

Bounded Expectations for Discrepancy Detection
in Goal-Driven Autonomy

Mark A. Wilson1, James McMahon2, and David W. Aha1
1Navy Center for Applied Research in Artificial Intelligence; Naval Research Laboratory, Code 5514; Washington, DC

2Physical Acoustics Branch; Naval Research Laboratory, Code 7130; Washington, DC

Abstract
Goal-Driven Autonomy (GDA) is a model for online
planning extended with dynamic goal selection. GDA has
been investigated in the context of numerous abstract
planning domains, and there has been recent interest in
applying GDA to control unmanned vehicles. In robotic
domains, certain continuous state features from sensor data
must be modeled for reasoning. However, modeling these
features precisely during planning and execution monitoring
may be problematic, due to the inefficiency of computing
exact values or sensitivity to noise. We present PHOBOS, a
Hierarchical Task Network planner with bounded
expectations, which we apply with a GDA agent in an
underwater vehicle domain. Bounded expectations allow an
agent to plan and detect discrepancies more efficiently and
with fewer false discrepancies (i.e., detected but
semantically meaningless differences from expectations
during execution). We describe an initial simulation study
that supports this claim.

1. Introduction
While there is a large body of work on motion and task
planning for autonomous underwater vehicles (AUVs),
current approaches are not designed to reason about self-
selected goals, which may hinder the vehicle’s ability to
act without human supervision. To address this
shortcoming, we are augmenting the planning processes of
an AUV with goal reasoning: the ability to dynamically
formulate, prioritize, and assign goals.. This is valuable in
long duration missions in complex environments, such as
the AUV domain, where the agent is likely to encounter
unpredictable hazards and opportunities too complex to
enumerate a priori. The ability to choose an appropriate
goal to pursue enables an agent to select useful actions in a
broader range of situations without supervision.

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

We will use Goal-Driven Autonomy (GDA), a model
that responds to unexpected situations by formulating and
reprioritizing goals (Molineaux, Klenk, and Aha 2010a), to
control an AUV with goal reasoning. We posit that GDA
will enable an AUV to conduct long duration, independent
missions with varying objectives. GDA has previously
been applied in simulated domains inspired by real-world
scenarios (Molineaux et al. 2010a) and game environments
(Weber, Mateas, and Jhala 2012; Jaidee, Muñoz-Avila, and
Aha 2013), where it has performed well in comparison to
alternative approaches such as dynamic replanning. Our
AUV control task is one of the first applications of GDA in
support of a hardware platform. However, in this paper we
focus on challenges related to task planning and
discrepancy detection in the AUV domain and leave
evaluation of GDA as an AUV control technology for
future work.

During plan execution, a GDA agent detects
discrepancies (i.e., unexpected situations) by monitoring
the world state and comparing it to expectations. Our agent
is inspired by ARTUE (Molineaux et al. 2010a), which
uses predicted states from its planner as expectations. We
describe other methods for creating expectations in §3.
 To apply GDA on an AUV for long-term missions, we
must model continuous state features that cannot be
adequately discretized or represented symbolically (e.g.,
the AUV’s location). Existing task planning techniques can
model these values’ continuous change in a plan, enabling
discrepancy detection throughout execution. However,
these approaches typically use precise descriptions of
continuous changes, which can require extensive domain
engineering and lead to false discrepancies (i.e.,
discrepancies that do not affect task execution or goal
suitability) and other undesirable consequences in
uncertain domains.

AI and Robotics: Papers from the AAAI-14 Workshop

50

 ARTUE uses the SHOP2PDDL+ planner (Molineaux,
Klenk, and Aha 2010b) to model nonlinear continuous
effects while employing Hierarchical Task Network (HTN)
planning techniques (Erol, Hendler, and Nau 1994). HTN
planners can quickly generate plans using detailed
representations of complex domains. However, the PDDL+
model (Fox and Long 2006) employed in SHOP2PDDL+ uses
precise descriptions of continuous effects, which can lead
to the issues described above. We instead present
PHOBOS (Planner for HTN Objectives with Bounding
OperatorS), a variant of SHOP (Nau et al. 1998) that
abstracts state features during planning by allowing
operator effects to set bounds (i.e., constraints) on
continuous values. We demonstrate its utility as a planner
for our GDA agent in AUV simulation studies.

