnea CDSS.
In Section 4, we present a validation of the Sleep Apnea
CDSS decision process on a smartphone. Finally, we present
conclusions and future works in Section 5.

2 Clinical Decision Support Systems
Clinical Decision Support Systems (CDSS) (Musen, Mid-
dleton, and Greenes 2014) are systems that provide patients,
clinicians, medical staff or other individuals with relevant
knowledge to improve the patient’s health and clinical out-
come. These systems have several capabilities: 1) use in-
formation from the current clinical context to retrieve per-
tinent information, 2) provide patient-specific and contex-
tual alerts, reminders, clinical order sets, diagnoses or other
recommendations for direct actions, 3) organize information
in order to facilitate decision-making and action. In order
to provide the right decision-making process, patient data
must be acquired and validated. There are several ways
for data acquisition: keyboard entry, speech input, scan-
ning forms, real-time data monitoring, and intermediaries
who transcribe written or dictated data. In order to com-
ply with the state of the art, and to provide interoperability,
CDSS often follow specifics medical terminologies related,
for instance, to diagnostic evaluations (SNOMED Clinical
Terms1) and clinical procedures (LOINC2).

Concerning the decision-making process of CDSS, there
are a wide range of approaches: 1) information retrieval de-
pending on contextual information from, for instance, an
electronic heath record (EHR), 2) encode problem-specific
flowcharts, such as clinical protocols and guidelines, 3)
probabilistic reasoning using, for instance, Bayesian mod-
els, 4) machine learning techniques such as, linear regres-
sion, support vector machine and artificial neural networks,
5) rule-based approaches where, for instance, rules related to

1http://www.ihtsdo.org/snomed-ct/
2http://loinc.org

a guideline-based therapy are represented as Medical Logic
Modules (MLM) by using the Arden syntax from the HL7
standard3, and 6) ontology-driven CDSS where Semantic
Web tools such as RDF (Resource Description Framework),
OWL (Web Ontology Language) and RIF (Rule Interchange
Format)4 are used.

There are a wide variety of different diseases, domains
and use cases that CDSS have targeted. The scenario that we
target in this case concerns CDSS integration in both Smart
Environments and Mobile Settings, for which we give a brief
overview.

2.1 CDSS Integration in Smart Environments

CDSS integration in smart environments, such as smart
homes(Cook, Augusto, and Jakkula 2009), has a number of
benefits. While several CDSS use data acquired manually
from patients and medical staff via a web or mobile appli-
cation, in a smart environment the real-time monitoring pro-
vided, for instance by smart home services and smartphones,
can be used. Such monitoring allows the retrieving of clini-
cal facts in a less intrusive way, even under scenarios when
the patient is unable to recognize a clinical event, or is un-
able to react and input the correct clinical fact immediately.

In the smart home environment, we can have deployed
services that use ambient or wearable sensors in order to in-
fer new clinical facts, which are sent to the remote CDSS.
The smart home effectors (speakers, TVs, tactile screens . . . )
can be used to notify the patient concerning alerts resulting
from the CDSS decision process. These notifications can be
optimized and personalized according, for instance, to the
patient profile and CDSS user preferences. The smart home
services can also use patient interactions with smart home
applications in order to evaluate clinical facts that would
normally be derived from standard questionnaires.

In order to infer new clinical facts from low-level sensor
events, high-level recognition/monitoring algorithms must
be developed and implemented. The smart home services
that use these new algorithms must define policies in order
to determine when to send new clinical facts, as an input
knowledge for the CDSS. This is important in order to not
to overwhelm the reasoning engine in the CDSS with low
level data. For instance, a new clinical fact identical to pre-
vious ones could be sent to the remote CDSS only when a
threshold is exceeded concerning the elapsed time since this
specific clinical fact was first observed.

Finally, a local version of the CDSS decision process can
be deployed as a smart home service in order to provide
minimum support if we have connection problem with a
remote CDSS. Formal validation methods can be used to
provide minimum quality of service for CDSS (remote and
local)(Guillet, Bouchard, and Bouzouane 2013). The local
CDSS decision process can be a subset of the remote CDSS
decision process, where decision results is restricted to ur-
gent alerts or decisions relevant to a smart home context.

