
Counting, Ranking, and Randomly Generating CP-Nets∗

Thomas E. Allen
University of Kentucky

Lexington, Kentucky, USA
thomas.allen@uky.edu

Judy Goldsmith
University of Kentucky

Lexington, Kentucky, USA
goldsmit@cs.uky.edu

Nicholas Mattei
NICTA and UNSW
Sydney, Australia

nicholas.mattei@nicta.com.au

Abstract

We introduce a method for generating CP-nets uniformly at
random. As CP-nets encode a subset of partial orders, en-
suring that we generate samples uniformly at random is not
a trivial task. We present algorithms for counting CP-nets,
ranking and computing the rank of an arbitrary CP-net for
a given number of nodes, and generating a CP-net given its
rank. We also show how to generate all CP-nets with a given
number of nodes.

Introduction
Research in learning and manipulating complex preference
structures from data is undertaken in a variety of commu-
nities including preference handling, machine learning, and
operations research (Fürnkranz and Hüllermeier 2010). The
ability to learn or elicit preferences quickly and efficiently
has impacts in domains ranging from product recommenda-
tion (Ricci et al. 2011) to robot management (Goldsmith and
Junker 2009).

Theoretical studies of learning CP-nets typically focus
on specific query types and/or CP-nets restricted to acyclic
networks or networks that have a tree structure (Koriche
and Zanuttini 2010; Guerin, Allen, and Goldsmith 2013). A
PAC algorithm for learning CP-nets is given by Dimopoulos,
Michael, and Athienitou (2009); however, these results rely
on strong guarantees about the underlying structure of the
CP-nets. Results complemented by empirical experiment,
whether from real data or from data generated according to a
distribution, may provide a window into feasible algorithms
that provide good results in practice.

Real-world data is often messy, notoriously difficult to
collect reliably, and hard to interpret due to violations of
the input model, such as intransitivity of preference un-
der repeated experiment (Regenwetter, Dana, and Davis-
Stober 2011). For this and other reasons, high quality em-

∗This work is partially supported by the National Science Foun-
dation, under grant CCF-1215985. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the
National Science Foundation. NICTA is funded by the Australian
Government through the Department of Communications and the
Australian Research Council through the ICT Centre of Excellence
Program.

pirical datasets relating to CP-nets are in short supply. Of-
ten empirical preference data take forms that are easier to
elicit, such as partial orders, linear orders (Mattei and Walsh
2013), or pairwise comparisons built from two-alternative
forced choice comparisons (that frequently violate transitiv-
ity (Tversky 1969)).

Using more complex models, such as CP-nets, to model
individual preferences as primitives for aggregation is
an emerging topic in computational social choice (Xia,
Conitzer, and Lang 2008; Maudet et al. 2012). Often prefer-
ences are more complex than linear orders, and we may wish
to aggregate these individual preference models in a mean-
ingful way (Lang and Xia 2009; Mattei et al. 2013). Experi-
mental research in social choice often uses distributions over
preferences or generative cultures in addition to real data
(Berg 1985; Walsh 2011; Mattei, Forshee, and Goldsmith
2012). While these cultures have their drawbacks and limi-
tations (Regenwetter et al. 2006), they provide a first step in
experimentation for fields where data is hard to gather.

While these cultures are well defined in the social choice
community, there does not seem to be an analog for pref-
erences over more complex structures such as CP-nets. In
order to generalize any of the statistical cultures used in
social choice, we need to be able to sample, uniformly
at random, from the set of all CP-nets. However, since
CP-nets can encode a subset of partial orders, this prob-
lem may be computationally hard, as counting the number
of partial orders of a finite set is a standing open prob-
lem in mathematics and is only known for finite sets of
up to about 18 outcomes (Brinkmann and McKay 2002;
Sloane 2014). The counting problem for posets is conjec-
tured to be hard, meaning that sampling uniformly at ran-
dom from the set is likely hard as well (Jerrum, Valiant, and
Vazirani 1986). Though generating posets uniformly at ran-
dom has received some attention, most have considered how
to generate sets that have particular properties, such as con-
stant density of relations between any two given elements
(Gehrlein 1986). It is unclear if the complexity of randomly
sampling posets extends to the number of CP-nets.