In §2, we describe the GDA model and our architecture
for applying it on an AUV. Related work is described in
§3. We explain our novel method for planning and
discrepancy detection in §4, describe our empirical study
in §5, and discuss future research tasks in §6 before
concluding.

2. GDA and AUV Control

2.1 The GDA Conceptual Model
GDA is a goal reasoning model for online planning in
autonomous agents (Klenk, Molineaux, and Aha 2013).
Figure 1 illustrates GDA as an extension of Nau’s (2007)
model of online planning. The GDA Controller interacts
with a Planner and a State Transition System 𝛴, which is a
tuple 〈𝑆, 𝐴, 𝐹, 𝛾〉 with states 𝑆, actions 𝐴, exogenous events
𝐹, and state transition function 𝛾: 𝑆 × (𝐴 ∪ 𝐹) → 𝑆 that
describes how an action or event transforms the
environment. In stochastic or partially observable
environments, the agent has only partial models of 𝑆, 𝐹,
and 𝛾. During execution, the Controller receives
observations 𝑂, which are representations of 𝑆.

The Planner takes as input a planning problem
〈𝑀 , 𝑜 , 𝑔 〉, where 𝑀 is a model of 𝛴, 𝑜 is the current
observation representing the current state 𝑠 , and 𝑔 is a
goal from the set of all possible goals 𝐺. The Planner
outputs (1) a plan 𝑝 , which is a sequence of plan operators
(i.e., actions and events) 𝑅 = [𝑟 , … , 𝑟], and (2) a
corresponding sequence of expectations 𝑋 =
[𝑥 , … 𝑥], where each 𝑥 ∈ 𝑋 is the expectation that
should follow when the corresponding action or event 𝑟 in
the sequence 𝑅 takes place.

The Controller takes as input initial observation 𝑜 ,
initial goal 𝑔 , and 𝑀 , and sends them to the Planner to
generate plan 𝑝 and expectations 𝑋 . The Controller
forwards 𝑝 ’s actions to 𝛴 for execution and processes the
resulting observations.

During plan execution, the Controller performs the
following operations:

• Discrepancy detection: GDA detects a discrepancy d
by comparing 𝑜 with 𝑥 ∈ 𝑋 , which corresponds to the
most recent 𝑟 in current plan 𝑝 .

• Explanation generation: Given 𝑜 , 𝑥 , and 𝑑, this
operation hypothesizes one or more explanations of the
discrepancy’s cause 𝑒.

• Goal formulation: Resolving a discrepancy may
warrant a change in the current goal(s). This operation may
formulate a goal 𝑔 ∈ 𝐺 in response to 𝑑, given 𝑒 and 𝑠 .

• Goal management: Formulating a goal may warrant its
immediate focus or removal of some existing goals. Given
a set of pending goals 𝐺 ⊂ 𝐺 and new goal 𝑔, this
operation may update 𝐺 (e.g., by adding 𝑔 or deleting
other pending goals) and then select the next goal 𝑔 ∈ 𝐺
to be given to the Planner.

2.2 GDA Architecture for AUV Control
In our hybrid control architecture, the GDA Controller
monitors the AUV’s state and directs the AUV to perform
sensing and navigation tasks, delegating them to lower-
level control components. To address the challenges of
motion control in dynamic environments that may be only
partially known a priori, we employ the reactive MOOS-
IvP autonomy architecture (Benjamin et al. 2010), a widely
used, open source robotic control framework. MOOS is a
message-passing suite with a centralized publish-subscribe
model. The MOOS application IvP Helm is a behavior-
based controller that sets navigation parameters to generate
collision-free trajectories, using an interval programming
technique that optimizes over behaviors’ objective
functions.

