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Abstract

This position paper summarizes some of our initial
work, as well as future research opportunities, in the
area of augmenting human mental functioning via a
real-time analysis of various measurements reflecting
person’s physiological and mental states. EEG, heart
rate, blood pressure, and galvanic skin response, among
several other measurements, can be collected using
cheap wearable devices that are currently available on
the market; moreover, novel devices that are still under
development, such as electronic tattoos, promise further
increase of the measurement quality, ease of use, and,
as a result, even wider adoption of wearable technolo-
gies in the near future. Also, more traditional measure-
ments of human behavior, such as speech and text, col-
lected from various mobile devices (for example, smart
phones), can be combined with the data collected by
wearable devices in order to produce a more accurate
inference of a person’s mind state and behavior. We
briefly describe a working demo in the context of a case
study system that uses an EEG signal from a subject
driving a car. We envision detecting both situations in
which the operator may be a danger to the system, as
well as occasions when the system may be a danger to
the operator. Based on an Android phone and a low-
cost NeuroSky EEG device, we explore applications to
improve road safety. We also review existing work fo-
cused on interruptions during certain activities, as well
as speech and text analysis, that can be combined with
physiological data to accurately classify a person’s men-
tal state and make better decisions about when inter-
ruptions (such as, for example, an incoming phone call
when the driver is in the middle of changing lanes or
merging on a busy highway) would be particularly dan-
gerous.

Introduction
”The driver of a New York commuter train that derailed
at high speed last year, killing four people, had a serious
sleep disorder that interrupted his rest dozens of times each
night” (The Guardian, 4/7/14). ”The driver of a train that
jumped the tracks last month at Chicago O’Hare Interna-
tional Airport – after having reportedly “dozed off” – has
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been fired” (CNN, 4/5/14). Previous research has shown that
micro sleeps and drowsy behavior due to obstructive sleep
apnea syndrome (OSAS) are easily detectable using off-the-
shelf EEG equipment (Boyle et al. 2008). Also, the mild
cognitive decline typically associated with an advanced age
of a driver (note that older drivers are over-represented in
crash statistics (Evans 2004)) has been characterized by on-
road evaluation techniques (Lees et al. 2010). These are just
two examples of detecting humans in a state that puts a sys-
tem (and humans) at risk. The CDC estimates1 suggest that,
in the United States, each day more than 9 people are killed
and more than 1,060 people are injured in crashes reported
to involve a distracted driver. Distracted drivers are an ex-
ample of both a system posing a danger to a human and a
human being in a state that poses a danger to the system.
Our ultimate objective is to identify and preempt situations
when a human mental state is posing a danger, as well as to
eliminate or defer electronic interactions when they would
pose a danger. There is already some prior work on quan-
tifying cognitive states (Fadlallah et al. 2012) and classify-
ing mental or cognitive load based on EEG data, as well as
on deferring interruptions or otherwise adapting to the sub-
ject’s state (Chen and Vertegaal 2004; Mathan et al. 2007;
Antonenko et al. 2010). Our goal is to advance the state-of-
art in this are by combining as many data sources as possi-
ble, including both human and environmental sources (light,
sound level, location, temperature, humidity), to allow for
further discovery of phenomenology and correlations among
the mental states and behavior. A model of the mental state
of the subject would be available to applications that could
then adapt their behavior to their user’s mental state.

Examples of application in other situations include identi-
fying particularly ill-designed and difficult-to-use software.
Users tend to grow annoyed and irritated by factors such
as poor design, broken links, slow response time, not-so-
intuitive user interface, unnecessary complexity, timing and
content of messages. Many pieces of software seem to be
coded with the assumption that interrupting the user at any
time is completely acceptable. Prompts to download up-
dates, purchase the newest version, announce the status of
the latest security scan can be very disruptive to productiv-
ity of a user. If user’s aggravation could be quantified and

1http://www.cdc.gov/motorvehiclesafety/distracted\ driving/
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communicated to the software owners, or if a ranking of the
most annoying software could be produced, and an indica-
tion of when interruptions might be acceptable existed, then
this type of interruptive behavior might be mitigated.

