
A Time and Space Efficient Algorithm for Approximately
Solving Large Imperfect Information Games

Eric Jackson

Abstract

This paper proposes a novel approach for computing an ap-
proximate equilibrium in a game of imperfect information.
Our approach involves decomposition; that is, breaking the
problem down into subproblems that can be solved indepen-
dently. We compare our approach to other decomposition ap-
proaches, and illustrate that our approach is guaranteed to find
an equilibrium when applied to the recovery problem.

Introduction
This paper proposes a novel approach for computing an ap-
proximate equilibrium in a game of imperfect information.
Solving very large games of imperfect information requires
large amounts of both memory and computation. Gener-
ally, the memory requirement is proportional to the num-
ber of information sets in the game being solved. While
researchers typically solve abstractions that are smaller than
the full game, it is advantageous for the abstractions to be
as large as possible so as to best approximate the full game.
Some labs employ supercomputers with 256 GB of RAM or
more to solve these large games.

Within the field of computer poker, many researchers have
proposed decomposition approaches (e.g., (Billings et al.
2003), (Burch, Johanson, and Bowling 2014), (Ganzfried
and Sandholm 2013), (Gilpin and Sandholm 2006), (Waugh,
Bard, and Bowling 2009)) that break the problem down into
pieces that can be solved independently. If we can decom-
pose a game into enough pieces, we should be able to solve
each subproblem on commodity hardware with only a (rel-
atively) modest amount of RAM. While the total amount
of computation required may not be less, we can employ
a distributed network of commodity hardware rather than
one large supercomputer. This will avoid a hard limit on the
amount of computation we can apply over a fixed amount of
time, as we can always add more machines, and at the same
time may be a more cost-effective solution.

Unfortunately, games of imperfect information do not
easily lend themselves to decompounding. In this respect,
they differ from games of perfect information like chess.
In chess, it is possible to take a certain state of the board
and identify the most promising move based on that current

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

state, independent of any other possible state of the game.
However, this is not typically possible in games of imper-
fect information. See (Burch, Johanson, and Bowling 2014)
for more discussion.

Many decomposition approaches attempt to identify an
approximate Nash equilibrium, but lack theoretical guaran-
tees that the solutions the algorithms produce will converge
to equilibrium. (See (Burch, Johanson, and Bowling 2014)
for an exception.) The algorithm we propose is ultimately
no different in this respect, although we do show that in a
certain “best-case” scenario, convergence to an equilibrium
is guaranteed.

While our algorithm is not specific to any one game-
solving approach, we illustrate how it would work in con-
junction with counterfactual regret minimization (CFR)
(Zinkevich et al. 2007). Throughout we are concerned only
with two-person zero-sum games with perfect recall. Exam-
ples are given involving two-player variants of poker, specif-
ically Texas Hold’em.

Extensive Games
We begin by recapping the definition of an extensive game.
For a fuller discussion, see (Osborne and Rubenstein 1994).

Definition 1. An extensive game Γ has the following com-
ponents:

• A finite set N of players
• A finite set H of histories of actions. Z ⊆ H are the ter-

minal histories. A(h) = {a : (h, a) ∈ H} are the actions
available after a nonterminal history h.

• A player function P that assigns to each non-terminal his-
tory a member of N ∪ c where c represents chance. Hi is
the set of histories where player i chooses the next action.
• A function fc that associates with every history h ∈ Hc a

probability distribution over the actions a ∈ A(h).
• For each player i ∈ N , a utility function ui that as-

signs a utility for that player to each terminal history.
Because we are dealing only with two-player zero-sum
games u1(z) = −u2(z). It will be possible therefore just
to have a single utility function u which we can assume,
without loss of generality, to specify player 1’s utility.

• For each player i ∈ N , a partition Ii of Hi with the prop-
erty thatA(h) = A(h′) whenever h and h′ are in the same
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member of the partition. A set Ii ∈ Ii is an information
set of player i.

We’ll write h @ h′ if h is a prefix of h′. And similarly
h v h′ if h = h′ or h @ h′.

Definition 2. A strategy for player i, σi, assigns a probabil-
ity distribution over A(h) to each h ∈ Hi.

Definition 3. A strategy profile σ is a set of strategies
{σ1, . . . σn} that contains one strategy for each player.

When all players play according to a strategy profile σ we
refer to the expected utility of player 1 as u(σ).