 The GDA Controller executes plans by activating,
deactivating, and changing parameters of IvP Helm
behaviors. (While IvP Helm can alter behaviors reactively,
it cannot deliberate about what goal the vehicle should
pursue, which is the focus of GDA.) Figure 2 depicts our

Figure 1: The GDA Conceptual Model

51

agent architecture, which includes Huxley, the low-level
control software provided by the AUV’s manufacturer,
Bluefin Robotics.

3. Related Work
Several architectures have been developed to control
AUVs using AI techniques. Orca (Turner 1995) is a
context sensitive architecture that applies schemas to create
sequences of actions for the AUV to execute. It uses an
event handler to react to unexpected states, and an agenda
manager to change the agent’s active goal in response
(similarly to GDA’s Goal Manager). However, unlike our
GDA agent, Orca assumes externally-specified goals; it
does not formulate new goals.

COLA2 (Palomeras et al. 2012) is an AUV control
architecture that uses reinforcement learning techniques to
learn and execute motion primitives, Petri nets to model
behavior-like structures for plan execution, and a STRIPS-
like planner for mission planning. It replans when
expectations are violated, but does not perform goal
reasoning.

T-REX (Rajan, Py, and Barreiro 2012) uses constraint-
based planning to guide robots, primarily AUVs, using
multiple reactors that collaborate to produce a plan.
Although T-REX recognizes plan expectation violations
and can apply response strategies at any affected reactor, it
does not address goal formulation or management, which
is the focus of GDA. Although we present planning
extensions employing constraints, we do so in the context
of HTN planning, not constraint-based planning. Finally,
unlike our GDA agent, T-REX uses multiple reactors that
operate on the same plan timeline, which requires
synchronization and reactor dependency graphs. Py, Rajan,
and McGann (2010) argue that monolithic planning such as
we employ may reduce responsiveness, which we leave as
a future research topic to investigate.

Automated planning models have been developed for
uncertain domains. The Probabilistic PDDL (PPDDL)
model (Younes and Littman 2004) provides probability

distributions over action effects, allowing an agent to use
Markov Decision Processes in planning. However, it
assumes that actions are instantaneous and does not model
continuous change (such as AUV motion) probabilistically.
Concurrent Probabilistic Temporal Planning (Mausam and
Weld 2008) can represent probabilistic durations for
actions, but, like PPDDL, does not model probability
distributions over continuous change.

The challenge of modeling uncertain motion during task
planning for AUVs has been the focus of some research.
The PANDORA project employs PDDL planning over
Probabilistic Roadmap (PRM) models of the environment
(Cashmore et al. 2013), which provide an abstraction for
use in planning. However, due to the abstract nature of
PRMs, the agent performs discrepancy detection only
during sensing actions; unlike our agent, it does not detect
discrepancies during motion actions. Plaku and McMahon
(2013) also model the AUV environment using PRMs, but
employ LTL to express task-level requirements. Because
their framework is not yet adapted to dynamic replanning,
they do not address the problem of discrepancy detection.

Many goal reasoning agents employ expectations.
LGDA (Jaidee, Muñoz-Avila, and Aha 2011) learns
probabilistic state expectations that are stored in a case
base; during execution, the most likely expected state is
used for discrepancy detection. Jaidee et al. (2013) use an
expectation that relevant state features will monotonically
increase. Although their domain model specifies relevant
state features, the constraint itself is fixed. Cox et al.
(2012) use A-distance on symbolic state representations to
detect discrepancies in MIDCA. This technique requires
training on normal sequences of states. Unlike these
approaches, our agent uses deterministic expectation
models and does not have fixed constraints or require
training.

