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Abstract 
Goal-Driven Autonomy (GDA) is a model for online 
planning extended with dynamic goal selection. GDA has 
been investigated in the context of numerous abstract 
planning domains, and there has been recent interest in 
applying GDA to control unmanned vehicles. In robotic 
domains, certain continuous state features from sensor data 
must be modeled for reasoning. However, modeling these 
features precisely during planning and execution monitoring 
may be problematic, due to the inefficiency of computing 
exact values or sensitivity to noise. We present PHOBOS, a 
Hierarchical Task Network planner with bounded 
expectations, which we apply with a GDA agent in an 
underwater vehicle domain. Bounded expectations allow an 
agent to plan and detect discrepancies more efficiently and 
with fewer false discrepancies (i.e., detected but 
semantically meaningless differences from expectations 
during execution). We describe an initial simulation study 
that supports this claim.  

1. Introduction  
While there is a large body of work on motion and task 
planning for autonomous underwater vehicles (AUVs), 
current approaches are not designed to reason about self-
selected goals,   which   may   hinder   the   vehicle’s   ability   to  
act without human supervision. To address this 
shortcoming, we are augmenting the planning processes of 
an AUV with goal reasoning: the ability to dynamically 
formulate, prioritize, and assign goals.. This is valuable in 
long duration missions in complex environments, such as 
the AUV domain, where the agent is likely to encounter 
unpredictable hazards and opportunities too complex to 
enumerate a priori. The ability to choose an appropriate 
goal to pursue enables an agent to select useful actions in a 
broader range of situations without supervision. 
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We will use Goal-Driven Autonomy (GDA), a model 
that responds to unexpected situations by formulating and 
reprioritizing goals (Molineaux, Klenk, and Aha 2010a), to 
control an AUV with goal reasoning. We posit that GDA 
will enable an AUV to conduct long duration, independent 
missions with varying objectives. GDA has previously 
been applied in simulated domains inspired by real-world 
scenarios (Molineaux et al. 2010a) and game environments 
(Weber, Mateas, and Jhala 2012; Jaidee, Muñoz-Avila, and 
Aha 2013), where it has performed well in comparison to 
alternative approaches such as dynamic replanning. Our 
AUV control task is one of the first applications of GDA in 
support of a hardware platform. However, in this paper we 
focus on challenges related to task planning and 
discrepancy detection in the AUV domain and leave 
evaluation of GDA as an AUV control technology for 
future work. 

During plan execution, a GDA agent detects 
discrepancies (i.e., unexpected situations) by monitoring 
the world state and comparing it to expectations. Our agent 
is inspired by ARTUE (Molineaux et al. 2010a), which 
uses predicted states from its planner as expectations. We 
describe other methods for creating expectations in §3. 
 To apply GDA on an AUV for long-term missions, we 
must model continuous state features that cannot be 
adequately discretized or represented symbolically (e.g., 
the AUV’s  location). Existing task planning techniques can 
model  these  values’  continuous  change in a plan, enabling 
discrepancy detection throughout execution. However, 
these approaches typically use precise descriptions of 
continuous changes, which can require extensive domain 
engineering and lead to false discrepancies (i.e., 
discrepancies that do not affect task execution or goal 
suitability) and other undesirable consequences in 
uncertain domains. 
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 ARTUE uses the SHOP2PDDL+ planner (Molineaux, 
Klenk, and Aha 2010b) to model nonlinear continuous 
effects while employing Hierarchical Task Network (HTN) 
planning techniques (Erol, Hendler, and Nau 1994). HTN 
planners can quickly generate plans using detailed 
representations of complex domains. However, the PDDL+ 
model (Fox and Long 2006) employed in SHOP2PDDL+ uses 
precise descriptions of continuous effects, which can lead 
to the issues described above. We instead present 
PHOBOS (Planner for HTN Objectives with Bounding 
OperatorS), a variant of SHOP (Nau et al. 1998) that 
abstracts state features during planning by allowing 
operator effects to set bounds (i.e., constraints) on 
continuous values. We demonstrate its utility as a planner 
for our GDA agent in AUV simulation studies.  

In §2, we describe the GDA model and our architecture 
for applying it on an AUV. Related work is described in 
§3. We explain our novel method for planning and 
discrepancy detection in §4, describe our empirical study 
in §5, and discuss future research tasks in §6 before 
concluding. 

