
Program Equilibrium in the Prisoner’s Dilemma via Löb’s Theorem

Patrick LaVictoire
Quixey

278 Castro Street
Mountain View, CA 94041

patrick@quixey.com

Benja Fallenstein and Eliezer Yudkowsky
Machine Intelligence Research Institute

2030 Addison Street #300, Berkeley, CA 94703
benja@intelligence.org, eliezer@intelligence.org

Mihaly Barasz
Nilcons

Albisstrasse 22
Adliswil, CH-8134, Switzerland

klao@nilcons.com

Paul Christiano
University of California at Berkeley
Department of Computer Science

387 Soda Hall, Berkeley, CA 94720
paulfchristiano@eecs.berkeley.edu

Marcello Herreshoff
Google

1600 Ampitheatre Parkway
Mountain View, CA 94043

marcelloh@google.com

Abstract

Applications of game theory often neglect that real-world
agents normally have some amount of out-of-band informa-
tion about each other. We consider the limiting case of a
one-shot Prisoner’s Dilemma between algorithms with read-
access to one anothers’ source code. Previous work has
shown that cooperation is possible at a Nash equilibrium
in this setting, but existing constructions require interacting
agents to be identical or near-identical. We show that a nat-
ural class of agents are able to achieve mutual cooperation at
Nash equilibrium without any prior coordination of this sort.

1 Introduction
Can cooperation in a one-shot Prisoner’s Dilemma be jus-
tified between rational agents? Rapoport (1999) argued in
the 1960s that two agents with mutual knowledge of each
others’ rationality should be able to mutually cooperate.
Howard (1988) explains the argument thus:

Nonetheless arguments have been made in favour of
playing C even in a single play of the PD. The one
that interests us relies heavily on the usual assumption
that both players are completely rational and know ev-
erything there is to know about the situation. (So for
instance, Row knows that Column is rational, and Col-
umn knows that he knows it, and so on.) It can then
be argued by Row that Column is an individual very
similar to himself and in the same situation as himself.
Hence whatever he eventually decides to do, Column
will necessarily do the same (just as two good students
given the same sum to calculate will necessarily arrive
at the same answer). Hence if Row chooses D, so will
Column, and each will get 1. However if Row chooses
C, so will Column, and each will then get 2. Hence
Row should choose C.

Hofstadter (1985) described this line of reasoning as “super-
rationality”, and held that knowledge of similar cognitive
aptitudes should be enough to establish it, though the latter

contention is (to say the least) controversial within decision
theory. However, one may consider a stronger assumption:
what if each agent has some ability to predict in advance the
actions of the other?

This stronger assumption suggests a convenient logical
formalism. In the 1980s, Binmore (1987) considered game
theory between programs which could read each other’s
source code before playing1:

...a player needs to be able to cope with hypotheses
about the reasoning processes of the opponents other
than simply that which maintains that they are the same
as his own. Any other view risks relegating rational
players to the role of the “unlucky” Bridge expert who
usually loses but explains that his play is “correct” and
would have led to his winning if only the opponents had
played “correctly”. Crudely, rational behavior should
include the capacity to exploit bad play by the oppo-
nents.
In any case, if Turing machines are used to model the
players, it is possible to suppose that the play of a game
is prefixed by an exchange of the players’ Gödel num-
bers.

Having read-access to one another’s source code would be
unusual even among artificial agents, where this would in
principle be possible. However, interacting agents do nor-
mally have some amount of information about each other,
and the limiting case of read-access to the opponent’s source
seems like a reasonable starting point for investigating the
importance of such information for game theory.

Howard (1988) and McAfee (1984) considered the Pris-
oner’s Dilemma in this context, and each presented an ex-
ample of an algorithm which would always return an an-
swer, would cooperate if faced with itself, and would never
cooperate when the opponent defected. (The solution dis-
cussed in both papers was a program that used quining of

1Binmore’s analysis, however, eschews cooperation in the Pris-
oner’s Dilemma as irrational!