Letting σ(h, a) be the probability assigned to a at h by σ,
we can define the joint probability of a history for σ:

πσ(h) = Π(h′,a)vhσ(h′, a) (1)

We’ll also use πσi to refer to the product of only the terms
where player i acts, and πσ−i to refer to the product of only
the terms where players other than i act. We can also define
πσ(h, h′) where h v h′ to be the product of only the terms
between h and h′.

Let V be the value of Γ from player 1’s perspective; i.e.,
u(σ) for any equilibrium strategy profile σ. The Minimax
theorem tells us that all equilibrium strategy profiles in a
two-player zero-sum game yield the same expected payoff
to each player. Throughout we state expected payoffs from
player 1’s perspective meaning that player 1 plays to max-
imize the expected payoff, and player 2 plays to minimize
the expected payoff.

Recovery Problem
The problem of recovering a strategy in a subtree of a game
is discussed in (Burch, Johanson, and Bowling 2014) where
it is a key part of the CFR-D algorithm. We discuss the re-
covery problem here as a benchmark for comparing different
approaches to decomposition. For this task, we imagine that
we are given an equilibrium strategy profile for a game, ex-
cept that all information for a certain subtree has been lost.
We are tasked with “recovering” an equilibrium for the full
game.

It will not typically be possible to guarantee recovery of
exactly the same equilibrium. The object is just to recover
any equilibrium to the full game. So long as we are dealing
with two-player zero-sum games, we know (due to the Min-
imax theorem) that any equilibrium for the full game yields
the same expected payoff to each player, so in that sense at
least all equilibria are equivalent.

An approach to decomposition that allows us to solve sub-
trees independently ought to be applicable to the recovery
problem. One way to evaluate these approaches is based on
whether they have any theoretical guarantees with respect to
the recovery game — do they guarantee finding an equilib-
rium for the full game? We can also evaluate their efficiency
on the recovery game. Are their time and space requirements
proportional to the size of the missing subtree?

Approaches to Decomposition

Standard Approach

One common and natural approach to decomposition can
be found in different forms in multiple papers including
(Billings et al. 2003), (Ganzfried and Sandholm 2013) and
(Gilpin and Sandholm 2006). Because it recurs so often, we
are referring to it here as the “standard” approach. The stan-
dard approach operates in two passes: in the first pass you
solve a coarse abstraction of the full game; in the second
pass you go back and resolve one or more subtrees using a
finer abstraction. To resolve a subtree, we fix the strategies
outside of the subtree to be whatever was computed in the
first pass, and we then compute new strategies for the sub-
tree, each player’s strategy within the subtree being allowed
to vary freely. With fixed strategies outside of the subtree,
it is not necessary to run a solver over the whole tree. We
can instead compute the distribution of information sets at
the root of the subtree, and then simply solve the subtree
as an independent game, with that particular distribution of
information sets at the root.

The standard approach has several nice properties. We get
the advantages of a finer abstraction in the resolved subtrees,
and each resolve has memory and computation requirements
only proportional to the size of the subtree.

The standard approach is an example of what we’ll call a
“two pass” approach. In a two pass approach, you typically
solve the whole game on a first pass, and then go back and
resolve one or more subtrees on a second pass. Normally,
there is a change of abstraction between the first pass and
the second pass. On the first pass, we might solve the whole
game with a coarse abstraction, while the resolves on the
second pass use a finer abstraction. While the standard ap-
proach is one example of a two pass approach, it is not the
only one, and, indeed, the other decomposition approaches
described in this paper are two pass approaches.