2. GDA and AUV Control 

2.1 The GDA Conceptual Model 
GDA is a goal reasoning model for online planning in 
autonomous agents (Klenk, Molineaux, and Aha 2013). 
Figure 1 illustrates GDA as an extension of Nau’s   (2007)  
model of online planning. The GDA Controller interacts 
with a Planner and a State Transition System 𝛴, which is a 
tuple 〈𝑆, 𝐴, 𝐹, 𝛾〉 with states 𝑆, actions 𝐴, exogenous events 
𝐹, and state transition function 𝛾:  𝑆 × (𝐴 ∪ 𝐹) → 𝑆 that 
describes how an action or event transforms the 
environment. In stochastic or partially observable 
environments, the agent has only partial models of 𝑆, 𝐹, 
and 𝛾. During execution, the Controller receives 
observations 𝑂, which are representations of 𝑆. 

The Planner takes as input a planning problem 
〈𝑀 , 𝑜 , 𝑔 〉, where 𝑀  is a model of 𝛴, 𝑜  is the current 
observation representing the current state 𝑠 , and 𝑔  is a 
goal from the set of all possible goals 𝐺. The Planner 
outputs (1) a plan 𝑝 , which is a sequence of plan operators 
(i.e., actions and events) 𝑅 = [𝑟 , … , 𝑟 ], and (2) a 
corresponding sequence of expectations 𝑋 =
[𝑥 , … 𝑥 ], where each 𝑥 ∈ 𝑋  is the expectation that 
should follow when the corresponding action or event 𝑟   in 
the sequence 𝑅  takes place. 

The Controller takes as input initial observation 𝑜 , 
initial goal 𝑔 , and 𝑀 , and sends them to the Planner to 
generate plan 𝑝  and expectations 𝑋 . The Controller 
forwards 𝑝 ’s  actions  to  𝛴 for execution and processes the 
resulting observations.  

During plan execution, the Controller performs the 
following operations:  

•  Discrepancy detection: GDA detects a discrepancy d 
by comparing 𝑜  with 𝑥 ∈ 𝑋 , which corresponds to the 
most recent 𝑟  in current plan 𝑝 .  

•   Explanation generation: Given 𝑜 , 𝑥 , and 𝑑, this 
operation hypothesizes one or more explanations of the 
discrepancy’s  cause  𝑒. 

•   Goal formulation: Resolving a discrepancy may 
warrant a change in the current goal(s). This operation may 
formulate a goal 𝑔 ∈ 𝐺 in response to 𝑑, given 𝑒 and 𝑠 .  

•  Goal management: Formulating a goal may warrant its 
immediate focus or removal of some existing goals. Given 
a set of pending goals 𝐺 ⊂ 𝐺 and new goal 𝑔, this 
operation may update 𝐺  (e.g., by adding 𝑔 or deleting 
other pending goals) and then select the next goal 𝑔 ∈ 𝐺  
to be given to the Planner. 

2.2 GDA Architecture for AUV Control 
In our hybrid control architecture, the GDA Controller 
monitors  the  AUV’s  state  and directs the AUV to perform 
sensing and navigation tasks, delegating them to lower-
level control components. To address the challenges of 
motion control in dynamic environments that may be only 
partially known a priori, we employ the reactive MOOS-
IvP autonomy architecture (Benjamin et al. 2010), a widely 
used, open source robotic control framework. MOOS is a 
message-passing suite with a centralized publish-subscribe 
model. The MOOS application IvP Helm is a behavior-
based controller that sets navigation parameters to generate 
collision-free trajectories, using an interval programming 
technique that optimizes over behaviors’   objective 
functions. 

 The GDA Controller executes plans by activating, 
deactivating, and changing parameters of IvP Helm 
behaviors. (While IvP Helm can alter behaviors reactively, 
it cannot deliberate about what goal the vehicle should 
pursue, which is the focus of GDA.) Figure 2 depicts our 

Figure 1: The GDA Conceptual Model 
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agent architecture, which includes Huxley, the low-level 
control software provided   by   the   AUV’s   manufacturer, 
Bluefin Robotics. 

3. Related Work 
Several architectures have been developed to control 
AUVs using AI techniques. Orca (Turner 1995) is a 
context sensitive architecture that applies schemas to create 
sequences of actions for the AUV to execute. It uses an 
event handler to react to unexpected states, and an agenda 
manager to change   the   agent’s   active   goal   in   response 
(similarly to GDA’s Goal Manager). However, unlike our 
GDA agent, Orca assumes externally-specified goals; it 
does not formulate new goals.  