One final scenario in which mental state characterization
could be useful is awareness of self and others in social sit-
uations. Sensitive software can detect impatience, agitation,
excitement and/or other emotional changes and alert you to
the fact that you may need to relax or adapt your presen-
tation/explanations/etc. to the characteristics of a particular
audience. Immediate feedback to the user as well as data col-
lected over time could then be used to guide behavior and
quantify progress.

The scenarios above are quite realistic, given real-time ac-
cess to the subject’s physiological data measured by existing
wearable devices. Simple, low-cost EEG devices (e.g., Neu-
roSky Mindwave) can capture signals indicative of attention
and relaxation levels, and will be used in our demo dis-
cussed below. Other relevant measurements would be heart
rate variability (HRV) and galvanic skin response (GSR),
known to be correlated with the level of stress. For exam-
ple, there are several patents (e.g., see (Eggenberger, Malkin,
and Sorenson 2012)) covering the use of HRV for analyzing
physical and emotional states of employees performing dif-
ferent tasks in a workplace.

There is also a rapidly growing body of work on rec-
ognizing mental states from other types of input, such as
text, speech, video, etc. For example, (Mota et al. 2012)
present a text-analysis approach based on syntactic graphs
and their topological properties, that allows for a very ac-
curate (above 90%) classification of mental disorders such
as bipolar disorder and schizophrenia, from relatively short
interviews with patients; Figure 1, reproduced here from the
above paper, provides an example of syntactic graphs con-
structed from several interviews, clearly illustrating differ-
ences between the control, schizophrenic and manic sub-
jects. Another recent work, by (Bedi et al. 2014), in the
area of text-analytic approaches for psychiatric applications,
studies speech alteration effects of psychoactive drugs and
demonstrates how an automated semantic speech analyses
can capture subtle alterations in mental state, accurately dis-
criminating between the effects of different drugs. The find-
ings also illustrate the potential for automated speech-based
approaches to characterize clinically-relevant alterations to
mental state, including those occurring in psychiatric ill-
ness. Yet another recent work uses speech, focusing only
on acoustic features, in order to accurately discriminate be-
tween elderly controls versus the same-age patients with
mild cognitive impairment (MCI) and Alzheimer’s disease
(Satt et al. 2013). Note, that while the above examples are
in the context of mental disorders, we hypothesize that sim-
ilar approaches can be used to detect mental states and their
changes in normal subjects as well. For example, a person
feeling very tired and/or depressed may start using shorter
sentences; an excited (or intoxicated) person, vice versa,
may become more talkative than usual, with increased repe-
titions of words related to the topic of excitement, and so on.

Figure 1: Syntactic graphs computed from interviews with sub-
jects: (a) and (b) illustrate graph construction from the text: nodes
correspond to words/concepts, while directed links represent word
sequence in a sentence; (c) examples of graphs for three types
of subjects – note clear differences between the graph topologies
when comparing control (middle), schizophrenic (left) and manic
(right) subjects.