Execution monitoring has received substantial attention,
particularly in robotics research. We list a small sample of
such work here; see (Petersson 2005) for one survey. At
the sensor level, Gat et al. (1990) define envelopes of
expected sensor values, including mathematical functions
on physical sensors, based on motion plans for a Mars
rover. At the task level, Fichtner, Großmann, and
Thielscher (2003) use extensions to the fluent calculus to
represent temporal and uncertain information for a robot in
a dynamic environment, but their representation is focused
on symbolic knowledge, not continuous-valued domains.
The SKEMon process (Bouguerra, Karlsson, & Saffiotti
2008) uses semantic knowledge about a robot’s domain to
infer implicit expectations as results of actions, which can
be tested probabilistically or otherwise. Although
semantically rich, this technique requires semantic
knowledge and additional processing that may be more
suitable for terrestrial robots than the limited perception
and processing power of AUVs.

Figure 2: Our GDA agent architecture for
controlling an AUV with MOOS-IvP

52

4. Planning and Discrepancy Detection
In many domains, a GDA Controller will need to reason
about continuous values. For instance, deciding whether to
pursue a goal of mapping a region of the ocean floor may
depend on predicting the vehicle’s position and battery
health in the future. Concrete values may also be necessary
because a priori discretization is not feasible (e.g.,
segmentation of an ocean into polygonal regions suitable to
a variety of tasks). Therefore, these values must be
modeled in 𝑀 .

Existing task-planning techniques, such as PDDL2.1’s
continuous durative actions (Fox and Long 2003) and
PDDL+’s process-event model, describe continuous
change to state features. This knowledge allows the agent
to detect discrepancies at any point during execution.
However, these techniques often require exact models of
continuous change, which can create several difficulties for
planning and discrepancy detection in the AUV domain.

First, in stochastic or partially observable domains,
precise modeling can lead to false discrepancies, which
require extra computation and may be detrimental to agent
performance. For instance, while executing a motion
action, ocean currents may cause an AUV to move off its
projected course. Reactive motion controllers can adjust
the vehicle’s controls and correct this deviation without
intervention from the GDA Controller. However, the
Discrepancy Detector may incorrectly treat this deviation
as a discrepancy requiring reevaluation of the agent’s
goals. Employing a threshold during discrepancy detection
is a common approach to such challenges, but a threshold
value may not generalize to all continuous features in a
domain.

Second, precise domain modeling can be burdensome.
Automated task-planning techniques (e.g., durative actions
or processes) may require extensive knowledge
engineering to describe complex actions or processes.

Third, precise modeling causes redundant computation.
The planner may need to solve complex process constraints
to determine how long an action will take and to compute
intermediate states for discrepancy detection. During plan
execution on an AUV, the navigation and motion
controllers will perform lower-level computations to guide
the vehicle on the same path. These computations are
redundant and need not both be executed.

PHOBOS and our agent’s Discrepancy Detector will
address these challenges by accepting bounds on state
values as part of 𝑀 and applying these bounds during
planning and discrepancy detection.

4.1 Planning with PHOBOS
ARTUE, the inspiration for our agent, uses SHOP2PDDL+ to
plan with nonlinear models of continuous processes. In the

PHOBOS planner, we revise this model to exclude
processes but include bounding effects in plan operators.
Bounding effects specify constant bounds on state values
or derived values, i.e., mathematical functions on state
values.