3http://www.hl7.org
4http://www.w3.org/standards/semanticweb/
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2.2 CDSS for Mobile Settings
CDSS in mobile setting often focus on self-diagnosis or self-
management tasks. With self diagnosis, the potential patient
is able to detect and diagnose a possible condition using only
the mobile device and attached mobile sensors. While the
accuracy of such measurements is sometimes only a frac-
tion of that in hospital clinical settings, such self diagnosis
can often be performed as an initial, inexpensive step, before
more exhaustive diagnosis is performed. Self-management
programs that enable patients to achieve efficacy in the man-
agement of their diseases, which in certain cases has been
shown to improve patient clinical outcome (Abidi, Abidi,
and Abusharek 2013).

Smartphones and tablets are often used in certain CDSS,
where a patient diary application allows the patient to enter
clinical facts concerning, for instance, health measurements
and patient symptoms. A local version of the CDSS deci-
sion process can be deployed on such devices. This allows
a minimum support if there are connection problems with
the remote CDSS, when the patient goes outside the smart
home, or when the patient does not want to send privacy
sensitive information.

An example of a system that implements such a mo-
bile CDSS is the Integrated Management Program Advanc-
ing Community Treatment of Atrial Fibrillation (IMPACT-
AF) project which aims to provide a web and mobile-
based CDSS for patients with Atrial Fibrillation (AF)(Abidi,
Abidi, and Abusharek 2013). Thus, the IMPACT-AF CDSS
purpose is to improve the knowledge about AF manage-
ment, the healthcare processes and health outcomes for peo-
ple with AF. This ontology-driven CDSS uses rules in order
to send recommendation and notifications/alerts/reminders
to patients and medical providers. Patients can use a mobile
application in order to send medical measurements (blood
pressure, hearth rate, AF symptoms . . . ) and receive notifi-
cations from the remote CDSS or local reasoning engine.

There are a number of intersections with the previously
mentioned areas that are interesting to explore. In the exam-
ple that we describe, we focus in particular of the feasibility
of running a CDSS system that uses facts derived from smart
and mobile environment purely on a mobile device. For this
example we explain the domain of Sleep Apnea, and de-
scribe and formalize the current clinical guidelines for its
diagnosis.

3 Sleep Apnea CDSS example
In order to illustrate CDSS integration in Smart Environ-
ment, we present the decision process of a Sleep Apnea
CDSS, which can be deployed locally as a smart home ser-
vice or on a mobile device. A validation of this decision
process is presented in Section 4.

3.1 Sleep Apnea
Sleep Apnea affects at least 1 in 20 adults (Canadian Tho-
racic Society5). It has several symptoms that include re-
current awakening, loud snoring, choking episodes, non-
restorative sleep and daytime sleepiness. Patients with sleep

5http://www.lung.ca/cts-sct

apnea are more likely to have car crashes due to excessive
sleepiness and falling asleep while driving. Sleep apnea
usually leads to an increased risk to develop cardiovascu-
lar and cerebrovascular disease. There are three different
types of sleep apnea: 1) Obstructive sleep apnea (OSA), the
most common type, 2) Central sleep apnea, and 3) Complex
sleep apnea. In this paper we mainly focus on obstructive
sleep apnea, and unless specified explicitly otherwise, by the
term sleep apnea we refer to OSA. Usually, an individual
with sleep apnea is not aware of having difficulty breath-
ing, and is often recognized by others witnessing the indi-
vidual during sleep apnea episode or is suspected because
of the observed symptoms. This makes it an ideal candi-
date for a smart home scenario, where sensors could detect
such episodes automatically without the need for a human
intervention, or recognitions of said symptoms..

The diagnosis of sleep apnea normally happens through a
sleep study/testing process.There are four levels of evalua-
tions for sleep testing (Blackman et al. 2010):

• Level 1: Complete laboratory polysomnography (PSG).

• Level 2: Full ambulatory polysomnography.

• Level 3: Portable monitoring with three or four channels,
including hearth rate and pulse oximetry.

• Level 4: Portable monitoring with only one or two chan-
nels, including pulse oximetry.

The polysomnography (PSG) monitors several body func-
tions, including brain (EEG), eye movements (EOG), skele-
tal muscle activation (EMG), hearth rhythm (ECG), nasal
and oral airflow, and pulse oximetry during sleep. As noted,
while the first levels often need a full ambulatory or labo-
ratory settings, certain monitoring could be performed in a
smart (home) environment. As mentioned earlier, the full
diagnosis according to the guidelines for sleep apnea is not
only dependant on sensor data, but on questions and obser-
vations for which manual input is most likely needed, often
in a mobile setting. To explain these attributes in detail first
we need to take a look at the full decision process accord-
ing to the sleep apnea diagnosis guideline (Fleetham et al.
2006), and how this is actually formalised.