Human Operating System
As cited above, there have been many successful proof-of-
concept projects related to collecting, analyzing and mod-
eling human cognitive states. However, software sensitive to
human mental states is not in common use, with the possible
exception of gaming applications. We feel that novel envi-
ronments are needed, that enable the path from the mental-
state insensitive to mental-state sensitive applications, and
from an individual vertical silo to a collective assessment
and exploitation. For these reasons, we propose a core set
of Human Operating System (Human OS) services to create
an environment that provides access to mental-state related
data sources, abstracts low-level metrics, and makes code
portable across devices. Mobile phones have many advan-
tages for such a platform. They are currently multicore and
powerful enough to accommodate data collection and analy-
sis. They have sensors for location, motion, sound, light, and
access to text and voice communication. They can use Blue-
tooth communication to interface with external sensors for
bioelectrics (EEG, EMG, EOG, GSR, HRV) and environ-
mental factors, such as carbon monoxide (CO) and volatile
organic compound (VOC) levels. They are in widespread
use and usually in close physical proximity to their owners.
They are connected to the internet and their operating sys-
tems provide powerful services such as speech to text, access
to off device storage such as Google Drive and internal SQL
databases. The data services in our project handle low-level
device communication such as Bluetooth and interact with
location services and native phone sensors. Low-level met-
rics are abstracted to higher level concepts (sleepy, manic,
depressed, focused, etc.), which are then portable across de-
vice types and sensors. Access to the time series data, as
well as current values of the metrics collected in real-time
enables both time-series analytics, as well as short-term con-
trol functions.
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Figure 2: Human operating system: collecting and analyzing per-
sonal data from cheap wearable devices and other “easy” sources
of information, and providing feedback in real time.

Figure 3: Mental State aware software can defer interruptions
when extra concentration is necessary such as merging shown
above. Size of blue dots is proportional to relaxation index. Note
greater relaxation waiting at stop light and less when merging onto
highway. Interruptions when merging should be deferred, interrup-
tions while stuck in traffic might be OK.

Note that a typical OS service is resource allocation. In
our case, one of the scarce resources that needs to be allo-
cated is human attention and cognitive capacity. By making
inference about the subject’s mental state, applications can
deliver cues and prompts. If the subject is sleepy and driv-
ing, then a break, or driver switch, or other mitigation can
be suggested. Interruptions can be deferred if the subject is
in a flow state. Having the ability to off-load data allows
for archiving and training models on longitudinal data. The
ability to combine abstracted sensor data with the inference
based on multi-dimensional human mental-state models al-
lows for a holistic view of the subject in an environment
where action can be taken at the decisive moment. See Fig-
ure 2 for a high-level summary of the idea outlined above.

An example illustrating our case study of driving behav-
ior using the Human OS is presented below. A subject (in
this experiment, one of the co-authors of this paper) wore
a NeuroSky EEG device while driving to work. The device
connects via Bluetooth to an Android phone in the car. The
device provides a proprietary attention and relaxation index,
as well as raw EEG waveform from which frequency band

Figure 4: A screenshot of the demo: example of integrated cam-
era, location, EEG application. Looking for phenomenology and
correlation of mental state to driving conditions and situations.

power is extracted. On the display for immediate feedback
to the subject is the relaxation index (higher bars are indica-
tive of a more relaxed state). The Human OS Android ap-
plication allows the subject to speak and annotate the data
tracks with event information. All data tracks are available
in real time and after a session a CSV file can be trans-
ferred to Google Drive. Power in different frequency bands
is generally recognized to be associated with the follow-
ing states: beta (15-30Hz) corresponds to fast, awake state,
normal alert consciousness; alpha (9-14 Hz) is associated
with normal relaxed state in adults with eyes closed and re-
laxed; theta (4-8 Hz) corresponds to slow activity common
in children and abnormal in awake adults; finally, delta (1-
3 Hz) is common in infants, as well as in stages 3 and 4
of sleep2. Many studies quantifying meditation states us-
ing EEG measures have been done over the years, provid-
ing techniques for classification (Cahn and Polich 2006;
Lutz et al. 2004). One study that is facilitated with our setup
is the effect of conscious relaxation while driving. An inter-
esting question is whether it is possible to cultivate a state
that is the opposite of what is commonly known as ’road
rage’. The EEG data is recorded along with location, time,
sound level, and light level. The screen of the phone can
also be recorded and played back, registered with dashcam
footage and the vehicle position on the map to look for phe-
nomenology.