Syntactically, a bounding effect is an expression of the
form (set v (range lb ub)), where v is a continuous fluent
or derived value, and lb and ub are numeric values or
variables which were unified in the operator’s
precondition, representing the value’s lower and upper
bounds, respectively. For example, (set (speed) (range ?l
?u)) creates a bound on the fluent speed, where ?l and ?u
were unified in the precondition.
 Rather than projecting new states with exact continuous
values, PHOBOS uses bounding effects to project an
expectation that includes the bounds specified by 𝑀 . A
bounded expectation is a tuple 𝑋 = 〈𝐶, 𝑉, 𝐵, 𝐾〉, where 𝐶
is the set of true facts, 𝑉 is the set of exact fluent values, 𝐵
is the set of bounded continuous fluent values, and 𝐾 is the
set of bounded values derived from fluent values. Each
value 𝑏 ∈ 𝐵 is a tuple 〈𝑏 , 𝑏 , 𝑏 〉, where 𝑏 is an
identifier for the value, which is constrained to lie within
the given bounds 𝑏 , 𝑏 . Each 𝑘 ∈ 𝐾 is similarly
constrained but contains a mathematical function in place
of an identifier.

When projecting a new expectation 𝑋 using a plan
operator, PHOBOS applies each bounding effect by
placing the bounded value, with the values of its bounds as
computed in the precondition, in the appropriate element of
𝑋 . If the effect constrains a state value, the value and its
bounds are placed in 𝐵. If it constrains a derived value, the
function for computing it from observed states and its
bounds are placed in 𝐾. 𝐶 and 𝑉 are projected in the usual
manner, using positive and negative fact effects and
instantaneous fluent change effects.

When testing preconditions of operators, PHOBOS
considers a value 𝑣 to be less than a bounded value 𝑣 iff
the upper bound or precise value of 𝑣 is less than the
lower bound of 𝑣 (similarly for greater-than). Arithmetic
expressions are not applicable on a bounded value, but are
applicable on the upper and lower bounds of a bounded
value ?v, which are expressed (upper-bound ?v) and
(lower-bound ?v).

Table 1 shows the action definition that represents the
start of an AUV survey maneuver, simplified for
presentation. The action preconditions define the
boundaries of the region in which the vehicle will operate,
and the effects constrain the vehicle’s motion, creating an
expectation defining a bounding box around the survey
area and the vehicle’s current position. This expectation
will not be violated as long as the vehicle remains en route
to or within the survey area. Figure 3 depicts an example
survey maneuver in MOOS-IvP’s simulation viewer with
possible bounds on the 𝑥 and 𝑦 coordinates.

53

To permit the vehicle time to execute a maneuver, the
HTN designer can use a built-in action, wait-for, that
causes the GDA Controller to suspend plan execution. The
wait-for action takes as parameters an event (such as
maneuver-finished, shown in Table 2) and the event’s
arguments to indicate the point when plan execution should
resume. It also optionally takes a timeout for the event’s
occurrence. If wait-for is operator 𝑟 in the plan, PHOBOS
copies 𝑥 to create 𝑥 (wait-for does not affect the
world). PHOBOS uses the event specified in arguments to
wait-for (e.g., maneuver-finished) as 𝑟 and projects the
effects of that event to create 𝑥 . The use of these
expectations is described in §4.2.

In planning, placing bounds on continuous values is
equivalent to replacing each continuous value 𝑣 with two
continuous values 𝑣 and 𝑣 (i.e., 𝑣’s upper and lower
bounds). During discrepancy detection, it is necessary to
understand the semantics of 𝑣 and 𝑣 as bounds on 𝑣. Our
representation provides this knowledge by associating 𝑣
with its bounds in the tuple 𝑋.

4.2 Discrepancy Detection
During plan execution, the Discrepancy Detector must
monitor the resulting states to ensure that they meet the
requirements set forth in the expectations. In addition to
the set comparisons used in ARTUE to check facts and
fluents, our Detector must compute derived values in 𝐾
from the current observation 𝑜 , and compare them and
bounded state values in 𝐵 with the most recent expectation
𝑥 to verify that they lie within the expected ranges.