It is well known that when using the standard approach,
there is no guarantee that you will find an equilibrium for the
full game, or even an approximate equilibrium. This is true
even if there is no change of abstraction between the first and
second pass. In other words, the standard approach has no
guarantees on the recovery game. (Ganzfried and Sandholm
2013) illustrates this with the game of rock-paper-scissors
and shows that you cannot recover the second player’s equi-
librium strategy even given the first player’s strategy. For
this example, imagine we have computed the equilibrium for
rock-paper scissors, which is that both players select rock,
paper and scissors each with probability 1/3. We then dis-
card the second player’s strategy and try to recover it using
the standard approach. In this example, player 2’s actions
form the subtree and player 1’s actions are outside of the
subtree. Any best-response by player 2 forms an equilib-
rium in the endgame (since player 1’s strategy is fixed) and
any distribution over rock, paper and scissors is equally good
against player 1’s fixed strategy. So the standard approach
has no ability to distinguish the unique equilibrium strategy
〈1/3, 1/3, 1/3〉 from any other player 2 strategy.
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Strategy Grafting
An alternative approach to decomposition is described in
(Waugh, Bard, and Bowling 2009) and has more theoreti-
cal guarantees than the standard approach. Strategy grafting
is a two pass approach: the entire game is solved using a
coarse abstraction, and then subtrees are resolved using a
finer abstraction. On the second pass, subtree strategies are
computed separately for each player. The key idea is that
when we solve for player 1, we fix player 1’s strategy out-
side of the subtree, but let the opponent’s strategy vary over
the whole tree. Any solving approach can be used, including
but not limited to CFR. The key contrast between strategy
grafting and the standard approach is that we fix only one
player’s strategy outside of the subtree as opposed to both.

While the recovery problem is not specifically discussed
in (Waugh, Bard, and Bowling 2009), we can still analyze
how this algorithm would work when applied to that prob-
lem.

First, we formalize what we mean by “subtree”. A set T
is a subtree for a game Γ if:

1. T ⊆ H
2. If h ∈ T and h is a prefix of h′, then h′ ∈ T
3. For each player i if h ∈ T and there exists Ii in Ii such

that h ∈ Ii and h′ ∈ Ii, then h′ ∈ T .

Note that such a subset T might better be called a forest
than a tree because there are multiple roots corresponding to
different histories in the same information set.

In discussing the recovery problem, it is important to dis-
tinguish between different games. The full game denoted by
Γf is the game of interest that we want to recover an equi-
librium for. There are also recovery games that we solve
to obtain the strategy for the subtree of interest. With strat-
egy grafting, there are two recovery games, which we’ll de-
note as Γr,1 and Γr,2 because we recover the subtree strat-
egy separately for each player. The recovery game Γr,i is
derived from the full game Γf , given a subtree T and an
equilibrium strategy profile σf for Γf . It differs in that for
all h ∈ Hf,i \ T , P (h) = c and fc(a|h) = σf,i(h, a). In
other words, at all histories outside of T , player i actions are
replaced by chance actions with the probabilities specified
by the given full-game equilibrium strategy.

Solving the recovery game Γr,i yields the equilibrium
strategy profile {σr,i,1, σr,i,2}. We define the expansion of
σr,i,i, denoted σ+

r,i,i, to be the full game strategy that is iden-
tical to σr,i,i on histories in T and identical to σf,i else-
where.

Our first theorem states that 〈σ+
r,1,1, σ

+
r,2,2〉 is an equilib-

rium for Γf . In other words, strategy grafting solves the re-
covery problem. A proof can be found in the first appendix.

We can view the strategy grafting approach as forcing the
target player to learn a more robust strategy than the standard
approach. The opponent has the freedom to play different
hands to the subtree, so the target player is forced to develop
a robust strategy that performs reasonably well no matter
what the opponent does.

The memory requirements for strategy grafting are re-
duced from solving the full game, but still substantial. For

example, in a CFR implementation, outside of the subtree,
we would need to maintain regrets for the opponent, but not
the accumulated strategy. We would not need to maintain
regrets or the accumulated strategy for the target player out-
side of the subtree, although we would need to maintain the
fixed already computed strategy. Similarly, the computa-
tion requirements are reduced but still substantial because
we would need to update the strategy for the opponent out-
side of the subtree on each iteration.

Strategy grafting contrasts with the standard approach in
that with the standard approach the memory and computa-
tion requirements are proportional only to the size of the
subtree, whereas with strategy grafting they are proportional
to the size of the full tree. In practice, the subtree is likely
to often be much smaller than the full tree, so this may be a
very substantial difference.

Our Approach
Application To The Recovery Problem
The approach we propose for decomposition can be viewed
as an extension of strategy grafting. We begin by describ-
ing how we would use this approach to solve the recovery
problem, and then generalize in the subsequent section.

For motivation, note that the strategy grafting algorithm
spends a great deal of time computing the strategy for the
opponent outside of the subtree. This may seem wasteful
as a) we do not care about the result of that computation;
we are only computing a strategy for the target player within
the subtree, and b) since the target player has a fixed strategy
outside of the subtree, it seems that we should be able to do
something simpler or faster than a full equilibrium-finding
approach which is designed for the more general scenario
where both players can vary their strategies.