The main contribution of this paper is a method to ran-
domly generate CP-nets of a given number of nodes, gener-
alizing results for counting the number of labeled directed
acyclic graphs (LDAGs) (Steinsky 2003). Our method re-
lies on algorithms for counting and ranking CP-nets and for

Multidisciplinary Workshop on Advances in Preference Handling: Papers from the AAAI-14 Workshop

2

C D

A B

c1 : d1 d2

c2 : d2 d1

c1 : a2 a1

c2 : a1 a2

c1 c2

a1d1 : b1 b2

a1d2 : b1 b2

a2d1 : b1 b2

a2d2 : b2 b1

Figure 1: Binary CP-net with complete CPTs

generating CP-nets given their ranks. While for brevity we
limit discussion to binary CP-nets with complete tables, our
method can be extended to more general cases.

In the following section we define CP-nets and their com-
ponent parts and discuss the relationship between condi-
tional preference tables and nondegenerate Boolean func-
tions. We then discuss related work on counting and gen-
erating LDAGs, partially ordered sets (posets), and nonde-
generate Boolean functions. Finally, we present our method
for generating CP-nets at random. These methods, adapted
from the work in LDAG generation, are able to count, rank,
and unrank CP-nets, as well as generate all the CP-nets of a
given number of nodes.

Preliminaries
A partial order C on a set S is a reflexive, antisymmetric,
and transitive binary relation. That is, for all distinct y, z ∈
S, one of three cases must hold: (i.) y precedes z, (ii.) y
succeeds z, or (iii.) y and z are incomparable w.r.t. C. Such
a set is called a partially ordered set or poset. A total order is
a partial order in which no pair is incomparable. That is, for
any distinct pair of elements in the ordered set, one element
must precede the other. If S is a finite, totally ordered set, we
can speak of the respective rank of its elements. Informally,
the rank of an element is its ordinal position in the set.
Definition 1. Let C be a total order on a finite set S. The
rank of an element y in S is given by

rankS,C(y) = #{z | z C y, y ∈ S, z ∈ S}.
Thus, the first element in an ordered set has rank 0, the

second has rank 1, and the last has rank #S − 1, where #S
is the number of elements in the set. A ranking algorithm
is one that computes the rank of an element w.r.t. a totally
ordered set. An unranking algorithm is one that outputs the
element that has some given rank (Kreher and Stinson 1999).
Definition 2. A preference relation �v is a partial order on
a set of outcomes O by a voter (or subject) v.

When no confusion would arise, we drop the subscript
and write o � o′ to indicate that the voter regards o as
better than o′, o ≺ o′ to indicate that o is worse than o′,
and o on o′ to indicate incomparability. Here we assume
O is finite and can be factored into variables (or features)
V = {X1, . . . , Xn} with associated binary domains, such
thatO = X1×· · ·×Xn, whereXi = {xi1, xi2}. When a vari-
able is constrained to just one of its values, we say that the

C D

A B

c1 c2

a1d1 : b1 b2

a1d2 : b1 b2

a2d1 : b1 b2

a2d2 : b2 b1

c1 : d1 d2

c2 : d2 d1

c1d1 : a2 a1

c1d2 : a2 a1

c2d1 : a1 a2

c2d2 : a1 a2

Figure 2: A degenerate CP-net

value has been assigned to the variable and write Xi = xi1
or Xi = xi2. We designate by Asst(U) the set of all assign-
ments to U ⊆ V . An assignment to all variables U = V (an
instantiation) designates a unique outcome o ∈ O.

