
Learning an Optimal Sequence of Questions for
the Disambiguation of Queries over Structured Data

Achim Rettinger♯, Alexander Hagemann♯, Matthias Nickles♮
♯ Karlsruhe Institute of Technology (KIT), Germany, {rettinger,alexander.hagemann}@kit.edu

♮ INSIGHT / DERI & Department of Information Technology,
National University of Ireland, Galway, matthias.nickles@deri.org

Abstract

Intelligent systems interacting with users often need to relate
ambiguous natural language phrases to formal entities which
can be further processed. This work strives for learning an
optimal sequence of disambiguation questions asked by an
agent in order to achieve a perfect interactive disambigua-
tion, setting itself off against previous work on interactive and
adaptive dialogue systems for disambiguation in question an-
swering. To this aim, we built a hybrid system that exhibits
deductive and statistical inference capabilities by combining
techniques from natural language processing, information re-
trieval, answer set programming and relational reinforcement
learning.
Keywords: Question Answering, Relational Reinforcement
Learning, Information Retrieval, Linked Data, Named-Entity
Recognition, Disambiguation

Introduction and Related Work
Human-machine interaction using natural language is typ-
ically ambiguous, e.g., because of differences in the per-
ception of the common environment, ambiguous terms, or
noise. In human conversations, disambiguation is achieved
using contextual information, background knowledge and
ultimately by asking questions. Typically, such disambigua-
tion questions are highly efficient, in the sense that only the
most ambiguous elements are explicitly discussed and that
elements which help to disambiguate other unclear elements
are asked first. Thus, humans intuitively learn to optimize for
the optimal order and minimal amount of inquiries needed to
understand their conversational partner.

A common task of intelligent software systems is to link
natural language phrases to a structured knowledge repre-
sentation which facilitates automated processing. One ex-
ample is Question Answering (QA) over structured data (in
particular Linked Data / RDF), where concepts expressed in
natural language need to be related to formal entities (en-
tity recognition), in order to translate the query into a for-
mal (non-ambiguous) SPARQL query. Consider the ques-
tion When was Elvis Presley born?. For a human it is clear
that this is about the artist named Elvis Presley. However, a
keyword search system might associate this with the music
album named Natural Born Elvis.

Copyright © 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The approach proposed in this paper is inspired by the
way disambiguation is resolved in human communication.
We aim for a system that learns (i) what the most proba-
ble disambiguation is, (ii) to what extend interactive disam-
biguation is needed, and (iii) what the optimal sequence of
interactions is to achieve a correct disambiguation dialogue
with the minimal number of inquiries by the system. While
there is substantial previous work on dialogue systems for
disambiguation in QA, this work contrasts with existing ap-
proaches by learning an optimal policy that achieves a per-
fect disambiguation while minimizing the number of inter-
action steps needed. Our approach is hybrid in that it com-
bines reinforcement learning (RL) with logical reasoning.
We implement and evaluate our approach, DDLearn (Dis-
ambiguation Dialogue Learner), with regard to its disam-
biguation performance on the Question Answering over
Linked Data (QALD) challenge. Our results show that our
system can learn the optimal order of disambiguation ques-
tions, making it the first system capable of this. In contrast to
existing approaches which apply active learning, our system
does not depend on any heuristics.

Related approaches to QA over structured data can be as-
signed into those approaches that rely on user interactions to
remove ambiguity in the question and those that do not. Ob-
viously, we are only interested in the former, and also only
in adaptive ones. AutoSPARQL (Lehmann and Bühmann
2011) and FREyA (Damljanovic, Agatonovic, and Cunning-
ham 2012) utilize the answers returned after asking a ques-
tion for learning. FREyA uses an active learning component
to improve the heuristic ranking of possible answers dur-
ing the disambiguation dialogue. Similarly, AutoSPARQL
relies on active learning to learn the replies to previously
asked questions. Note that active learning - in contrast to re-
inforcement learning - is not guaranteed to learn an optimal
disambiguation sequence, since it optimizes the immediate
gain and does not aim at maximizing future rewards. Table 1
summarizes related approaches to question answering over
structured data.