As in the earlier discussion, we denote the “full” game of
interest with Γf , and assume an equilibrium strategy profile
σf has been previously computed for that game. A portion
of σf corresponding to a subtree has been lost and we want
to recover an equilibrium for the full game. Just as with
strategy grafting, we will be resolving for each player sepa-
rately, so we have two recovery games Γr,1 and Γr,2. How-
ever, our recovery games are smaller; we eliminate almost
all game states that are not in the subtree. We maintain the
subtree itself, all states on the path to the subtree, and have
new terminal histories after each action that takes us off the
path to the subtree. This is depicted in figure 1. The new
terminal histories have payoffs corresponding to the value
the opponent would achieve if play deviates from the path to
the subtree (assuming both players play according to σf ).

When we solve the recovery game for player i we will
let player i’s strategy vary just over the subtree T , but the
opponent’s strategy can vary over the whole recovery game.

Define the path PT to a subtree T as:

PT = {h : h 6∈ T & ∃h′ : h′ ∈ T & h @ h′} (2)
Also define the set OT of “off-path” histories from Γf :

OT = {h : h 6∈ T ∪ PT & ∃h′ : h = (h′, a) & h′ ∈ PT }
(3)
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Figure 1: Depiction of the subtree T , the path to the subtree
{h1, h2} and newly created terminal nodes z1 . . . z4.

Let Z(h) be the terminal histories reachable from h:

Z(h) = {z ∈ Z : h v z} (4)
We can now define the values that will be used for the new

off-path terminal histories:

υσ(h) =
∑

z∈Z(h)

πσ(h, z)u(z) (5)

υσ(h) is the expected utility at h assuming each player
plays to reach h.

Now we can define the recovery game Γr,i which is de-
rived from Γf . Let j = 3 − i; i.e., j is the index of the
opponent of player i. The set of histories is T ∪ PT ∪ OT .
The utility function ur,i is identical to uf except that for
h ∈ OT we set ur,i(h) = υσ(h). Also, for all h ∈ PT ∩Hi,
P (h) = c and fc(a|h) = σf,i(h, a).

Solving the recovery game Γr,i yields the equilibrium
strategy profile {σr,i,1, σr,i,2}. We define the expan-
sion σ+

r,i,i as before. Our second theorem states that{
σ+
r,1,1, σ

+
r,2,2

}
is an equilibrium for Γf . In other words, the

approach we have described here solves the recovery prob-
lem. A proof can be found in the second appendix.

Decomposition
The task we are ultimately interested in is not the recov-
ery problem, but the computation of a strategy for a game
from scratch using decomposition. To do this, we adopt a
two pass approach. We solve the full game of interest with
a coarse abstraction, and then resolve subtrees with a finer
abstraction. The algorithm for resolving subtrees is just as
described above. Unfortunately, once we allow a change of
abstractions between the solving of the full game and the
solving of the subtrees, we lose the optimality results that
obtained for the recovery problem. Consider that we will be
computing the off-path expected values based on the coarse
abstraction, but there is no guarantee that those are the cor-
rect values for the fine abstraction. Indeed, they are almost
certainly not identical to the values that would obtain had we
solved the full game with the fine abstraction.

Having said that, it seems possible that the values ob-
tained from the first pass will be similar to the values we
would have obtained had we solved the full game with the
finer abstraction. Also, even if we compute slighly incorrect

values on the first pass, it seems entirely possible that we
may still be able to learn good strategies for the subtrees on
the second pass.

The fact that our algorithm has equilibrium guarantees for
the recovery game may lend us some confidence that it finds
robust strategies for the subtrees, even though we are lacking
theoretical guarantees in the two-pass decomposition sce-
nario.

When we solve a subtree we are solving a recovery game
that is approximately the size of the subtree, with a small
number of additional game states along the path to the sub-
tree. Typically, the number of game states along the path to
the subtree is dwarfed by the size of the subtree. The mem-
ory and computation requirements for our approach are thus
proportional to the size of the subtree, with the computation
requirements being roughly double the requirements of the
standard approach. (Recall that we compute strategies for
each of the two players separately whereas the standard ap-
proach does not need to.)