For binary variables, the total number of outcomes on n
features is #O = 2n. Thus, if each outcome is regarded as
an atom, exponential space is required to store a preference
relation �v . However, since O is factored, a conditional
preference network (CP-net) Nv (Boutilier et al. 2004) can
potentially provide a compact model of �v . While CP-nets
can model multivalued variables and may in general contain
cycles, here we restrict attention to binary CP-nets without
cycles.
Definition 3. A (binary, acyclic) CP-net Nv is a directed
acyclic graph in which each node is labeled with a con-
ditional preference table of a variable Xi ∈ V , where
Xi = {xi1, xi2}. An edge (Xh, Xi) indicates that the pref-
erences over Xi in �v depend on the value of Xh, which we
call a parent of Xi.
Definition 4. A conditional preference table CPT(Xi)
specifies the voter’s preference overXi given an assignment
to the node’s parents, Pa(Xi) ⊆ V \ {Xi}. A CPT con-
sists of a totally ordered set of conditional preference rules
(CPRs) of the form u : xi1 � xi2 or u : xi2 � xi1, where
u ∈ Asst(Pa(Xi)).
Here we assume a lexicographic order on the CPRs by
(i.) variable Xi and (ii.) value xij ∈ Xi.

If CPT(Xi) contains rules for all 2m assignments to the
parents of Xi, where m = # Pa(Xi) is the indegree of Xi,
we say the CPT is complete; otherwise it is incomplete. We
define size(CPT(Xi)) as the number of CPRs in the CPT
and the size of a CP-net as the sum of the sizes of its CPTs.
Observe that with no bound on in-degree, the size of the
largest CP-net with n nodes and complete CPTs is

max(size(N)) =
n−1∑
k=0

2k = 2n − 1. (1)

The semantics of a CP-net depend on the notion of a flip-
ping sequence between a pair of comparable outcomes.
Definition 5. Let r = 〈r1, . . . , r`〉 be a ranking over a sub-
set of the outcomes in O s.t. for j, k ∈ {1, . . . , `}, j < k
implies rj ≺ rk. We call such a ranking an improving flip-
ping sequence if rj and rj+1 differ in the value of just one
variable Xi ∈ V for all j < `.

3

u1 u2 h1(u) h2(u) h3(u)

0 0 0 0 0
0 1 0 0 0
1 0 0 1 0
1 1 1 1 0

Table 1: Truth Tables for Boolean Functions h1, h2, and h3

A simple CP-net is shown in Fig. 1. Observe that the pref-
erence over feature C is unconditional: any outcome with
C = c1 is preferred to any with C = c2. The preference
over B, however, depends on C. If C = c1, any outcome
with D = d1 is preferred to any with D = d2. On the other
hand, if C = c2, outcomes with D = d2 are preferred to
any with D = d1. Using this CP-net, we can observe, for
example, that a2b1c1d1 � a1b1c1d1 without having to list
all 240 ∼ O(22n) pairs of elements in the � relation.

We require that the CPTs of a CP-net should agree with
its dependency graph. For example, consider the CP-net in
Fig. 2. The graph specifies that the preference over A de-
pends on D, and the complete CPT of A contains an entry
for all assignments toC×D as expected. However, on closer
inspection we can observe from the CPT of A that in each
case where C = c1, a2 � a1 and where C = c2, a1 � a2.
Thus A only depends on C, not D. The preference relation
entailed by the CP-net in Fig. 2 is thus identical to the sim-
pler CP-net in Fig. 1. We refer to CP-nets like that of Fig. 2
as degenerate, since they are not in simplest form. In con-
trast, the CP-net of Fig. 1 is nondegenerate since its graph
agrees with its CPTs. We can formalize this notion of degen-
eracy with the help of Boolean functions.

We denote by F2 = {0, 1} the binary field, closed under
multiplication and modulo-2 addition, and by F k

2 = {0, 1}k
the k-dimensional vector space over F2.
Definition 6. A Boolean function is a function of the form
f : F k

2 → F2, where k is the number of inputs.
We denote by u = 〈u1, . . . , uk〉 the k-bit vector of in-

puts to f(u) and by u−j = 〈u1, . . . , uj−1, uj+1, . . . , uk〉
the values of u exclusive of uj . We denote by TT(f) the 2k-
bit vector of 0s and 1s that compose the truth table of f and
often use this to characterize a particular function. For ex-
ample, if h1 ∈ F 2