Multiagent Interaction without Prior Coordination: Papers from the AAAI-14 Workshop

22



the source code to implement the algorithm “cooperate if
and only if the opponent’s source code is identical to mine”;
we represent it in this paper as Algorithm 3, which we call
CliqueBot on account of the fact that it cooperates only with
the ‘clique’ of agents identical to itself.)

More recently, Tennenholtz (2004) reproduced this result
in the context of other research on multi-agent systems, not-
ing that CliqueBot can be seen as a Nash equilibrium of
the expanded game where two players decide which code
to submit to the Prisoner’s Dilemma with mutual source
code read-access. This context (called “program equilib-
rium”) led to several novel game-theoretic results, including
folk theorems by Fortnow (2009) and Kalai, Kalai, Lehrer
and Samet (2010), an answer by Monderer and Tennenholtz
(2009) to the problem of seeking strong equilibria (many-
agent Prisoner’s Dilemmas in which mutual cooperation can
be established in a manner that is safe from coalitions of
defectors), a Bayesian framework by Peters and Szentes
(2012), and more.

However, these approaches have an undesirable prop-
erty: they restrict the circle of possible cooperators
dramatically—in the most extreme case, only to agents that
are syntactically identical! (Indeed, we will define exam-
ples of semantically distinct agents such that one would
wish one’s program to quickly cooperate with each of them.)
Thus mutual cooperation for CliqueBots inherently requires
prior coordination beyond the swap of source code, and an
ecology of such agents would be akin to an all-out war be-
tween incompatible cliques.

This problem can be patched somewhat, but not cured, by
prescribing a list of agents with whom mutual cooperation
is desirable, but this approach is inelegant and still requires
the creators of any pair of mutually cooperating agents to
explicitly anticipate one another. We’d like to see agents
that can decide on their own which other agents they should
cooperate with.

A natural-seeming strategy involves simulating the other
agent to see what they do when given one’s own source code
as input. Unfortunately, this leads to an infinite regress when
two such agents are pitted against one another.

One attempt to put mutual cooperation on more stable
footing is the model-checking result of van der Hoek, Wit-
teveen, and Wooldridge (2011), which seeks “fixed points”
of strategies that condition their actions on their opponents’
output. However, in many interesting cases there are several
fixed points, or none at all, and so this approach does not
correspond to an algorithm as we would like.

Since the essence of this problem deals in
counterfactuals—e.g. “what would they do if I did
this”—it is worth considering modal logic, which was
intended to capture reasoning about counterfactuals, and in
particular the Gödel-Löb modal logic GL with provability
as its modality. (See Boolos (1995) and Lindström (1996)
for some good references on GL.) That is, if we consider
agents that cooperate if and only if they can prove certain
logical formulas, the structure of logical provability gives
us a genuine framework for counterfactual reasoning, and
in particular a powerful and surprising tool known as Löb’s
Theorem (Löb 1955):

Theorem 1.1 (Löb’s Theorem). Let S be a formal system
which includes Peano Arithmetic. If φ is any well-formed
formula in S, let �φ be the formula in a Gödel encoding
of S which claims that there exists a proof of φ in S; then
whenever S ` (�φ→ φ), in fact S ` φ.

We shall see that Löb’s Theorem enables a flexible and
secure form of mutual cooperation in this context. In par-
ticular, we first consider the intuitively appealing strategy
“cooperate if and only if I can prove that my opponent coop-
erates”, which we call FairBot. If we trust the formal system
used by FairBot, we can conclude that it is unexploitable
(in the sense that it never winds up with the sucker’s pay-
off). When we play FairBot against itself (and give both
agents sufficient power to find proofs), although either mu-
tual cooperation or mutual defection seem philosophically
consistent, it always finds mutual cooperation (Theorem
3.1)!2 Furthermore, we can construct another agent after
the same fashion which improves on the main deficit of the
above strategy: namely, that FairBot fails to correctly defect
against CooperateBot, which cooperates with all opponents.
We call this agent PrudentBot.