During a wait-for action, each observation represents a
situation after the event at which execution should resume,
a normal situation during the wait period, or an unexpected
situation requiring goal reasoning. The Controller tests

observations against the expectation corresponding to the
specified event (𝑥 , where wait-for is 𝑟). If no
discrepancy is detected, the Controller assumes the event
has occurred and resumes plan execution. If a discrepancy
is detected, the Controller next tests the observation against
the expectation corresponding to the wait-for action (𝑥). If
no discrepancy is detected, the Controller assumes the
event has not yet occurred and waits for the next
observation. If a discrepancy is detected, the Controller
begins the GDA cycle to respond to it. In our example,
when the motion controller completes the survey operation,
it removes the vehicle-maneuvering fact from the state,
causing the GDA Controller to detect the event and resume
plan execution.

5. Empirical Study
We claim that using bounded expectations in GDA can
reduce the number of false discrepancies and planning time
for tasks in an AUV environment. To evaluate this
hypothesis, we conducted tests on a simulated AUV using
the uSimMarine utility included with MOOS-IvP. We
applied our GDA agent to direct a simulated AUV in three
simple missions. In each mission, we used thirty
randomized scenarios.
 We compared a configuration of the agent using
PHOBOS to a configuration using V-PHOBOS, a planner
based on the same code as PHOBOS. V-PHOBOS does not
provide bounding effects, but integrates a vehicle dynamics
model from uSimMarine. It uses this model to project
expected states at intervals during motion actions, similar

Action Name survey-area

Parameters ?area-lower-x (type real)
?area-upper-x (type real)
?area-lower-y (type real)
?area-upper-y (type real)

Conditions (assign ?lower-x (min (lower-bound (x-pos))
?area-lower-x))

(assign ?upper-x (max (upper-bound (x-pos))
?area-upper-x))

(assign ?lower-y (min (lower-bound (y-pos))
?area-lower-y))

(assign ?upper-y (max (upper-bound (y-pos))
?area-upper-y))

(assign ?s (lower-bound (speed)))

Effects (vehicle-maneuvering)
(set (x-pos) (range ?lower-x ?upper-x))
(set (y-pos) (range ?lower-y ?upper-y))
(set (depth) (range 0 5))
(set (heading) (range 0 360))
(set (speed) (range ?s 2.1))

Table 1: Action specification for surveying an area,
demonstrating bounding effects to be used during state

projection Event Name maneuver-finished

Conditions (assign ?s (upper-bound (speed)))

Effects (not (vehicle-maneuvering))
(set (speed) (range 0 ?s))

Table 2: Event specification for finishing a motion,
demonstrating effects used to detect the event during execution

Figure 3: An AUV survey maneuver (solid line) with bounded
expectation (dashed line) and AUV trajectory (curved line)

54

to projections that might be produced by a continuous-time
planning model, but requiring less domain engineering. In
other respects the agent configurations were identical. For
the experiments, we used rule-based goal formulation and
priority values for goal management. More advanced
techniques for goal selection have been investigated (e.g.,
see Powell, Molineaux, and Aha 2011), but were not used
in this study. Discrepancy detection was performed with a
fixed threshold for continuous values.

Mission 1 - Waypoint Following: In this mission, the
vehicle visits a sequence of five waypoints and returns to
its starting point. There are no other vessels in the area.
The waypoints and starting point were drawn randomly
from a uniform distribution over a rectangular region.

Mission 2 - Survey with Surface Vessel: In this mission,
the AUV surveys an area using a lawnmower pattern.
Meanwhile, a surface vessel traverses the area on a fixed
route. The AUV can detect the vessel, but does not assess
it as threatening since it is not actively searching for the
AUV. The AUV starting point was chosen randomly as in
Mission 1, the survey region’s center was similarly
selected from a smaller subregion, the region’s extent in x
and y was randomly chosen from a set of predefined
values, and the approaching vessel’s start and end points
were randomly selected from areas to each side of the
possible survey region, in the y direction.