2 , shown in Table 1, is the binary AND op-
eration, we may write h1(u1, u2) = [0001] or equivalently
h1 = [0001] when it is clear from context what the input se-
quences are. We will often assume that the input sequences
to the function count up in the normal way for binary num-
bers, as illustrated by the sequence of u1 and u2 in Table 1.
We say a function f(u) is vacuous in a variable uj if the
output of f does not depend on uj ; that is, f(u) = f(u−j)
for all u ∈ F k

2 . We refer to such variables vacated or fic-
tional (O’Connor 1997).
Definition 7. A degenerate Boolean function f : F k

2 → F2

is one that is vacuous in at least one of its variables. If a
function is not degenerate, it is nondegenerate.
For example, the function h2 : F 2

2 → F2, where
h2(u1, u2) = [0011], is degenerate since it is vacuous in

u2. The constant Boolean function h3 : F 3
2 → F2, where

h3(u1, u2) = [0000], is similarly degenerate.
With this is mind, we can observe that each CPT(Xi) of a

CP-net with n binary nodes corresponds to a Boolean func-
tion fi : F k

2 → F2, where k < n is the indegree (number
of parents) of Xi. For this we adopt the convention that 1 in
TT(fi) maps to a rule in CPT(Xi) of the form u : xi1 � xi2
and that 0 maps to u : xi2 � xi1. For example, the CPTs of
A, B, C, and D in Fig. 1 correspond to the Boolean func-
tions fA(C) = [01], fB(A,D) = [1110], fC(∅) = [1], and
fD(C) = [10]. We can further observe that the CP-net in
Fig. 2 is degenerate since the CPT of A corresponds to the
degenerate Boolean function fA(C,D) = [0011], which is
vacuous in D.

Related Work
Kreher and Stinson (1999) provide a general discussion of
ranking, unranking, and generating combinatorial objects.
Robinson (1973; 1977) studied the problem of counting
DAGs, both labeled and unlabeled, deriving the recurrence
in our Eq. (2). Steinsky (2003) derived additional recur-
rences, along with a method of encoding LDAGs similar
to Prüffer codes for labeled trees, as well as algorithms
for ranking and unranking these so-called DAG codes. We
build upon these results for the special case of CP-nets.
The number of transitively closed LDAGs, or posets, is
a long-standing open problem in mathematics. Erné and
Stege (1991) include an extensive bibliography on the topic,
as well as an exponential-time algorithm for counting la-
beled posets, extending the work of Culberson and Rawl-
ins (1990) for the unlabeled case. Harrison (1965) and
Hu (1968) studied degeneracy in Boolean functions, includ-
ing the result shown in Eq. (3). The latter proved that the ra-
tio of degenerate to nondegenerate Boolean functions con-
verges to 0 as n → ∞. Recent studies of degeneracy in
Boolean functions have taken an interest in their crypto-
graphic properties. O’Connor (1997), for example, proved
that deciding whether a Boolean function f in DNF is vac-
uous in a variable (and hence degenerate) is NP-complete,
but on average can be answered in linear time in the num-
ber of Boolean variables. In the case of CP-nets, however,
we are interested in the size of the description, which, as
shown in Eq. (1), is already exponential in n. Guerin, Allen,
and Goldsmith (2013) randomly generated a set of CP-nets
for a learning experiment; however, the algorithm requires
specifying the number of edges in the LDAG in advance and
cannot be used to sample randomly from a set of CP-nets in
which the number of edges is allowed to vary.

Counting CP-nets
Let ∆n be the set of all labeled directed acyclic graphs
(LDAGs) with n nodes. The number of such graphs can be
obtained via the recurrence #∆n = an, where a0 = 1 and

an =
n∑

k=1

(−1)k+1

(
n

k

)
2k(n−k)an−k (2)

4

Nodes Number of CP-nets

0 1
1 2
2 12
3 488
4 481,776
5 157,549,032,992

Table 2: The Number of CP-nets with Complete CPTs

for n > 0 (Robinson 1977), or from one of Steinsky’s recur-
rences (2003), yielding the sequence (Sloane [A003024])