COLA2 (Palomeras et al. 2012) is an AUV control 
architecture that uses reinforcement learning techniques to 
learn and execute motion primitives, Petri nets to model 
behavior-like structures for plan execution, and a STRIPS-
like planner for mission planning. It replans when 
expectations are violated, but does not perform goal 
reasoning. 

T-REX (Rajan, Py, and Barreiro 2012) uses constraint-
based planning to guide robots, primarily AUVs, using 
multiple reactors that collaborate to produce a plan. 
Although T-REX recognizes plan expectation violations 
and can apply response strategies at any affected reactor, it 
does not address goal formulation or management, which 
is the focus of GDA. Although we present planning 
extensions employing constraints, we do so in the context 
of HTN planning, not constraint-based planning. Finally, 
unlike our GDA agent, T-REX uses multiple reactors that 
operate on the same plan timeline, which requires 
synchronization and reactor dependency graphs. Py, Rajan, 
and McGann (2010) argue that monolithic planning such as 
we employ may reduce responsiveness, which we leave as 
a future research topic to investigate. 

Automated planning models have been developed for 
uncertain domains. The Probabilistic PDDL (PPDDL) 
model (Younes and Littman 2004) provides probability 

distributions over action effects, allowing an agent to use 
Markov Decision Processes in planning. However, it 
assumes that actions are instantaneous and does not model 
continuous change (such as AUV motion) probabilistically. 
Concurrent Probabilistic Temporal Planning (Mausam and 
Weld 2008) can represent probabilistic durations for 
actions, but, like PPDDL, does not model probability 
distributions over continuous change. 

The challenge of modeling uncertain motion during task 
planning for AUVs has been the focus of some research. 
The PANDORA project employs PDDL planning over 
Probabilistic Roadmap (PRM) models of the environment 
(Cashmore et al. 2013), which provide an abstraction for 
use in planning. However, due to the abstract nature of 
PRMs, the agent performs discrepancy detection only 
during sensing actions; unlike our agent, it does not detect 
discrepancies during motion actions. Plaku and McMahon 
(2013) also model the AUV environment using PRMs, but 
employ LTL to express task-level requirements. Because 
their framework is not yet adapted to dynamic replanning, 
they do not address the problem of discrepancy detection. 

Many goal reasoning agents employ expectations. 
LGDA (Jaidee, Muñoz-Avila, and Aha 2011) learns 
probabilistic state expectations that are stored in a case 
base; during execution, the most likely expected state is 
used for discrepancy detection. Jaidee et al. (2013) use an 
expectation that relevant state features will monotonically 
increase. Although their domain model specifies relevant 
state features, the constraint itself is fixed. Cox et al. 
(2012) use A-distance on symbolic state representations to 
detect discrepancies in MIDCA. This technique requires 
training on normal sequences of states. Unlike these 
approaches, our agent uses deterministic expectation 
models and does not have fixed constraints or require 
training. 

Execution monitoring has received substantial attention, 
particularly in robotics research. We list a small sample of 
such work here; see (Petersson 2005) for one survey. At 
the sensor level, Gat et al. (1990) define envelopes of 
expected sensor values, including mathematical functions 
on physical sensors, based on motion plans for a Mars 
rover. At the task level, Fichtner, Großmann, and 
Thielscher (2003) use extensions to the fluent calculus to 
represent temporal and uncertain information for a robot in 
a dynamic environment, but their representation is focused 
on symbolic knowledge, not continuous-valued domains. 
The SKEMon process (Bouguerra, Karlsson, & Saffiotti 
2008) uses semantic  knowledge  about  a  robot’s  domain  to 
infer implicit expectations as results of actions, which can 
be tested probabilistically or otherwise. Although 
semantically rich, this technique requires semantic 
knowledge and additional processing that may be more 
suitable for terrestrial robots than the limited perception 
and processing power of AUVs. 

Figure 2: Our GDA agent architecture for  
controlling an AUV with MOOS-IvP 
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4. Planning and Discrepancy Detection 
In many domains, a GDA Controller will need to reason 
about continuous values. For instance, deciding whether to 
pursue a goal of mapping a region of the ocean floor may 
depend on predicting the   vehicle’s   position   and   battery  
health in the future. Concrete values may also be necessary 
because a priori discretization is not feasible (e.g., 
segmentation of an ocean into polygonal regions suitable to 
a variety of tasks). Therefore, these values must be 
modeled in 𝑀 . 