Mission 3 - Survey with Hostile Surface Vessel: In this
mission, the AUV surveys an area with a traversing vessel
as in Mission 2. However, the surface vessel uses active
sensors to search for the AUV, which causes the GDA
agent to detect discrepancies resulting from the pings. The
agent uses goal formulation rules to respond to the pinging
by avoiding the vessel. For simplicity of modeling, the
goal directs the AUV to move toward a given “safe” point.
Parameter values were randomly selected as in Mission 2,
and the safe point was determined in advance from the
aggressor’s start and end points.

Our results are summarized in Figures 4-5. Because
MOOS sensor readings may not be taken or delivered
exactly when planned, V-PHOBOS caused discrepancies
even in Mission 1, which has no true unexpected events. In
Missions 2 and 3, V-PHOBOS’s lengthy planning time
often caused plan production to lag behind updates to the
vehicle’s position, causing discrepancies at the start of
each plan. For our metrics, on average, the agent using
PHOBOS performed better by at least an order of
magnitude in all three missions. A t-test indicates that the
GDA agent, when using PHOBOS, performed better than
when using V-PHOBOS with 𝑝 < 10 for all metrics.

The results support our claim that planning and
discrepancy detection with PHOBOS can reduce planning
time and false discrepancies in a simulated AUV

environment. Also, PHOBOS permits goal reasoning on
continuous state features such as position, speed, and
battery health, allowing the agent to make more informed
decisions than agents that use symbolic representations.

6. Conclusions
We introduced PHOBOS, an HTN planner with effects for
creating bounded expectations. We claimed that this
extension would reduce planning time and false
discrepancies in a GDA agent. Our empirical study, in
which we compared PHOBOS to a similar HTN planner
that makes precise predictions over a complex motion,
supports this claim.

Future research tasks include investigating PHOBOS’s
generality with respect to other domains that also include
unpredictable continuous values. We will also test
PHOBOS’s utility in more challenging scenarios in our
AUV domain, investigate more thoroughly the use of
bounded derived values, and evaluate the utility of GDA as
an AUV control technology in comparison to existing
AUV frameworks.

Acknowledgements
The authors thank NRL for supporting this work. The
views and opinions contained in this paper are those of the
authors and should not be interpreted as representing the
official views or policies, either expressed or implied, of
NRL or the DoD.