Moreover, the underpinnings of this result (and the others
in this paper) do not depend on the syntactical details of the
programs, but only on their semantic interpretations in prov-
ability logic; therefore two such programs can cooperate,
even if written differently (in several senses, for instance if
they use different Gödel encodings or different formal sys-
tems). Using the properties of Kripke semantics, one can
algorithmically derive the fixed-point solutions to the action
of one agent specified in the language of provability logic
against another. Indeed, the authors have written a Haskell
program which efficiently calculates the actions of two such
agents defined via provability logic; the program is hosted at
github.com/machine-intelligence/provability.

The results on Löbian cooperation reported here repre-
sent a formalized version of robust mutual cooperation on
the Prisoner’s Dilemma, further validating some of the in-
tuitions on “superrationality” and raising new questions on
decision theory. The Prisoner’s Dilemma with exchange of
source code is analogous to Newcomb’s problem, and in-
deed, this work was inspired by some of the philosophical al-
ternatives to causal and evidential decision theory proposed
for that problem (see Drescher (2006) and Altair (2013)).

A brief outline of the structure of this paper: in Section 2,
we define our formal framework more explicitly. In Section
3, we introduce FairBot, prove that it achieves mutual co-
operation with itself and cannot be exploited (Theorem 3.1);
we then introduce PrudentBot, and show that it is also unex-
ploitable, cooperates mutually with itself and with FairBot,
and defects against CooperateBot. In Section 4, we will ex-
plain our preference for PrudentBot over FairBot, and spec-
ulate on some future directions. Section 5 concludes.

2This result was proved by Vladimir Slepnev in an unpublished
draft (2012), and the proof is reproduced later in this paper with his
permission.

23



2 Agents in Formal Logic
There are two different formalisms which we will bear in
mind throughout this paper. The first formalism is that of
algorithms, where we can imagine two Turing machines X
and Y, each of which is given as input the code for the other,
and which have clearly defined outputs corresponding to the
options C and D. (It is possible, of course, that one or both
may fail to halt, though the algorithms that we will discuss
will provably halt on all inputs.) This formalism has the ben-
efit of concreteness: we could actually program such agents,
although the ones we shall deal with are often very far from
efficient in their requirements. On the other hand, deducing
what happens when algorithms call upon each others’ code
is a difficult and messy affair in general.

For simplicity, then, we will therefore consider a class of
(computationally intractable) agents which can consult an
oracle to determine whether certain statements are provable
in a particular formal system. This simplification is justi-
fied by the fact that all of the methods of this paper have
analogous bounded versions; for example, variants of Löb’s
Theorem for bounded proof lengths are well-known among
logicians. The interested reader can therefore construct al-
gorithmic versions of all of the unbounded agents in this pa-
per, and with the right parameters all of our theorems will
hold for such agents. Our use of unbounded computational
power is important primarily as a conceptual simplification.

For convenience, we will sometimes represent these un-
bounded agents as formulas in Peano Arithmetic with one
free variable (any program can be represented as a formula
of arithmetic, so this is not a real limitation in the class of
agents we consider), and move freely between descriptions
of agents in terms of programs and descriptions of agents
in terms of formulas. Formally, fix a particular Gödel num-
bering scheme, and let X and Y each denote well-formed
formulas with one free variable. Then let X(Y ) denote the
formula where we replace each instance of the free variable
in X with the Gödel number of Y. If such a formula holds
in the standard model of Peano Arithmetic, we interpret that
as X cooperating with Y; if its negation holds, we interpret
that as X defecting against Y. Thus we can regard formulas
of arithmetic with a single free variable as decision-theoretic
agents, and we will use “source code” to refer to their Gödel
numbers.

We will be particularly interested in agents which are
defined in terms of provability in a particular formal sys-
tem.3 For a given theory T, write T ` ϕ for the asser-
tion “ϕ is provable in T.” Let PA be the usual theory of
Peano Arithmetic and write �ϕ for the formula in arith-
metic which Gödel-encodes the statement “PA ` ϕ”. Define
PA+0 = PA, and define PA+(n+1) to be the extension of
PA+n by the axiom ¬� · · ·�⊥ with n + 1 boxes (that is,
the assertion that PA+n is consistent).