1, 1, 3, 25, 543, 29281, 3781503, 1138779265,

Next, letFm be the set of all Boolean functions f : Fm
2 →

F2, with Dm ⊂ Fm those that are degenerate and Gm =
Fm \ Dm those that are nondegenerate. The cardinality of
#Dm (Harrison 1965) is given by

#Dm =
m∑
j=1

(−1)j+1

(
m

j

)
22m−j

, (3)

derived via the inclusion–exclusion principle, which for
m = 1 to 6 yields the sequence (Sloane [A005530])

2, 6, 38, 942, 325262, 25768825638,

Moreover, since Dm and Gm form a partition of Fm,

#Gm = 22m

− #Dm, (4)

where we also designate this number of nondegenerate func-
tions by γ(m).

Finally, let Nn be the set of binary, acyclic CP-nets of n
nodes with complete CPTs. The number of such CP-nets is
then the number of possible CPTs for all possible depen-
dency graphs; that is,

#Nn =
∑

D∈∆n

∏
Xj∈D

γ(pa(Xj)), (5)

where pa(Xj) = # Pa(Xj) is the number of parents of the
node with label j ≤ n in graph D. The computed number of
CP-nets for small n is shown in Table 2.
Theorem 8. Eq. 5 gives the correct cardinality for Nn.

Proof. (Sketch.) Observe that two CP-nets are distinct if
their graphs differ and that CP-nets with the same graph
are distinct if any entry of a CPT differs. Recall that the
allowable CPTs for a node are in one-to-one correspon-
dence with the nondegenerate Boolean functions of m vari-
ables, where m is the node’s indegree. Let Nn,D denote the
set of CP-nets that have the same DAG D with n labeled
nodes. Observe that the CP-nets in Nn,D can be character-
ized by the tuples (c1, . . . , cn), where 0 ≤ cj < γ(pa(Xj)),
and the number of nondegenerate Boolean functions γ(m)
is obtained from Eqs. 3 and 4. The number of such n-
tuples is #Nn,D =

∏
Xj∈D γ(pa(Xj)). Finally, #Nn =∑

D∈∆n
#Nn,D. q

Ranking CP-nets
To generate CP-nets randomly from some desired distribu-
tion (e.g., uniform), it is helpful to have some way of ranking
them. Random generation is then reduced to the simple task
of selecting an integer and generating the CP-net of corre-
sponding rank. We first define a lexicographic order > over
Nn the set of CP-nets with n nodes. Next, we present an
algorithm to compute the rank of a CP-net N w.r.t. Nn.

We order two CP-nets N,N ′ ∈ Nn as follows: (1) We
first compare dependency graphs. For this we use the rank-
ing method described by Steinsky (2003): we convert the
labeled DAG of each CP-net to its corresponding DAG code
using DAGTODAGCODE and then find the rank of each
DAG code using DAGCODERANK. (Due to space limita-
tions, we do not reproduce the two algorithms here.) Let
r and r′ be the ranks of the DAG codes of N and N ′. If
r > r′, we say that N > N ′. (2) If N and N ′ have the same
graph, we next compare the CPTs of their nodes in order.
Recall that the CPT of a node with k parents corresponds to
a Boolean function f of k variables and that we can describe
such functions succinctly via their 2k-bit truth tables. We or-
der truth tables of the same length by comparing the values
of their respective bits in order as for binary numerals. Let f1

and f ′1 be the Boolean functions of node X1 in N and N ′. If
N and N ′ have the same graph and TT(f1) > TT(f ′1), we
say that N > N ′. If f1 = f ′1, we next compare the Boolean
functions for X2, X3, etc.