An example for an early statistical approach to dialogue
learning in a Markov decision process (MDP) setting is
(Levin and Pieraccini 1997). Recent results and an ex-
tensive survey regarding the use of (Hierarchical) RL for
spoken dialogue optimization are provided in (Cuayahuitl
2009), mainly addressing core Natural Language Processing

Machine Learning for Interactive Systems: Papers from the AAAI-14 Workshop

27



SWIP Querix Power
AQUA

Auto
SPARQL FREyA DDLearn

QALD ✓ ✓ ✓ ✓ ✓ ✓

Interaction ✓ ✓ ✓

Learning ✓ ✓ ✓

RRL ✓

Table 1: Features of existing QALD approaches

(NLP) problems such as uncertainty in speech recognition.
(Ghavamzadeh and Mahadevan 2004) proposes an interest-
ing approach to Hierarchical RL of communication, with a
focus on the optimization of communication needs for co-
ordination in terms of communication cost. Like our work,
(Ponsen et al. 2009) uses relational reinforcement learning
(RRL) in a communication scenario, but aims at learning
with whom to communicate. A more closely related ap-
proach is pursued in (Rieser and Lemon 2011) and applied
to QA for document retrieval. In contrast to our approach
the order of inquiries to disambiguate the open “slots” is
predefined by a domain specific “process model”. A recent
approach that is closely related in terms of methodology
is (Lison 2013) since it combines RL with probabilistic rules
for dialogue management. Transitions are represented as a
Bayesian model which can be specified using rules. In con-
trast, our approach allows deductive reasoning about rela-
tional states and actions. None of the aforementioned ap-
proaches uses logical reasoning, and none is applied to QA
over structured data.

Learning Adaptive Disambiguation Dialogues
Our system DDLearn (Disambiguation Dialogue Learner)
can learn an optimal disambiguation strategy by engag-
ing the user in an efficient dialogue. To achieve this goal,
it exhibits deductive and statistical inference capabilities,
and combines and extends techniques from natural language
processing, information retrieval, formal logic (in form of
answer set programming and circumscriptive event calcu-
lus) and, most importantly, relational reinforcement learning
(Dzeroski, Raedt, and Driessens 2001; van Otterlo 2005).
However, for the current evaluation of our framework (next
section), we didn’t employ human test users but used deter-
ministic rule-based simulations of users.
Our approach is free of heuristics (in contrast to related QA
approaches) and thus can be easily extended to solve addi-
tional tasks like disambiguating the question type or misun-
derstandings.

The workflow of the system is shown in Fig. 1. Besides
the composition of the system, our contributions are in the
Adaptive Disambiguation Dialogue component, which is
outlined below. All other components are treated as black
boxes. Limitations introduced by those components are not
targeted by this work.

First, SWIP1 is used to convert a natural language query
about linked data, labeled iQuestion2, formulated by a hu-

1http://swip.univ-tlse2.fr/SwipWebClient/
2To avoid confusion concerning the term question, we distin-

guish iQuestion (the user query in natural language) from dQues-
tion (disambiguation question asked by the agent).

Figure 1: Complete workflow of our DDLearn system.

man user, into a set of keywords. They are passed on to
a graph based keyword search to return a set of possible
query graphs that link the provided keywords. This is fol-
lowed by the formal disambiguation dialogue wherein the
agent inquires a human user with so called dQuestions2 and
learns a policy to do so in an optimal way. During training,
a simulated user answers questions based on a set of cor-
rect SPARQL queries provided by the QALD benchmark3.
In the final step, the chosen query graph is converted into a
SPARQL query and executed on the linked data source. Ex-
amples for iQuestions in the evaluation domain are “Since
when does Fugazi exist?” or “Give me all songs by Petula
Clark”.

As input for the Adaptive Disambiguation Dialogue learn-
ing phase, our system is provided solely with a set of query
segments (such as “Elvis Presley”) and possible matching
elements (which are in our case formal elements in the
RDF schema of a knowledge base, such as “artist”). dQues-
tions asked by the system are simple yes/no questions about
whether a certain query segment (qs) matches a certain for-
mal element and about whether the user is fine with the cur-
rent disambiguation of the query. E.g., in iQuestion “List
all members of The Notwist”, a query segment would be
“Notwist” and the matching formal schema element would
be “artist”. Any information about the learning environment
and also any interaction between system and user (including
dQuestions) are formally modeled using a logic approach
(answer set programming (ASP) and event calculus (EC)),
which allows for the deductive determination of possible
states and actions in the relational reinforcement learning
task, and, most important, for a relational representation of
states and actions in reinforcement learning, facilitating re-
lational approaches to state and action generalization and
thus a more efficient form of learning (van Otterlo 2005;
Driessens 2004).