Remark To maximize readability in the technical sections
of this paper, we will use typewriter font for agents, which
are formulas of Peano Arithmetic with a single free variable,

3Moreover, for any pair of the agents we will define in this pa-
per, there exists an n such that their behavior against one another
is decidable in PA+n.

like X and CooperateBot; we will use sans-serif font for
the formal systems PA+n; and we will use italics for logical
formulas with no free variables such as C, D, and X(Y ).

Two agents which are easy to define and clearly effi-
ciently implementable are the agent which always cooper-
ates (which we will call CooperateBot, or CB for short)
and the agent which always defects (which we will call
DefectBot, or DB). In pseudocode:

Input : Source code of the agent X
Output: C or D
return C;

Algorithm 1: CooperateBot (CB)

Input : Source code of the agent X
Output: C or D
return D;

Algorithm 2: DefectBot (DB)

Remark In the Peano Arithmetic formalism,
CooperateBot can be represented by a formula
that is a tautology for every input, while DefectBot can
be represented by the negation of such a formula. For any X,
then, PA ` [CB(X) = C] and PA ` [DB(X) = D].

Note further that PA 0 ¬�[DB(X) = C], but that
PA+1 ` ¬�[DB(X) = C]; this distinction is essential.

Howard (1988), McAfee (1984) and Tennenholtz (2004)
introduced functionally equivalent agent schemas, which
we’ve taken to calling CliqueBot; these agents use quin-
ing to recognize self-copies and mutually cooperate, while
defecting against any other agent. In pseudocode:

Input : Source code of the agent X
Output: C or D
if X=CliqueBot then

return C;
else

return D;
end

Algorithm 3: CliqueBot

By the diagonal lemma, there exists a formula of Peano
Arithmetic which implements CliqueBot. (The analo-
gous tool for computable functions is Kleene’s recursion
theorem (Kleene 1938); in this paper, we informally use
“quining” to refer to both of these techniques.)
CliqueBot has the nice property that it never experi-

ences the sucker’s payoff in the Prisoner’s Dilemma. This is
such a clearly important property that we will give it a name:
Definition We say that an agent X is unexploitable if there
is no agent Y such that X(Y ) = C and Y (X) = D.
However, CliqueBot has a notable drawback: it can
only elicit mutual cooperation from agents that are syntacti-
cally identical to itself. (If two CliqueBots were written

24



with different Gödel-numbering schemes, for instance, they
would defect against one another!)

One might patch this by including a list of acceptable pro-
grams (or a schema for them), and cooperate if the oppo-
nent matches any of them; one would of course be careful to
include only programs that would cooperate back with this
variant. But this is a brittle form of mutual cooperation, and
an opaque one: it takes a predefined circle of mutual cooper-
ators as given. For this reason, it is worth looking for a more
flexibly cooperative form of agent, one that can deduce for
itself whether another agent is worth cooperating with.

3 Löbian Cooperation
A deceptively simple-seeming such agent is one we call
FairBot. On a philosophical level, it cooperates with any
agent that can be proven to cooperate with it. In pseudocode:

Input : Source code of the agent X
Output: C or D
if PA ` [X(FairBot) = C] then

return C;
else

return D;
end

Algorithm 4: FairBot (FB)

FairBot references itself in its definition, but as with
CliqueBot, this can be done via the diagonal lemma. By
inspection, we see that FairBot is unexploitable: presum-
ing that Peano Arithmetic is sound, FairBot will not co-
operate with any agent that defects against FairBot.

The interesting question is what happens when FairBot
plays against itself: it intuitively seems plausible either
that it would mutually cooperate or mutually defect. As it
turns out, though, Löb’s Theorem guarantees that since the
FairBots are each seeking proof of mutual cooperation,
they both succeed and indeed cooperate with one another!
(This was first shown by Vladimir Slepnev (2012).)

Theorem 3.1. PA ` [FairBot(FairBot) = C].