In this particular scenario, the relaxation index was also
plotted on a static map in Figure 3, where the radius of
a circle is proportional to the relaxation level. Some basic
effects are readily apparent. Relaxation inversely correlates
with speed. Being completely stopped at a traffic light was
associated with a higher relaxation level. The moment of de-
cision about whether to merge on to the highway or to wait
for traffic was less relaxing. That would clearly be a bad
time to interrupt the driver. If the subject took the same route
every day, it would be possible to predict places where ex-
tra concentration was needed. Alternatively, with data from
many subjects it might be possible to populate the map with
concentration hotspots, in order to model a naive subject’s

2http://www.medicine.mcgill.ca/physio/vlab/biomed\ signals/
eeg\ n.htm
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experience on an unfamiliar route. Using this information
would allow for a better interruption management. Also, it
would be interesting to analyze correlations with such “en-
vironmental variables” as intersections, bad surface condi-
tions, pedestrians, adverse weather conditions such as snow,
fog, or sun glare, aggressive drivers, slow moving traffic, ac-
cidents, and police activity. The legal status of mobile phone
and in-car screen use in the US is fragmented3. While the au-
thors feel that cell phone use in cars is dangerous in general,
as long as it is legal in some jurisdictions, it makes sense to
attempt to make it as safe as possible. One research direction
is to characterize driver versus passenger, in order to allow
passengers to use their phones but restrict the phone usage
by drivers. Voluntary solutions proposed by wireless carri-
ers4 have not been widely embraced, and thus a technical
solution may be necessary in the absence of broad laws and
effective law enforcement.

Figure 4 presents a screenshot of our demo system, dis-
playing the drivers view via video recording, the map, and
the EEG derived relaxation level.

Discussion and Future Directions
As smart phone and wearable device sensors have become
ubiquitous, there has been a rapid progression along the lines
of detecting physical, emotional and cognitive states of hu-
mans. In addition to the related work on text and speech
analysis for mental state detection, there is considerable
amount of work attempting to characterize human emotions
from video5; detecting mental states from wearable EEG de-
vices6, such as ones made by Emotiv and NeuroSky; de-
tecting fatigue level using actigraphy (objective measure of
activity and sleep/wake patterns over time) using devices
such as Actiwatch7; tracking activity and health meters (e.g.,
heart rate, GSR, etc) using wrist devices such as Basis watch
8, Fitbit and many others9. Future developments in wear-
able devices are expected to be in the direction of making
such devices smaller, more comfortable and easier to wear
and use; one particularly interesting example is electronic
tatoos10.

Recently developed wearable sensor technology opens
new opportunities for real-time monitoring of human health
and behavior, with multiple potential advantages, includ-
ing interruption management, accident prevention, work-
place productivity improvement, better personal health, and
improved cognitive and social skills. Integration of multi-

3http://www.ncsl.org/research/transportation/cellular-phone-
use-and-texting-while-driving-laws.aspx

4http://www.nytimes.com/2012/09/20/technology/att-chief-
speaks-out-on-texting-while-driving.html? r=0

5See, for example, http://well.blogs.nytimes.com/2014/04/28/
reading-pain-in-a-human-face/

6See http://mobihealthnews.com/24401/nine-health-
wearables-for-your-head/

7http://www.bmedical.com.au/shop/fatigue-heat-stress.htm
8http://gigaom.com/2012/11/29/more-than-an-activity-

monitor-basis-watch-wants-to-change-your-life/
9http://www.pcmag.com/article2/0,2817,2404445,00.asp

10http://www.physicscentral.com/explore/action/tattoos.cfm

modal personal data along with environmental data col-
lected from multiple devices and real-time statistical anal-
ysis, including predictive modeling, change-point detection,
unsupervised feature extraction, transfer learning (between
the subjects, and between activities), and other machine-
learning capabilities, will become essential parts of what we
call the Human Operating System. This system will comple-
ment and augment (rather than interfere with or interrupt)
human mental abilities, in order to achieve an “augmented
human”. Moreover, this type of a mental-state-aware sys-
tem, that feeds cues and prompts to the users in harmony
with their condition, seems to be a natural fit for an aug-
mented reality tools such as Google Glass.
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