Existing task-planning techniques, such as PDDL2.1’s 
continuous durative actions (Fox and Long 2003) and 
PDDL+’s   process-event model, describe continuous 
change to state features. This knowledge allows the agent 
to detect discrepancies at any point during execution. 
However, these techniques often require exact models of 
continuous change, which can create several difficulties for 
planning and discrepancy detection in the AUV domain. 

First, in stochastic or partially observable domains, 
precise modeling can lead to false discrepancies, which 
require extra computation and may be detrimental to agent 
performance. For instance, while executing a motion 
action, ocean currents may cause an AUV to move off its 
projected course. Reactive motion controllers can adjust 
the   vehicle’s   controls   and   correct   this   deviation   without  
intervention from the GDA Controller. However, the 
Discrepancy Detector may incorrectly treat this deviation 
as   a   discrepancy   requiring   reevaluation   of   the   agent’s  
goals. Employing a threshold during discrepancy detection 
is a common approach to such challenges, but a threshold 
value may not generalize to all continuous features in a 
domain.  

Second, precise domain modeling can be burdensome. 
Automated task-planning techniques (e.g., durative actions 
or processes) may require extensive knowledge 
engineering to describe complex actions or processes. 

Third, precise modeling causes redundant computation. 
The planner may need to solve complex process constraints 
to determine how long an action will take and to compute 
intermediate states for discrepancy detection. During plan 
execution on an AUV, the navigation and motion 
controllers will perform lower-level computations to guide 
the vehicle on the same path. These computations are 
redundant and need not both be executed. 

PHOBOS and our agent’s Discrepancy Detector will 
address these challenges by accepting bounds on state 
values as part of 𝑀  and applying these bounds during 
planning and discrepancy detection. 

4.1 Planning with PHOBOS 
ARTUE, the inspiration for our agent, uses SHOP2PDDL+ to 
plan with nonlinear models of continuous processes. In the 

PHOBOS planner, we revise this model to exclude 
processes but include bounding effects in plan operators. 
Bounding effects specify constant bounds on state values 
or derived values, i.e., mathematical functions on state 
values.  

Syntactically, a bounding effect is an expression of the 
form (set v (range lb ub)), where v is a continuous fluent 
or derived value, and lb and ub are numeric values or 
variables which were   unified   in   the   operator’s  
precondition,   representing   the   value’s   lower   and   upper  
bounds, respectively. For example, (set (speed) (range ?l 
?u)) creates a bound on the fluent speed, where ?l and ?u 
were unified in the precondition. 
 Rather than projecting new states with exact continuous 
values, PHOBOS uses bounding effects to project an 
expectation that includes the bounds specified by 𝑀 . A 
bounded expectation is a tuple 𝑋 = 〈𝐶, 𝑉, 𝐵, 𝐾〉, where 𝐶 
is the set of true facts, 𝑉 is the set of exact fluent values, 𝐵 
is the set of bounded continuous fluent values, and 𝐾 is the 
set of bounded values derived from fluent values. Each 
value 𝑏 ∈ 𝐵 is a tuple 〈𝑏 , 𝑏 , 𝑏 〉, where 𝑏  is an 
identifier for the value, which is constrained to lie within 
the given bounds 𝑏 , 𝑏 . Each 𝑘 ∈ 𝐾 is similarly 
constrained but contains a mathematical function in place 
of an identifier. 

When projecting a new expectation 𝑋  using a plan 
operator, PHOBOS applies each bounding effect by 
placing the bounded value, with the values of its bounds as 
computed in the precondition, in the appropriate element of 
𝑋 . If the effect constrains a state value, the value and its 
bounds are placed in 𝐵. If it constrains a derived value, the 
function for computing it from observed states and its 
bounds are placed in 𝐾. 𝐶 and 𝑉 are projected in the usual 
manner, using positive and negative fact effects and 
instantaneous fluent change effects. 

When testing preconditions of operators, PHOBOS 
considers a value 𝑣  to be less than a bounded value 𝑣  iff 
the upper bound or precise value of 𝑣  is less than the 
lower bound of 𝑣  (similarly for greater-than). Arithmetic 
expressions are not applicable on a bounded value, but are 
applicable on the upper and lower bounds of a bounded 
value ?v, which are expressed (upper-bound ?v) and 
(lower-bound ?v). 