Comparison to CFR-D
CFR-D, described in (Burch, Johanson, and Bowling 2014),
is an algorithm for solving games of imperfect information
via decomposition. It has certain resemblances to the al-
gorithm described here. CFR-D finds an equilibrium for
a large game with memory requirements only proportional
to the size of largest “piece” that the game is decomposed
into. CFR-D operates in two passes. The first pass in some
sense solves the whole game, but throws away information
about each subtree after processing it on each iteration, only
maintaining information about the “trunk”. (This is the key
property that keeps the memory requirement so small.) The
second pass recovers the equilibrium for the full game based
on results of the first pass, by solving lots of recovery prob-
lems.

CFR-D computes counterfactual values at the root of sub-
trees on the first pass, and uses those in the second pass to
guide the solutions of the recovery problems. These coun-
terfactual values serve an analogous role to the values we
compute for the off-path terminal nodes. Both approaches
work in the sense that they can solve the recovery problem.
But in the context of a two-pass approach with a change of
abstraction, they are not equivalent.

Although we can think of CFR-D as a two-pass algorithm,
there is no change of abstraction between the first pass and
the second pass. Partly because CFR-D uses the same ab-
straction throughout, it is possible to prove that CFR-D ac-
tually finds an exact equilibrium for the full game. In con-
trast, the two-pass approaches with a change of abstraction
discussed in this paper have no such theoretical guarantees.

Practical application of CFR-D to large games is likely
constrained today by the large amount of computation re-
quired on the first pass.

Results
We have applied the standard approach and our approach to
the game of Leduc. Leduc is a small variant of poker played
with a deck of six cards. There are two rounds of betting, a
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maximum of two bets per street and a limit betting structure.
The results were as follows.

Game Exploitability (mbb/g)
Whole game 0.49
Standard approach 38.53
Our approach 0.93

The whole game and each of the recovery games were
solved with 100 million iterations of pure external CFR.
Exploitability numbers are expressed in milli-big-blinds per
game (mbb/g). As you can see, the approach described in
this paper finds a solution much closer to an equilibrium than
the standard approach.

Implementation
CFR Implementation
The exposition above is agnostic about the solving approach
used to compute equilibria to games. In our implementation,
we have used counterfactual regret minimization (CFR).
Certain adjustments can make for a more efficient CFR im-
plementation. For example, in our definition of the recovery
games, we defined values υ(h) which became payoffs at the
new off-path terminal nodes. For CFR, what we will typi-
cally want is the counterfactual value of an information set.
There are many fewer information sets than histories so it
will be advantageous to precompute just the needed values -
counterfactual values of information sets at off-path terminal
nodes.

These counterfactual values could be computed by a sin-
gle iteration of Vanilla CFR. However, even a single iteration
of Vanilla CFR is quite expensive for very large games. We
instead use a single pass of CFR in which we sample both
from the public cards (the boards) and the opponent’s ac-
tions. This produces estimates of the needed values, rather
than exact values.

Imperfect Recall
The results above obtain only for games with perfect recall.
However, the approach can be applied to games of imper-
fect recall with empirically reasonable results. One require-
ment, however, is that the off-path counterfactual values be
“history-sensitive”, so to speak. It is not sufficient to com-
pute them for an imperfect recall bucket. They could be
computed for specific card combinations, or for a sequence
of imperfect recall buckets.

Slumbot 2014
The decomposition approach described in this paper is being
employed in the ongoing development of Slumbot 2014, our
entry to this year’s Annual Computer Poker Competition.
We have built a base system and are in the process of resolv-
ing some of the most commonly reached flop subtrees. The
base strategy will continue to be employed for the preflop
strategy and for less commonly reached flop subtrees.

We are employing machines with 32 gigabytes of RAM.
The base system and each of the subtrees are solved on a
dedicated machine using all available RAM. We are using a
variant of pure external CFR, which requires storage of two

four-byte integers for each action at each information set,
implying that the size of each game is approximately four
billion information set / action pairs.

Appendix One: Strategy Grafting Proof
Let Vf be the value of Γf (i.e., u(σf )). Recall that we state
expected payoffs from player 1’s perspective meaning that
player 1 plays to maximize the expected payoff, and player
2 plays to minimize the expected payoff.
Definition 4. τ−i ∈ Σr,i,i is the restriction of a full-game
strategy τi for player i if τ−i is identical to τi on all histories
in T .