Algorithm 1 computes the rank r < #Nn of a CP-
net N . The while loop determines the relative rank of
N w.r.t. CP-nets with the same graph. We next find the
graph’s rank w.r.t. ∆n, counting #{Di : Di ∈ ∆n, i < d}
with the help of Eq. 5. Alg. 2 performs the inverse un-
ranking operation: that is, for valid r and N , CP-NET-
UNRANK(CP-NET-RANK(N,n), n) = N and CP-NET-
RANK(CP-NET-UNRANK(r, n), n) = r. Lines 1–10 in
Alg. 2 invert the operations of lines 7–9 in Alg. 1, and lines
11–20 in Alg. 2 invert the while loop of Alg. 1. The al-
gorithms for ranking and unranking CP-nets depend respec-
tively on algorithms for ranking and unranking the nonde-
generate Boolean functions that correspond to CPTs pro-
vided in Algs. 3 and 4. Alg. 5 determines whether a given
Boolean function is degenerate. All of the algorithms as-
sume the availability of the set of labeled DAGs ∆n, gen-
erated just-in-time using the method described by Stein-
sky (2003) or stored in a database for repeated use.

Generating CP-nets
With this framework in place, we can generate a CP-net uni-
formly at random by selecting a random integer r < #Nn

and calling CP-NET-UNRANK(r, n). Where this proves in-
feasible, we provide the following sketch of a heuristic ran-
dom generation method: Generate a sequence of random in-
tegers 〈d0, . . . , d`−1〉, one for each i < ` where di < #∆n.
Each integer di corresponds to the rank of a labeled DAG
Di randomly sampled from ∆n, the full set of LDAGs on n
nodes. Compute the number of CP-nets ci for each graph of
rank di, as well as the sum s =

∑`−1
i=0 ci of all CP-nets of all

graphs in the sample. Finally, generate an integer r < s and

5

Input: CP-net N with n nodes
Output: rank r of the CP-net w.r.t.Nn

1: r ← CPT-RANK(CPT(X1),pa(X1))
2: j ← 2
3: while j ≤ n do
4: r ← r · γ(pa(Xj))
5: r ← r+ CPT-RANK(CPT(Xj),pa(Xj))
6: G← graph of N
7: d← DAGCODERANK(DAGTODAGCODE(G,n))
8: r ← r +

∑
Di∈∆n

∏
Xj∈Di

γ(pa(Xj))

Algorithm 1: CP-NET-RANK(N,n)→ r

Input: rank r of a CP-net w.r.t.Nn

Output: the corresponding CP-net N

1: i← 0
2: r′ ← 0
3: while r′ ≤ r do
4: r′′ ← r′

5: r′ ← r′ +
∏

Xj∈Di
γ(pa(Xj))

6: i← i+ 1
7: i← i− 1
8: r′ ← r − r′′
9: N ← initial CP-net with n nodes and graph Di

10: rn ← 1
11: for j ← n down to 1 do
12: mj ← γ(pa(N.Xj))
13: rj−1 ← rj ·mj

14: for j ← 1 to n do
15: aj ← r′ div rj
16: r′ ← r′ mod rj
17: CPT(N.Xj)← CPT-UNRANK(aj , Xj , N, n)

Algorithm 2: CP-NET-UNRANK(r, n)→ N

Input: CPT C with indegree m
Output: rank r of the corresponding Boolean

function of m variables w.r.t. Gn
1: f ← Boolean function corresponding to CPT C
2: b← convert TT(f) from binary numeral to integer
3: r ← 0
4: for k ← 0 to b− 1 do
5: if not DEGENERATE(k,m) then
6: r ← r + 1

Algorithm 3: CPT-RANK(C,m)→ r

unrank the corresponding CP-net using an algorithm adapted
from CP-NET-UNRANK. We observe that some graphs have
more CP-nets than others; our method of sampling reflects
this distribution. However, in drawing i.i.d. from all CP-nets
from a subset of graphs rather than from all those in ∆n, this
method necessarily has a statistical bias that depends on the
sample size.