Table 1 shows the action definition that represents the 
start of an AUV survey maneuver, simplified for 
presentation. The action preconditions define the 
boundaries of the region in which the vehicle will operate, 
and   the  effects  constrain   the  vehicle’s  motion, creating an 
expectation defining a bounding box around the survey 
area   and   the   vehicle’s   current   position. This expectation 
will not be violated as long as the vehicle remains en route 
to or within the survey area. Figure 3 depicts an example 
survey maneuver in MOOS-IvP’s   simulation   viewer with 
possible bounds on the 𝑥 and 𝑦 coordinates. 
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To permit the vehicle time to execute a maneuver, the 
HTN designer can use a built-in action, wait-for, that 
causes the GDA Controller to suspend plan execution. The 
wait-for action takes as parameters an event (such as 
maneuver-finished, shown in Table 2) and the event’s 
arguments to indicate the point when plan execution should 
resume. It also optionally takes a timeout for   the   event’s 
occurrence. If wait-for is operator 𝑟  in the plan, PHOBOS 
copies 𝑥  to create 𝑥  (wait-for does not affect the 
world). PHOBOS uses the event specified in arguments to 
wait-for (e.g., maneuver-finished) as 𝑟  and projects the 
effects of that event to create 𝑥 . The use of these 
expectations is described in §4.2. 

In planning, placing bounds on continuous values is 
equivalent to replacing each continuous value 𝑣 with two 
continuous values 𝑣  and 𝑣  (i.e., 𝑣’s upper and lower 
bounds). During discrepancy detection, it is necessary to 
understand the semantics of 𝑣  and 𝑣  as bounds on 𝑣. Our 
representation provides this knowledge by associating 𝑣 
with its bounds in the tuple 𝑋. 

4.2 Discrepancy Detection 
During plan execution, the Discrepancy Detector must 
monitor the resulting states to ensure that they meet the 
requirements set forth in the expectations. In addition to 
the set comparisons used in ARTUE to check facts and 
fluents, our Detector must compute derived values in 𝐾 
from the current observation 𝑜 , and compare them and 
bounded state values in 𝐵 with the most recent expectation 
𝑥  to verify that they lie within the expected ranges. 

During a wait-for action, each observation represents a 
situation after the event at which execution should resume, 
a normal situation during the wait period, or an unexpected 
situation requiring goal reasoning. The Controller tests 

observations against the expectation corresponding to the 
specified event (𝑥 , where wait-for is 𝑟 ). If no 
discrepancy is detected, the Controller assumes the event 
has occurred and resumes plan execution. If a discrepancy 
is detected, the Controller next tests the observation against 
the expectation corresponding to the wait-for action (𝑥 ). If 
no discrepancy is detected, the Controller assumes the 
event has not yet occurred and waits for the next 
observation. If a discrepancy is detected, the Controller 
begins the GDA cycle to respond to it. In our example, 
when the motion controller completes the survey operation, 
it removes the vehicle-maneuvering fact from the state, 
causing the GDA Controller to detect the event and resume 
plan execution. 

5. Empirical Study 
We claim that using bounded expectations in GDA can 
reduce the number of false discrepancies and planning time 
for tasks in an AUV environment. To evaluate this 
hypothesis, we conducted tests on a simulated AUV using 
the uSimMarine utility included with MOOS-IvP. We 
applied our GDA agent to direct a simulated AUV in three 
simple missions. In each mission, we used thirty 
randomized scenarios. 
 We compared a configuration of the agent using 
PHOBOS to a configuration using V-PHOBOS, a planner 
based on the same code as PHOBOS. V-PHOBOS does not 
provide bounding effects, but integrates a vehicle dynamics 
model from uSimMarine. It uses this model to project 
expected states at intervals during motion actions, similar 

Action Name survey-area 

Parameters ?area-lower-x (type real) 
?area-upper-x (type real) 
?area-lower-y (type real) 
?area-upper-y (type real) 

Conditions (assign ?lower-x (min (lower-bound (x-pos))  
?area-lower-x)) 

(assign ?upper-x (max (upper-bound (x-pos))  
?area-upper-x)) 

(assign ?lower-y (min (lower-bound (y-pos))  
?area-lower-y)) 

(assign ?upper-y (max (upper-bound (y-pos))  
?area-upper-y)) 

(assign ?s (lower-bound (speed))) 