Definition 5. Given an equilibrium strategy profile σf for
Γf and given a strategy τi ∈ Σr,i,i, τ+

i is the expansion of
τi. It is identical to τi on histories in T and identical to σf,i
elsewhere.

Note that the restriction of the expansion of any strategy
τi in Σr,i,i is τi.

Lemma 1. ur,i({τr,i,i, τf,j}) = uf (
{
τ+
r,i,i, τf,j

}
) for any

τr,i,i ∈ Σr,i,i, τf,j ∈ Σf,j , i ∈ {1, 2}, j = 3− i.

Proof. Recall that:

u(σ) =
∑
z∈Z

πσ(z)u(z) (6)

Observe that π{τr,i,i,τf,j}(z) = π{τ
+
r,i,i,τf,j}(z) for all

terminal histories z. Additionally, u(z) is the same in Γr,i
and Γf for all z.

Henceforth we will use σf to refer to the given equilib-
rium strategy profile for the full game. σ−f,i is the restriction
of σf,i.

Theorem 1.
{
σ−f,i, σf,j

}
is an equilibrium for Γr,i with

value Vf for i ∈ {1, 2}, j = 3− i.

Proof. We’ll show this for player 1 (i = 1). The proof for
player 2 is exactly the same.

First we show that the best response to σ−f,1 in Γr,1 is Vf .
The best response to σ−f,1 is:

minτ∈Σr,1,2
u(
{
σ−f,1, τ

}
) (7)

Since Σr,1,2 = Σf,2:

= minτ∈Σf,2
u(
{
σ−f,1, τ

}
) (8)

By lemma 1:

= minτ∈Σf,2
u({σf,1, τ}) = Vf (9)

So the best response to σ−f,1 is Vf .
We also show that the best response to σf,2 in Γr,1 is ≤

Vf . Suppose there were a strategy τ ∈ Σr,1,1 such that:

u({τ, σf,2} = V ′ > Vf (10)
By the lemma:
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u(
{
τ+, σf,2

}
= V ′ > Vf (11)

which is a contradiction.
These two conclusions together signify that

{
σ−f,1, σf,2

}
is an equilibrium for Γr,1 with value Vf . The proof for Γr,2
is exactly the same.

For the following corollary, assume we solve Γr,1
and Γr,2, and find two equilibrium strategy profiles
{σr,1,1, σr,1,2} and {σr,2,1, σr,2,2}. These two equilibria

may be different from
{
σ−f,i, σf,j

}
and

{
σf,i, σ

−
f,j

}
, but

their values must still be Vf due to the Minimax theorem.

Corollary 1.
{
σ+
r,1,1, σ

+
r,2,2

}
is an equilibrium for Γf with

value Vf .

Proof. The best response to σr,i,i in Γr,i has been shown to
be Vf . Since Σr,i,j = Σf,j (player j — the opponent —
has the same available responses in Γr,i and Γf ), and due to
lemma 1, we know that the best response to σ+

r,i,i in Γf is
also Vf .

Appendix Two: Proof for Our Approach
We use the Greek letter σ to denote equilibrium strategies.
In particular, for the recovery problem we assume we are
given an equilibrium strategy profile σf for the full game
Γf . We’ll also use σr,i to refer to an equilibrium strategy
profile in the recovery game Γr,i and σr,i,j to refer to the
player j strategy in such a profile. If we wish to refer to an
arbitrary strategy or strategy profile we use the Greek letter
τ .

We define expansions and restrictions similarly to before.
The restriction of a strategy τi, τ−i , is τi restricted to histo-
ries in the given recovery game. Given a full game strategy
profile σf , the expansion of τi, τ+

i , is identical to τi on his-
tories in the recovery game and identical to σf,i elsewhere.

If h is a history, we can write (h, a) to denote the history
following h after action a is taken. We say that (h, a) is a
child of h in such a case. We previously defined h @ h′ and
h v h′ when h is a (strict) prefix of h′ and we can also say
that h′ is a descendant of h when h @ h′.

Recall that an information set I is a set of histories. We
can also say that an information set I ′ is a child of I if every
history h′ ∈ I ′ is a child of some history h ∈ I . Similarly
we can talk about an information set I ′ being a descendant
of I .