Sometimes it is necessary to generate all CP-nets to test
their properties or perform an experiment. Algorithm 6 pro-
vides a blisteringly efficient way to visit, for example, all

Input: rank r of a function in Gpa(Xj)

node Xj of CP-net N ∈ Nn

Output: CPT C to be assigned to Xj in N

1: k ← 0; r′ ← 0; m = pa(Xj)
2: while r′ ≤ r do
3: if not DEGENERATE(k,m) then
4: r′ ← r′ + 1
5: k ← k + 1
6: B ← convert k − 1 from an integer to a binary vector
7: C ← from B construct CPT for Xj in CP-net N

Algorithm 4: CPT-UNRANK(r,Xj , N, n)→ C

Input: integer k s.t. 0 ≤ k < 2n corresponding
to a Boolean function of n variables

Output: true iff Boolean function is degenerate

1: L← 2n × n matrix s.t. each rowi is the n-bit binary numeral
representation of i, for 0 ≤ i < 2n

2: B ← convert k to an 2n-bit binary numeral vector
3: for j ← 1 to n do
4: I0 ← {i : L(i, j) = 0}
5: I1 ← {i : L(i, j) = 1}
6: if B[I0] = B[I1] then
7: return true
8: return false

Algorithm 5: DEGENERATE(k, n)→ Boolean

1: N ← initial CP-net with n nodes and empty CPTs
2: for D ∈ ∆n do
3: N.G← D
4: a0 ← 0; m0 ← 2
5: for i← 1 to n do
6: ai ← 0
7: mi ← γ(pa(N.Xi))
8: CPT(N.Xi)← NDBF(pa(N.Xi), 0)
9: repeat

10: PROCEDURE-USING(N)
11: i← n
12: while ai = mi − 1 do
13: ai ← 0
14: CPT(N.Xi)← NDBF(pa(N.Xi), 0)
15: i← i− 1
16: if i > 0 then
17: ai ← ai + 1
18: CPT(N.Xi)← NDBF(pa(N.Xi), ai)
19: until i = 0

Algorithm 6: GENERATE-ALL-CP-NETS(n)

157,549,032,992 CP-nets with 5 nodes. The outer loop it-
erates over the set of all dependency graphs (LDAGs of n
nodes), while the inner repeat loop iterates over the pos-
sible assignments to the CPTs of the n nodes. For this we use
the generation method described by Steinsky (2003). The in-
ner loop is modeled after the mixed-radix generation method
of Knuth (2011) for iterating over n-tuples. We assume the
availability of a function or database entry NDBF(q, ai) that
returns the nondegenerate Boolean function of q variables
that has the index ai, where 0 ≤ j < γ(m). Here ai indexes

6

the CPTs, while mi = γ(pa(Xi)) is the number of possible
CPTs for each node. For each CP-net that is generated, a call
is made to PROCEDURE-USING(N) that, for example, per-
forms an experiment or writes the CP-net’s description to a
database for later use.

Conclusion
Generating sets of preferences represented as partial orders
at random is problematic, especially when the set of out-
comes is factored. In principle we could generate such a
relation directly by generating a random poset. However,
unlike linear orders, which are easy to generate, the num-
ber of posets is not known for finite sets larger than about
18 elements, and we are not aware of provably approxi-
mate methods for uniformly randomly generating posets of
larger size (Gehrlein 1986). If the outcomes are factored,
generating a preference relation directly as a poset would
limit us to preferences over only 3 or 4 binary variables us-
ing known direct enumeration methods. To create such a
data set for 5 variables, it would be necessary to generate
posets of 32 outcomes—far beyond what is currently pos-
sible. By generating CP-nets uniformly at random using our
exact method, we can easily exceed these limitations, despite
the method’s exponential complexity. Moreover, with our
heuristic method we can randomly generate CP-nets with
many nodes representing thousands of outcomes. In future
work we plan to extend our algorithms to CP-nets with mul-
tivalued variables and incomplete tables, as well as special
cases such as tree-shaped CP-nets and those with bounded
indegree, and to make our source code available online.