Proof (Simple Version): By inspection of FairBot, we see
that PA ` (�[FB(FB) = C]) → [FB(FB) = C]. Thus,
by Löb’s Theorem, Peano Arithmetic does indeed prove that
FairBot(FairBot)=C.

However, it is a tidy logical accident that the two agents
are the same; we will understand better the mechanics of
mutual cooperation if we pretend in this case that we have
two distinct implementations, FairBot1 and FairBot2,
and prove mutual cooperation from their formulas without
using the fact that their actions are identical.

Proof of Theorem 3.1 (Real Version): Let A be the formula
“FB1(FB2) = C” and B be the formula “FB2(FB1) =
C”. By inspection, PA ` �A → B and PA ` �B → A.

This sort of “Löbian circle” works out as follows:

PA ` (�A→ B) ∧ (�B → A) (see above)
PA ` (�A ∧�B)→ (A ∧B) (follows from above)

PA ` �(A ∧B)→ (�A ∧�B) (tautology)
PA ` �(A ∧B)→ (A ∧B) (previous lines)

PA ` A ∧B (Löb’s Theorem).

Remark One way to build a finitary version of FairBot
is to write an agent FiniteFairBot that looks through
all proofs of length ≤ N to see if any are a proof of
[X(FiniteFairBot) = C], and cooperates iff it finds such
a proof. If N is large enough, the bounded version of Löb’s
Theorem implies the equivalent of Theorem 3.1.

Remark Unlike a CliqueBot, FairBot will find mu-
tual cooperation even with versions of itself that are written
in other programming languages. In fact, even the choice of
formal system does not have to be identical for two versions
of FairBot to achieve mutual cooperation! It is enough
that there exist a formal system S in which Löbian state-
ments are true, such that anything provable in S is prov-
able in each of the formal systems used, and such that S
can prove the above. (Note in particular that even incom-
patible formal systems can have this property: a version
of FairBot which looks for proofs in the formal system
PA+¬Con(PA) will still find mutual cooperation with a
FairBot that looks for proofs in PA+1.)

However, FairBot wastes utility by cooperating even with
CooperateBot4. Thus we would like to find a similarly
robust agent which cooperates mutually with itself and with
FairBot but which defects against CooperateBot.

Consider the agent PrudentBot, defined as follows:

Input : Source code of the agent X
Output: C or D
if PA ` [X(PrudentBot)=C] and PA+1 `
[X(DefectBot)=D] then

return C;
end
return D;

Algorithm 5: PrudentBot (PB)

Theorem 3.2. PrudentBot is unexploitable, mutually co-
operates with itself and with FairBot, and defects against
CooperateBot.

Proof. Unexploitability is again immediate from the defini-
tion of PrudentBot and the assumption that PA is sound,
since cooperation by PrudentBot requires a proof that its
opponent cooperates against it.

In particular, PA+1 ` [PB(DB) = D] (since PA `
[DB(PB) = D], PA+1 ` ¬�[DB(PB) = C]).

It is likewise clear that PA+2 ` [PB(CB) = D].

4One might argue this is no great fault, but see Section 4.

25



Now since PA+1 ` [FB(DB) = D] and therefore PA `
�(¬�⊥ → [FB(DB) = D]), we again have the Löbian
cycle where PA ` [PB(FB) = C] ↔ �[FB(PB) = C],
and of course vice versa; thus PrudentBot and FairBot
mutually cooperate.

And as we have established PA+1 ` [PB(DB) = D],
we have the same Löbian cycle for PrudentBot and itself.

Remark It is important that we look for proofs of
X(DB) = D in a stronger formal system than we use for
proving X(PB) = C; if we do otherwise, the resulting
variant of PrudentBot would lose the ability to cooper-
ate with itself. However, it is not necessary that the formal
system used for X(DB) = D be stronger by only one step
than that used for X(PB) = C; if we use a much higher
PA+n there, we broaden the circle of potential cooperators
without thereby sacrificing safety.