Let Z(I) be the set of terminal histories z ∈ Z such that
h @ z for some h ∈ I . Likewise Z(I, a) is the set of termi-
nal histories z ∈ Z such that (h, a) v z for some h ∈ I

Let z[I] be the longest history h ∈ I such that h v z.
We define the counterfactual value of an action a at an

information set I under a given strategy profile τ :

Definition 6.

v(τ, I, a) =
∑

z∈Z(I,a)

πτi ((z[I], a), z)πτ−i(z)u(z) (12)

Similarly we can define the counterfactual value of an in-
formation set I under a given strategy profile τ :
Definition 7.

v(τ, I) =
∑

z∈Z(I)

πτi (z[I], z)πτ−i(z)u(z) (13)

Counterfactual values and utilities are stated from the per-
spective of player 1. Player 1 plays to maximize utility, and
player 2 plays to minimize it.

We’ll also say that an information set I is “reachable”
with respect to a strategy profile τ if πτ (I) > 0.
Lemma 2. For any strategy profile τ for the recovery game
Γr,i, ur(τ) = uf (τ+)

We use ur and uf to be explicit whether we are talking
about utilities in the recovery game or the full game.

ur(τ) (14)

=
∑
z∈Zr

πτ (z)ur(z) (15)

=
∑

z∈T∩Zr

πτ (z)ur(z) +
∑
z∈OT

πτ (z)ur(z) (16)

=
∑

z∈T∩Zr

πτ (z)ur(z)+∑
z1∈OT

πτ (z1)
∑

z2∈Zf & z1vz2

πσf (z1, z2)uf (z2)
(17)

=
∑

z∈T∩Zr

πτ (z)ur(z)+∑
z1∈OT

πτ (z1)
∑

z2∈Zf & z1vz2

πτ
+

(z1, z2)uf (z2)
(18)

=
∑

z∈T∩Zf

πτ
+

(z)uf (z) +
∑

z∈Zf &z 6∈T

πτ
+

(z)uf (z) (19)

=
∑
z∈Zf

πτ
+

(z)uf (z) (20)

= uf (τ+) (21)
From lemma 2, we know in particular:

ur(
{
σ−f,1, σ

−
f,2

}
) = uf ({σf,1, σf,2)}) = Vf (22)

Lemma 3. In Γr,i,
{
σ−f,1, σ

−
f,2

}
is an equilibrium profile.

Proof. Take Γr,1. Suppose there were a strategy τ2 ∈ Σr,1,2
such that u(σ−f,1, τ2) = V ′ < Vf . From lemma 2, we then
know u(σf,1, τ

+
2 ) = V ′ < Vf . This is a contradiction as it

shows σf,2 is not a best response to σf,1.
Similarly, suppose there were a strategy τ1 ∈ Σr,1,1 such

that u(τ1, σ
−
f,2) = V ′ > Vf . From lemma 2, we then know

u(τ+
1 , σf,2) = V ′ > Vf . This is a contradiction as it shows

σf,1 is not a best response to σf,2.
The proof for Γr,2 is exactly the same.
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If we solve Γr,i we will get an equilibrium {σr,i,1, σr,i,2}
which also has value Vf due to the Minimax theorem. More-

over,
{
σr,i,i, σ

−
f,j

}
(where j = 3− i) must also be an equi-

librium for Γr,i. Since u(σr,i,i, σ
−
f,j) = Vf , we also know

u(σ+
r,i,i, σf,j) = Vf by lemma 2.

We can now show that we have a method for recovering
an equilibrium for the full game:

Theorem 2.{
σ+
r,1,1, σ

+
r,2,2

}
is an equilibrium for Γf (23)

Proof. We show that σ+
r,1,1 is player 1’s half of an equilib-

rium. The proof for player 2 is exactly the same.
We show that σf,2 is a best response to σ+

r,1,1. We know
from above that u(σ+

r,1,1, σf,2) = Vf , so if σf,2 is more-
over a best response to σ+

r,1,1, then we have shown that σ+
r,1,1

must be player 1’s half of an equilibrium.
We prove a small lemma first:

Lemma 4. Suppose 1) {σ1, σ2} is an equilibrium; and 2) I
is an information set reachable in {σ1, σ2}. Consider any
strategy τ2 such that v({σ1, τ2} , I, a) ≥ v({σ1, σ2} , I, a)
for all actions a available at I . Then: v({σ1, τ2} , I) ≥
v({σ1, σ2} , I).