Figure 5: Average total planning time, by mission

Figure 4: Discrepancies encountered per scenario, by mission

55

References
Benjamin, M., Schmidt, H., Newman, P., & Leonard, J. 2010.
Nested autonomy for unmanned marine vehicles with MOOS-
IvP. Journal of Field Robotics 27:834-875.
Bouguerra, A., Karlsson, L., and Saffiotti, A. 2008. Monitoring
the execution of robot plans using semantic knowledge.
Robootics and Autonomous Systems 56:942-954.
Cashmore, M., Fox, M., Larkworthy, T., Long, D., and
Magazzeni, D. (2013). Planning Inspection Tasks for AUVs. In
Proceedings of MTS/IEEE OCEANS 2013. San Diego, CA.
Cox, M., Oates, T., Paisner, M., and Perlis, D. 2012. Noting
anomalies in streams of symbolic predicates using A-distance.
Advances in Cognitive Systems 2:167-184.
Erol, K., Hendler, J., & Nau, D.S. 1994. HTN planning:
complexity and expressivity. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, 1123-1128.
Atlanta, GA: AAAI Press.
Fichtner, M., Großmann, A., and Thielscher, M. 2003. Intelligent
Execution Monitoring in Dynamic Environments. Fundamenta
Informaticae 57:371-392.
Fox, M., & Long, D. 2003. PDDL2.1: An extension to PDDL for
expressing temporal planning domains. Journal of Artificial
Intelligence Research 20:61-124.
Fox, M., & Long, D. 2006. Modelling mixed discrete-continuous
domains for planning. Journal of Artificial Intelligence Research
27:235-297.
Gat, E., Slack, M.G., Miller, D.P., Firby, R.J. 1990. Path planning
and execution monitoring for a planetary rover. In Proceedings of
the 1990 IEEE International Conference on Robotics and
Automation. Cincinnati, OH: IEEE Press.
Jaidee, U., Muñoz-Avila, H., & Aha, D.W. 2011. Case-based
learning in goal-driven autonomy agents for real-time strategy
combat tasks. In M.W. Floyd & A.A. Sánchez-Ruiz (Eds.) Case-
Based Reasoning in Computer Games: Papers from the ICCBR
Workshop. U. Greenwich: London, UK.
Jaidee, U., Muñoz-Avila, H., & Aha, D.W. 2013. Case-based
goal-driven coordination of multiple learning agents. In
Proceedings of the Twenty-first International Conference on
Case-Based Reasoning, 164-178. Saratoga Springs, NY:
Springer.
Klenk, M., Molineaux, M., & Aha, D.W. 2013. Goal-driven
autonomy for responding to unexpected events in strategy
simulations. Computational Intelligence 29:187-206.
Mausam and Weld, D.S. 2008. Planning with durative actions in
stochastic domains. Journal of Artificial Intelligence Research,
31:33-82.
Molineaux, M., Klenk, M., & Aha, D.W. 2010a. Goal-driven
autonomy in a Navy strategy simulation. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence.
Atlanta, GA: AAAI Press.
Molineaux, M., Klenk, M., & Aha, D.W. 2010b. Planning in
dynamic environments: Extending HTNs with nonlinear
continuous effects. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence. Atlanta, GA: AAAI Press.
Nau, D.S. 2007. Current trends in automated planning. AI
Magazine, 28(4):43–58.
Nau, D.S., Cao, Y., Lotem, A., & Muñoz-Avila, H. 1998. SHOP:
Simple hierarchical ordered planner. In Proceedings of the

Sixteenth International Joint Conferences on Artificial
Intelligence. Stockholm, Sweden.
Palomeras, N., El-Fakdi, A., Carreras, M., & Ridao, P. 2012.
COLA2: A control architecture for AUVs. IEEE Journal of
Oceanic Engineering 37:695-716.
Petersson, O. 2005. Execution monitoring in robots: a survey. In
Robotics and Autonomous Systems 53:73-88.
Plaku, E., and McMahon, J. 2013. Combined mission and motion
planning to enhance autonomy of underwater vehicles operating
in the littoral zone. In Workshop on Combining Task and Motion
Planning at IEEE International Conference on Robotics and
Automation. Karlsruhe, Germany.
Powell, J., Molineaux, M., & Aha, D.W. 2011. Active and
interactive learning of goal selection knowledge. In Proceedings
of the Twenty-Fourth Florida Artificial Intelligence Research
Society Conference. West Palm Beach, FL: AAAI Press.
Py, F., Rajan, K., & McGann, C. 2010. A systematic agent
framework for situated autonomous systems. In Proceedings of
the 9th International Conference on Autonomous Agents and
Multiagent Systems, 583-590. International Foundation for
Autonomous Agents and Multiagent Systems.
Rajan, K., Py, F., and Barreiro, J. 2012. Towards Deliberative
Control in Marine Robotics. In Marine Robot Autonomy, ed. M.
Seto. Springer Verlag.
Turner, R. 1995. Context-sensitive, adaptive reasoning for
intelligent AUV control: Orca project update. In Proceedings of
the Ninth International Symposium on Unmanned, Untethered
Submersible Technology. Durham, NC.
Weber, B., Mateas, M., & Jhala, A. 2012. Learning from
demonstration for goal-driven autonomy. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence.
Toronto, Canada: AAAI Press.
Younes, H. L., & Littman, M. L. 2004. PPDDL1.0: An extension
to PDDL for expressing planning domains with probabilistic
effects. Technical Report, CMU-CS-04-162, Carnegie Mellon
University, Pittsburgh, PA.

56