3.2 Decision Process
The sleep apnea CDSS decision process uses Semantic Web
tools and rule-based reasoning, in order to formalize the
current Canadian guideline (Fleetham et al. 2006) for the
recognition of sleep apnea. The CDSS knowledge represen-
tation uses Resource Description Framework (RDF), where
facts are in the form of subject, predicate, object (s, p, o)
triples. The Web Ontology Language (OWL), which has
formal grounding in Description Logics (DL), allows defin-
ing restrictions on RDF datasets according to the underly-
ing domain (e.g. healthcare). Given the ontology terminol-
ogy, reasoning engines are able to make useful inference on
RDF data. However, in many domains, such as clinical do-
main, more extensive and custom reasoning is generally re-
quired to operationalize all relevant knowledge (Berner and
La Lande 2007). In the sleep apnea CDSS decision process,
the reasoning process is based on rules. The rules are based
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on the Canadian guidelines for the diagnosis of sleep apnea
(Fleetham et al. 2006).

A patient dataset comprises health factors related to sleep
apnea, including clinically relevant personal information
(e.g. age, gender), clinical measures and observations, and
symptoms specific to sleep apnea. In this particular exam-
ple we focus strictly on data points needed to run the for-
malized guidelines. These measures and observations can
be dynamically collected from several sources: mobile pa-
tient diary (manual input), web-based CDSS (manual input),
smart home services (automatic input) and smartphone mon-
itoring services (automatic input). Concerning the automatic
input, smart home and smartphone services uses high-level
recognition/monitoring algorithms in order to infer clinical
information from low-level sensor events (smart home sen-
sors, wearable sensors, smartphone built-in sensors). Col-
lectively, these data items are referred to as clinical facts. For
every collected fact, the timestamp and value are recorded.

The sleep apnea ruleset is derived from guidelines for di-
agnosis of sleep apnea, given by the Canadian Thoracic So-
ciety. A total of 9 rules were derived for the Obstructive
sleep apnea (OSA):

Rule 1: If we observe excessive daytime sleepiness that is
not better explained by other factors, then the individual
satisfies diagnostic criteria A.

• The individual can use the Epworth Sleepiness
Scale(Johns 1991) (questionnaire or mobile applica-
tion) to evaluate daytime sleepiness.

Rules 2–6: If we observe condition X , then the individual
has a symptom related to diagnostic B.

• condition X is taken from the following:
1. choking or gasping during sleep
2. recurrent awakening from sleep
3. unrefreshing sleep
4. daytime fatigue
5. impaired concentration

Rule 7: If we observe five or more obstructive apnea events
per hour during sleep, then the individual satisfies diag-
nostic criteria C.

• An event is characterized by complete cessation of, or
transient reduction in, breathing with maintained or in-
creasing respiratory effort. The event last 10 seconds
or longer and we must observe a clear decrease from
baseline with or without oxygen desaturation (4% or
greater).

Rule 8: If the individual satisfies diagnostic A and diagnos-
tic C, then the individual is diagnosed with OSA.

Rule 9: If the individual satisfies diagnostic C and at least
2 different symptoms related to diagnostic B, then the in-
dividual is diagnosed with OSA.

3.3 Integration
As mentioned in Section 2, integrating Clinical Decision
Support Systems (CDSS) with smart home services and mo-
bile devices have many advantages.

As it can be viewed from the clinical facts used within
the rules, certain facts can be derived through sensors, such
as counting obstructive sleep apnea events, and measuring
symptoms that occur during sleep. For others, such as day-
time fatigue and impaired concentration manual input can be
needed, and often within a mobile context, as these symp-
toms can occur any time during the day, even outside the
smart home environment.

For facts entered by the patient, a mobile application can
be used to capture these datapoints at all possible times. The
use of portable monitoring device for the diagnosis of sleep
apnea is useful for the management of patients with uncom-
plicated sleep apnea(Blackman et al. 2010), which can be
used for capturing sleep apnea events that require sensors
even in a smart home setting..