Proof. If I is an information set at which player 1 or chance
acts, then the lemma is trivially true because the probability
distribution over actions will be identical between {σ1, σ2}
and {σ1, τ2}. So assume player 2 acts at I . Since {σ1, σ2}
is an equilibrium and I is reachable, player 2 only selects
actions with non-zero probability that minimize the counter-
factual value:

v({σ1, σ2} , I) = minav({σ1, σ2} , I, a) (24)

Since none of the counterfactual values of the actions a
when adopting τ2 can be lower than the corresponding val-
ues for σ2 by assumption, τ2 cannot achieve a lower coun-
terfactual value at I .

Lemma 4 essentially says that an equilibrium strategy σ2

acts in a locally optimal fashion at any reachable information
set I .

To prove that σf,2 is a best response to σ+
r,1,1, we will

show that the following property holds for any τ2 ∈ Σf,2
and any information set I that is reachable in

{
σ+
r,1,1, σf,2

}
:

v(
{
σ+
r,1,1, τ2

}
, I) ≥ v(

{
σ+
r,1,1, σf,2

}
, I) (25)

In other words, there is no player 2 strategy τ2 that
achieves better counterfactual value than σf,2 at any reach-
able information set.

Suppose this weren’t true. Then there would be an infor-
mation set I∗ which violates the property (25). Choose I∗
such that no descendant I ′ of I∗ violates the property.

Observe that for all a available at I∗:

v(
{
σ+
r,1,1, τ2

}
, I, a) ≥ v(

{
σ+
r,1,1, σf,2

}
, I, a) (26)

There are two possibilities. If a leads to a terminal history
z, then the statement holds with equality because:

v(
{
σ+
r,1,1, τ

}
, I∗, a) = πτ−i(z)u(z) (27)

and neither πτ−i(z) nor u(z) depend on the player 2 strat-
egy.

The second possibility is that action a at I∗ leads
to a new information set I ′. But by our assump-
tion that no descendant violates the property, we know
v(
{
σ+
r,1,1, τ2

}
, I ′) ≥ v(

{
σ+
r,1,1, σf,2

}
, I ′) which is equiv-

alent to v(
{
σ+
r,1,1, τ2

}
, I∗, a) ≥ v(

{
σ+
r,1,1, σf,2

}
, I∗, a).

We now wish to show that the hypothesized information
set I∗ cannot exist because it contradicts lemma 4. First
observe that the following holds for all I ∈ T ∪ PT :

v(
{
σ+
r,1,1, σf,2

}
, I, a) = v(

{
σr,1,1, σ

−
f,2

}
, I, a) (28)

and also:

v(
{
σ+
r,1,1, σf,2

}
, I) = v(

{
σr,1,1, σ

−
f,2

}
, I) (29)

Similarly, for all I 6∈ T ∪ PT :

v(
{
σ+
r,1,1, σf,2

}
, I, a) = v({σf,1, σf,2} , I, a) (30)

and also:

v(
{
σ+
r,1,1, σf,2

}
, I) = v({σf,1, σf,2} , I) (31)

Therefore, if the hypothesized I∗ is in T ∪ PT , we have a
contradiction of lemma 4 with respect to the recovery game
equilibrium profile

{
σr,1,1, σ

−
f,2

}
. On the other hand, if I∗

is not in T ∪ PT , we have a contradiction of lemma 4 with
respect to the full game equilibrium {σf,1, σf,2}.

Since we have reached a contradiction, we know that

v(
{
σ+
r,1,1, τ2

}
, I) ≥ v(

{
σ+
r,1,1, σf,2

}
, I) (32)

for all reachable information sets I . In particular, we
know this for the information set at the root of the game,
∅:

v(
{
σ+
r,1,1, τ2

}
,∅) ≥ v(

{
σ+
r,1,1, σf,2

}
,∅) (33)

But the counterfactual value at ∅ is identical to expected
utility (v(σ,∅) = u(σ)) so we have shown for all τ2 ∈ Σf,2:

u(
{
σ+
r,1,1, τ2

}
) ≥ u(

{
σ+
r,1,1, σf,2

}
) (34)

In other words, σf,2 is a best response to σ+
r,1,1. It was

previously shown that:

u(
{
σ+
r,1,1, σf,2

}
) = Vf (35)

So σ+
r,1,1 is player 1’s half of an equilibrium in the full

game, Γf .
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