Effects (vehicle-maneuvering) 
(set (x-pos) (range ?lower-x ?upper-x)) 
(set (y-pos) (range ?lower-y ?upper-y)) 
(set (depth) (range 0 5)) 
(set (heading) (range 0 360)) 
(set (speed) (range ?s 2.1)) 

 

Table 1: Action specification for surveying an area, 
demonstrating bounding effects to be used during state 

projection Event Name maneuver-finished 

Conditions (assign ?s (upper-bound (speed))) 

Effects (not (vehicle-maneuvering)) 
(set (speed) (range 0 ?s)) 

 

Table 2: Event specification for finishing a motion, 
demonstrating effects used to detect the event during execution 

Figure 3: An AUV survey maneuver (solid line) with bounded 
expectation (dashed line) and AUV trajectory (curved line) 
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to projections that might be produced by a continuous-time 
planning model, but requiring less domain engineering. In 
other respects the agent configurations were identical. For 
the experiments, we used rule-based goal formulation and 
priority values for goal management. More advanced 
techniques for goal selection have been investigated (e.g., 
see Powell, Molineaux, and Aha 2011), but were not used 
in this study. Discrepancy detection was performed with a 
fixed threshold for continuous values. 

Mission 1 - Waypoint Following: In this mission, the 
vehicle visits a sequence of five waypoints and returns to 
its starting point. There are no other vessels in the area. 
The waypoints and starting point were drawn randomly 
from a uniform distribution over a rectangular region. 

Mission 2 - Survey with Surface Vessel: In this mission, 
the AUV surveys an area using a lawnmower pattern. 
Meanwhile, a surface vessel traverses the area on a fixed 
route. The AUV can detect the vessel, but does not assess 
it as threatening since it is not actively searching for the 
AUV. The AUV starting point was chosen randomly as in 
Mission 1, the survey region’s   center   was   similarly 
selected from a smaller subregion,  the  region’s extent in x 
and y was randomly chosen from a set of predefined 
values,   and   the   approaching   vessel’s   start   and   end   points  
were randomly selected from areas to each side of the 
possible survey region, in the y direction. 

Mission 3 - Survey with Hostile Surface Vessel: In this 
mission, the AUV surveys an area with a traversing vessel 
as in Mission 2. However, the surface vessel uses active 
sensors to search for the AUV, which causes the GDA 
agent to detect discrepancies resulting from the pings. The 
agent uses goal formulation rules to respond to the pinging 
by avoiding the vessel. For simplicity of modeling, the 
goal directs the AUV to move toward a given “safe”  point. 
Parameter values were randomly selected as in Mission 2, 
and the safe point was determined in advance from the 
aggressor’s  start and end points. 

Our results are summarized in Figures 4-5. Because 
MOOS sensor readings may not be taken or delivered 
exactly when planned, V-PHOBOS caused discrepancies 
even in Mission 1, which has no true unexpected events. In 
Missions 2 and 3, V-PHOBOS’s lengthy planning time 
often caused plan production to lag behind updates to the 
vehicle’s   position, causing discrepancies at the start of 
each plan. For our metrics, on average, the agent using 
PHOBOS performed better by at least an order of 
magnitude in all three missions. A t-test indicates that the 
GDA agent, when using PHOBOS, performed better than 
when using V-PHOBOS with 𝑝 < 10  for all metrics. 

The results support our claim that planning and 
discrepancy detection with PHOBOS can reduce planning 
time and false discrepancies in a simulated AUV 

environment. Also, PHOBOS permits goal reasoning on 
continuous state features such as position, speed, and 
battery health, allowing the agent to make more informed 
decisions than agents that use symbolic representations. 

6. Conclusions 
We introduced PHOBOS, an HTN planner with effects for 
creating bounded expectations. We claimed that this 
extension would reduce planning time and false 
discrepancies in a GDA agent. Our empirical study, in 
which we compared PHOBOS to a similar HTN planner 
that makes precise predictions over a complex motion, 
supports this claim.  

Future research tasks include investigating PHOBOS’s  
generality with respect to other domains that also include 
unpredictable continuous values. We will also test 
PHOBOS’s   utility   in   more challenging scenarios in our 
AUV domain, investigate more thoroughly the use of 
bounded derived values, and evaluate the utility of GDA as 
an AUV control technology in comparison to existing 
AUV frameworks. 
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Figure 5: Average total planning time, by mission 

Figure 4: Discrepancies encountered per scenario, by mission 
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