Sensors on mobile devices can be applied as well for au-
tomated detection. For instance, the smartphone’s built-in
sensors can be used to detect symptoms from sleep apnea.
The smartphone can send breathing (built-in microphone)
and movement (accelerometer) patterns and location (cell
tower triangulation) to an external server, which evaluate if
the patient has sleep apnea (Alqassim et al. 2012).

Clinical facts can also be inferred from wearable sen-
sor events while sleeping (Cheliout-Heraut et al. 2011), and
could be integrated within the smart home environment.
Smart home service or smartphone monitoring services can
retrieve data from wearable sensors and use it to infer new
clinical facts. For instance, ElectroCardioGram (ECG) data
from a wearable sensor is processed in real-time by a mo-
bile device in order to determine if the patient has apnea
(Sannino, Falco, and Pietro 2014). In another approach, a
wrist accelerometer sensor can be used in order to deter-
mine sleep activity pattern and aberrant changes in the nor-
mal sleep/wake cycles (Biswas et al. 2009).

The smart home sensors can be used to retrieve clinical
facts related, for instance to sleep awaking. For instance, the
smart home can retrieve data from a dense pressure sensitive
bed sheet in order to recognize the sleep posture (Liu et al.
2014). In addition, the smart home can use data from a near-
infrared video in order to infer the quality of sleep according
to motion information (Liao and Yang 2008).

Finally, we can use mobile application or smart home
service in order to evaluate clinical facts based on ques-
tionnaire. For instance, the Epworth Sleepiness Scale con-
cerning the daytime sleepiness can be evaluated by filling a
questionnaire in the mobile application or on a smart home
screen, or by using observed dozing events.

4 Sleep Apnea CDSS validation
To validate the decision process of a CDSS integrated with
smart homes, we implemented the Sleep Apnea CDSS de-
cision process on an Android smartphone. The purpose of
this validation is to test the feasibility of using the decision
process on a smartphone, where data may be obtained from
the patient diary application, the smart home services or lo-
cal smartphone monitoring services. For this validation, we
assume that we have received data from at least one of these
sources, and we focus on the evaluation the reasoning pro-
cess on this data.

41



4.1 Reasoning engine
The implementation of the decision process on the An-
droid smartphone use AndroJena, an Android version of the
Apache Jena framework. Apache Jena6 is a well-known Java
framework for working with Semantic Web data. Regarding
reasoning, AndroJena supplies an RDFS, OWL and general-
purpose reasoner. The general-purpose reasoner provides
both forward and backward chaining, respectively based on
the standard RETE algorithm (Forgy 1982) and a Logic Pro-
gramming (LP) engine. In addition, the reasoning engine
supports a hybrid execution model, where both individual
rule engines are employed in conjunction.

4.2 Methodology
In our validation, we study the following performance met-
rics for the decision process:

• Data and rule loading times: Time needed to load data
and rules into the reasoning engine.

• Reasoning times: Time needed to execute the rules on the
dataset and infer new data.

• Memory consumption: Memory consumed by the reason-
ing engine.

For the decision process validation, we use a Sleep Apnea
decision support ruleset encompassing a total of 9 rules. For
each rule, the rule head refers to the latest clinical fact of
a certain type (e.g. recurrent awakenings from sleep) and
checks whether its matches a specific value (boolean, num-
ber). If so, a clinical conclusion is inferred in the rule body,
indicating the severity of the situation, type of conclusion,
label and identifier of the triggered rule.

We generated datasets (profiles) containing clinical data
(measurements) described in Section 3.2, whereby fact val-
ues were created based on ranges encompassing both clin-
ically normal situations as well as abnormal situations. In
order to investigate the scalability of mobile reasoning, our
benchmark consider a sequence of datasets, each contain-
ing an increasing amount of data according to the number
of days of data (1 to 7 days). For each dataset configuration
(days of data), we have 10 generated datasets (total of 70
datasets).

In each generated dataset, a single day of data has the
following number of statements per measurements:

• 1 excessive daytime sleepiness statement,

• 5 chocking or gasping during sleep statements,

• 5 recurrent awakenings from sleep statements,

• 1 unrefreshing sleep statement,

• 5 daytime fatigue statements,

• 5 impaired concentration statements,

• 1 statement concerning the number of sleep monitoring
reported apnea events.