4 Defecting Against CooperateBot
One might ask (on a philosophical level) why we object to
FairBot in the first place; isn’t it a feature, not a bug, that
this agent offers up cooperation even to agents that blindly
trust it? We suggest that it is too tempting to anthropomor-
phize agents in this context, and that many problems which
can be interpreted as playing a Prisoner’s Dilemma against a
CooperateBot are situations in which one would not hesitate
to “defect” in real life without qualms.

For instance, consider the following situation: You’ve
come down with the common cold, and must decide whether
to go out in public. If it were up to you, you’d stay at home
and not infect anyone else. But it occurs to you that the cold
virus has a “choice” as well: it could mutate and make you
so sick that you’d have to go to the hospital, where it would
have a small chance of causing a full outbreak! Fortunately,
you know that cold viruses are highly unlikely to do this. If
you map out the payoffs, however, you find that you are in a
Prisoner’s Dilemma with the cold virus, and that it plays the
part of a CooperateBot. Are you therefore inclined to “co-
operate” and infect your friends in order to repay the cold
virus for not making you sicker?

The example is artificial and obviously facetious, but not
entirely spurious. The world does not come with conve-
niently labeled “agents”; entities on scales at least from
viruses to governments show signs of goal-directed behav-
ior. Given a sufficiently broad counterfactual, almost any
of these could be defined as a CooperateBot on a suitable
Prisoner’s Dilemma. And most of us feel no compunction
about optimizing our human lives without worrying about
the flourishing of cold viruses.5

5Note that it would, in fact, be different if a virus were intelli-
gent enough to predict the macroscopic behavior of their host and
base their mutations on that! In such a case, one might well ne-
gotiate with the virus. Alternatively, if one’s concern for the well-
being of viruses reached a comparable level to one’s concern for
healthy friends, that would change the payoff matrix so that it was
no longer a Prisoner’s Dilemma. But both of these considerations
are far more applicable to human beings than to viruses.

5 Conclusions
Howard (1988) and McAfee (1984) independently proposed
the same solution — CliqueBot — for allowing two algo-
rithms with access to each other’s source code to cooperate
in a one-shot prisoner’s dilemma when the opponent is of
the same form, while being unexploitable (never experienc-
ing the sucker’s payoff against any opponent). But Howard’s
version was written in BASIC, whereas McAfee pinpointed
a formula in the language of recursion theory. Since Clique-
Bot requires the opponents to use exactly the same source
code, their programs would have defected against each other
(once fed to a suitable interpreter).

In this paper, we have shown how a similar result can be
obtained without this requirement for prior coordination. We
first considered FairBot, which cooperates with its opponent
if it can find a proof that its opponent will cooperate back.
By Löb’s theorem, FairBot will cooperate with itself, and a
FairBot originally written in BASIC will cooperate with a
FairBot originally specified using Kleene’s recursion theo-
rem.

But FairBot has a defect that CliqueBot avoids: it co-
operates with CooperateBot, even though this is not neces-
sary for enticing CooperateBot to cooperate back. In or-
der to address this problem, we introduced PrudentBot, a
slightly more complicated agent that is still unexploitable
and achieves mutual cooperation with FairBot and itself, but
which defects against CooperateBot. We have argued that
this behavior is more reasonable for a rational agent than
FairBot’s.

Other agents akin to FairBot and PrudentBot can
be constructed using the same framework of provabil-
ity logic, and their actions against one another can also
be calculated via Kripke semantics. Again, the authors
have written a Haskell program at github.com/machine-
intelligence/provability which allows for agents like these
to be defined and which efficiently derives the outcomes of
their interactions.

More realistic agents may represent their beliefs as prob-
ability assignments rather than simple assertions, and may
employ a combination of deductive and inductive inference
rather than a simple proof search. In this setting, we could
also consider agents who have probabilistic beliefs about
each other’s algorithms rather than deterministic read-access
to one anothers’ source code. To the extent that deductive
reasoning continues to play an important role for sophisti-
cated probabilistic reasoners, our results may extend to more
realistic agents.