References
Berg, S. 1985. Paradox of voting under an urn model: The
effect of homogeneity. Public Choice 47(2):377–387.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and reason-
ing with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research 21:135–191.
Brinkmann, G., and McKay, B. D. 2002. Posets on up to 16
points. Order 19(2):147–179.
Culberson, J. C., and Rawlins, G. J. 1990. New results from
an algorithm for counting posets. Order 7(4):361–374.
Dimopoulos, Y.; Michael, L.; and Athienitou, F. 2009. Ce-
teris paribus preference elicitation with predictive guaran-
tees. In Proc. IJCAI .
Erné, M., and Stege, K. 1991. Counting finite posets and
topologies. Order 8(3):247–265.
Fürnkranz, J., and Hüllermeier, E. 2010. Preference Learn-
ing: An Introduction. Springer.
Gehrlein, W. V. 1986. On methods for generating random
partial orders. Operations research letters 5(6):285–291.
Goldsmith, J., and Junker, U. 2009. Preference handling for
artificial intelligence. AI Magazine 29(4).
Guerin, J. T.; Allen, T. E.; and Goldsmith, J. 2013. Learning
CP-net preferences online from user queries. In Proc. ADT.
Springer. 208–220.

Harrison, M. A. 1965. Introduction to switching and au-
tomata theory, volume 65. McGraw-Hill New York.
Hu, S.-T. 1968. Mathematical theory of switching circuits
and automata. Univ of California Press.
Jerrum, M. R.; Valiant, L. G.; and Vazirani, V. V. 1986. Ran-
dom generation of combinatorial structures from a uniform
distribution. Theoretical Computer Science 43:169–188.
Knuth, D. E. 2011. The Art of Computer Programming, Vol-
ume 4A: Combinatorial Algorithms Part 1. Addison-Wesley.
Koriche, F., and Zanuttini, B. 2010. Learning conditional
preference networks. Artificial Intelligence 174(11):685–
703.
Kreher, D. L., and Stinson, D. 1999. Combinatorial algo-
rithms: generation, enumeration, and search. CRC Press.
Lang, J., and Xia, L. 2009. Sequential composition of voting
rules in multi-issue domains. Mathematical Social Sciences
57(3):304–324.
Mattei, N., and Walsh, T. 2013. PrefLib: A library of pref-
erence data. In Proc. ADT.
Mattei, N.; Pini, M. S.; Rossi, F.; and Venable, K. B. 2013.
Bribery in voting with CP-nets. Annals of Mathematics and
Artificial Intelligence.
Mattei, N.; Forshee, J.; and Goldsmith, J. 2012. An em-
pirical study of voting rules and manipulation with large
datasets. In Proc. ComSoc. Springer.
Maudet, N.; Pini, M. S.; Venable, K. B.; and Rossi, F. 2012.
Influence and aggregation of preferences over combinatorial
domains. In Proc. AAMAS , 1313–1314.
O’Connor, L. 1997. Nondegenerate functions and permuta-
tions. Discrete Applied Mathematics 73(1):41 – 57.
Regenwetter, M.; Grogman, B.; Marley, A. A. J.; and Testlin,
I. M. 2006. Behavioral Social Choice: Probabilistic Mod-
els, Statistical Inference, and Applications. Cambridge Univ.
Press.
Regenwetter, M.; Dana, J.; and Davis-Stober, C. P. 2011.
Transitivity of preferences. Psychological Review 118(1).
Ricci, F.; Rokach, L.; Shapira, B.; and Kantor, P. B., eds.
2011. Recommender Systems Handbook. Springer.
Robinson, R. W. 1973. Counting labeled acyclic digraphs.
In Harary, F., ed., New directions in the theory of graphs:
proceedings. Academic Press. 239–273.
Robinson, R. W. 1977. Counting unlabeled acyclic digraphs.
In Combinatorial mathematics V. Springer. 28–43.
Sloane, N. J. A. 2014. The On-Line Encyclopedia of Integer
Sequences. http://oeis.org. Accessed: 2014-04-15.
Steinsky, B. 2003. Efficient coding of labeled directed
acyclic graphs. Soft Computing 7(5):350–356.
Tversky, A. 1969. Intransitivity of preferences. Psycholog-
ical review 76(1):31.
Walsh, T. 2011. Where are the hard manipulation problems?
Journal of Artificial Intelligence Research 42:1–39.
Xia, L.; Conitzer, V.; and Lang, J. 2008. Voting on multi-
attribute domains with cyclic preferential dependencies. In
Proc. AAAI, 202–207.

7