It should be noted that the ruleset and datasets are intended
as a representation of clinical facts that are translated into

6https://jena.apache.org/

clinical conclusion. Issues with capturing knowledge from
smart home services or mobile device and mapping onto
clinical information, while being relevant for the integration,
are outside the scope of this validation.

To minimize the impact of background OS processes on
results, we ran each performance validation 20 times and
calculated the average execution times. Memory usage is
measured by using the Android API in order to obtain a heap
dump, which was later analyzed using the Eclipse Memory
Analyzer7 (MAT). Finally, we note that to evaluate the deci-
sion process, we relied on the default configuration settings
for AndroJena, which uses the hybrid execution model (see
Section 4.1).

The benchmarks were performed on a Samsung Galaxy
SIII (model number GT-I9300), with a 1.4GHz quad-core
processor, 1GB RAM and 16GB persistent storage. The in-
stalled Android OS was version 4.3 (Jelly Bean) with API
level 18. This model is currently two generations old at the
time of writing (with the new Galaxy S5 model soon to be
released). As such, this better reflects a real-world scenario,
where users typically do not possess the latest device model.

4.3 Results
The validation shows promising results for using CDSS on
mobile phone. The results presented in Table 1 shows, for
each dataset configuration (number of days of data), the av-
erage times of the loading (data and rules) and rules exe-
cution steps and the average memory usage for the reason-
ing process. Each dataset configuration has 10 datasets. We
note that memory measurements were taken right after the
reasoning step was performed; and before any cleanup has
occurred (e.g., releasing resources occupied by the engine).

# days # load create execute memory
of data triples triples rules rules usage

1 109 107 33 45 174
2 201 180 33 63 216
3 293 223 54 62 235
4 385 322 38 66 261
5 477 307 31 69 292
6 569 252 21 39 319
7 661 371 54 82 350

Table 1: Datasets loading and rules creation and execution
time (ms) and memory usage (KB)

We note that the average time for loading the data and exe-
cuting the rules and the average memory usage increase with
the number days of data. Since we load all the dataset, the
rules are executed on all triples related to clinical measures
and observations. In order to optimize the reasoning pro-
cess, we should only load the latest value for each clinical
measure, but it could be possible that new rules, using previ-
ous values, are introduced in the decision process. Since the
current rules need to use the latest value, the decision pro-
cess execution time could be improved because the loaded
subset of the dataset will have only triples related to latest

7https://www.eclipse.org/mat/
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values, but by being able to load in multiple days worth of
data, we show that the system could potentially handle larger
datasets, and possibly more complicated rules, should the
guidelines change to take these data into consideration. Fi-
nally, AndroJena is based on a framework that was not meant
to mobile reasoning, thus it is possible that the reasoning en-
gine is not optimized for mobile device. Nonetheless even
the largest example in this case was executed according to
the guidelines in reasonable amount of time and in the fu-
ture better results could be expected once mobile reasoning
frameworks mature.

5 Conclusion and future works
This paper focussed on the functioning of CDSS in the in-
tersection of smart (home) environments and mobile frame-
works, and it has shown that a guideline compliant CDSS
system can be implemented on currently available mobile
devices, in the case of sleep apnea diagnosis. While this val-
idation was limited in scope, as we did not tackle the precise
derivation of sensor data into the used clinical facts, it shows
nonetheless that with such set of inferred clinical facts, in-
teresting and clinically relevant problems can be tackled.

While the validation goals was to evaluate the feasibil-
ity of local CDSS reasoning process on a smartphone using
clinical guidelines, future works are needed. Firstly, the rea-
soning process must be validated with dynamic data, where
clinical measures and observations are obtained from man-
ual inputs from the remote CDSS (web-based) and the pa-
tient diary mobile application and automatic inputs from the
smart home services and smartphone monitoring services.
In order to provide clinical measures and observation from
smart home services, we must develop high-level recogni-
tion/monitoring algorithms in order to infer clinical infor-
mation from low-level sensor events. Another interesting
perspective concerns the handling of several diseases at the
same time (single CDSS or several CDSS working together).
Finally, by making available real-time clinical facts retrieved
from smart home services and mobile devices, it is possi-
ble to improve clinical guidelines that are used in CDSS.
For instance, smart home services used to retrieve clinical
facts can be less intrusive than standard portable monitor-
ing devices used for disease diagnostic/supervision at home,
and guidelines can be based not only on single day measure-
ments but several days worth of sensor and other input data.
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