Do these results imply that sufficiently intelligent and ra-
tional agents will reach mutual cooperation in one-shot Pris-
oner’s Dilemmas? In a word, no, not yet. Many things about
this setup are notably artificial, most prominently the per-
fectly reliable exchange of source code (and after that, the
intractably long computations that might perhaps be neces-
sary for even the finitary versions). Nor does this have direct
implications among human beings; our abilities to read each
other psychologically, while occasionally quite impressive,
bear only the slightest analogy to the extremely artificial
setup of access to the opponent’s source code. Governments
and corporations may be closer analogues to our agents (and

26



indeed, game theory has been applied much more success-
fully on that scale than on the human scale), but the authors
would not consider the application of these results to such
organizations to be straightforward, either. The theorems
herein are not a demonstration that a more advanced ap-
proach to decision theory (i.e. one which does not fail on
what we consider to be common-sense problems) is practi-
cal, only a demonstration that it is possible.

Acknowledgments
This project was developed at a research workshop held
by the Machine Intelligence Research Institute (MIRI) in
Berkeley, California, in April 2013; the authors gratefully
acknowledge MIRI’s hospitality and support throughout the
workshop.

Patrick LaVictoire was partially supported by NSF Grant
DMS-1201314 while working on this project.

Thanks to everyone who has commented on various par-
tial results and drafts, in particular Alex Altair, Stuart
Armstrong, Andrew Critch, Wei Dai, Daniel Dewey, Gary
Drescher, Kenny Easwaran, Cameron Freer, Bill Hibbard,
Vladimir Nesov, Vladimir Slepnev, Jacob Steinhardt, Nisan
Stiennon, Jessica Taylor, and Qiaochu Yuan, and readers of
the blog LessWrong for their comments on a preprint of this
article.

References
Altair, A. 2013. A comparison of decision algorithms on
Newcomblike problems.
Binmore, K. 1987. Modeling rational players: Part I. Eco-
nomics and Philosophy 3(02):179–214.
Boolos, G. 1995. The Logic of Provability. Cambridge
University Press.
Drescher, G. 2006. Good And Real: Demystifying Para-
doxes from Physics to Ethics. A Bradford Book. MIT Press.
Fortnow, L. 2009. Program equilibria and discounted com-
putation time. Proc. 12th Conference on Theoretical Aspects
of Rationality and Knowledge 128–133.
Hoek, W.; Witteveen, C.; and Wooldridge, M. 2011. Pro-
gram equilibrium—a program reasoning approach. Interna-
tional Journal of Game Theory 1–33.
Hofstadter, D. R. 1985. Metamagical Themas: Questing for
the Essence of Mind and Pattern. BasicBooks.
Howard, J. 1988. Cooperation in the prisoner’s dilemma.
Theory and Decision 24(3):203–213.
Kalai, A. T.; Kalai, E.; Lehrer, E.; and Samet, D. 2010. A
commitment folk theorem. Games and Economic Behavior
69(1):127 – 137. Special Issue In Honor of Robert Aumann.
Kleene, S. C. 1938. On notation for ordinal numbers. J.
Symb. Log. 3(4):150–155.
Lindström, P. 1996. Provability logic—a short introduction.
Theoria 62(1-2):19–61.
Löb, M. H. 1955. Solution of a Problem of Leon Henkin.
The Journal of Symbolic Logic 20(2):pp. 115–118.
McAfee, R. P. 1984. Effective computability in economic
decisions.

Monderer, D., and Tennenholtz, M. 2009. Strong mediated
equilibrium. Artif. Intell. 173(1):180–195.
Peters, M., and Szentes, B. 2012. Definable and contractible
contracts. Econometrica 80(1):363–411.
Rapoport, A. 1999. Two-Person Game Theory. Dover Books
on Mathematics Series. Dover.
Slepnev, V. 2012. Self-referential algorithms for cooperation
in one-shot games (unpublished draft).
Tennenholtz, M. 2004. Program equilibrium. Games
Econom. Behav. 49(2):363–373.

27