The actual learning task is performed by an interactive
relational reinforcement learning (IRRL) framework which
combines the aforementioned formal logic approach (ASP
and EC) with reinforcement learning. The IRRL tool QASP
((Nickles 2012)) is configured with the aforementioned sce-
nario and interactively learns an optimal policy of dQues-
tions which the agent can ask the human interaction partner.
The core learning algorithm is a relational and interactive
form of Q-learning. The IRRL-approach we use has already
shown its potential in toy problems (Nickles and Rettinger
2013). However, this is the first time it is adapted to a ques-
tion answering scenario and evaluated on a real-world data
set of reasonable size.

An ASP solver (a reasoner) is run by QASP to deter-
mine the next available states and actions in the Markov

28



Question User answer Reward

isType(qs, formal element)
yes 0
no 0

don’t know 0

ishappy happy 500
not happy -10

Table 2: Rewards for answers received from simulated user

decision process. At this, states consist of logical fluents
formulated in the EC. Further, the agent observes the cur-
rent environment (object domain states and user interaction
states) at each time step and interactively receives feedback
in terms of a numerical reward. Please find details in (Nick-
les and Rettinger 2013) and (Nickles 2012). Message forms
and rewards are as shown in Table 2. To generalize over
similar relational (state, action) pairs accumulated during Q-
learning, a k-nearest-neighbor (kNN) approach using a rela-
tional instance-based regression function (Driessens 2004)
is employed for the prediction of Q-values. One way to
use an interactive relational reinforcement learning approach
would be to treat every iQuestion individually, motivated by
the fact that it is difficult to re-use prior knowledge from past
experiments. To avoid this, QASP is able to use additional
prior knowledge by loading the results (learned state/action
values) from the respective previous experiment (a form of
transfer learning) and making use of it by means of gener-
alization over similar states and actions.

The output of the learning step is a disambiguated user
query from which a SPARQL query is generated ((Tran et
al. 2009)).

Evaluation and Conclusions
We implement and evaluate DDLearn with regards to its dis-
ambiguation performance on the Question Answering over
Linked Data challenge (QALD)3, which uses MusicBrainz4

as a knowledge base. MusicBrainz describes 595,765 music
artists, 878,630 release and 1,571,575 tracks with a total of
almost 15 million statements. Query segments are mapped
(disambiguated) to classes of MusicBrainz (e.g., artist, al-
bum, track) or to a relation or a property. From the QALD-1
data set 14 iQuestions were filtered for which the keyword
search did not return any results and thus no disambiguation
was possible. Out of the 100 natural language iQuestions
(i.e., user queries in natural language), 86 remained for eval-
uation.
Our experiments are evaluated in terms of learning success,
i.e. does the agent learn to ask an optimal series of dQues-
tions. This is measured by the number of interactions needed
to fully disambiguate the iQuestion. In our experiments, 100
learning episodes are repeated ten times (trials) and the re-
sults are averaged.
We first report results concerning the question whether
DDLearn is able to learn the optimal disambiguation strat-

3http://greententacle.techfak
.uni-bielefeld.de/ cunger/qald/index.php?q=1

4http://musicbrainz.org/

DDLearn
AVG Steps
in Optimal

Policy

Optimal
Policies
Learned

Episodes
Until

Optimal
Policy

heuristic-
free 4.5 ± 1.3 100% 25 ± 17

heuristic-
free series 4.3 ± 0.7 76% 27 ± 32

Table 3: Percentage of optimal policies learned by DDLearn

egy for single, independent questions (each disambiguated
from scratch), before investigating its behavior regarding
learning to disambiguate series of questions:
Optimal Disambiguation of Single Queries We compare
our approach to several other approaches. Under the as-
sumption that all query segments can be disambiguated, the
optimum (minimal number of interactions) is equal to the
number of query segments which should be disambiguated,
since this is the minimum number of affirmations needed
from the user if the matching is guessed correctly every
single time (labeled #Segments). Counting this way indi-
cates how complex each iQuestions is to disambiguate. Sim-
ilarly, the theoretical maximum, called Worst Case, shows
the maximum number of dQuestions until disambiguation is
complete. In this case every potential disambiguation for ev-
ery query segment is requested and the correct one is always
picked last. We also report the performance when dQues-
tions are randomly selected, called Random. Note that the
#Segments, worst and random approaches do not use any
learning component and are heuristic-free, since they don’t
make use of ranking information. What is called Heuristic
in Fig. 2 refers to a heuristic ranking of potential mappings.
From all query segments and every potential combination of
mappings, a set of query graphs is built which is then ranked
based on string similarity and length of paths in each graph.
A top-k threshold algorithm is used to terminate graph ex-
ploration if the algorithm cannot find higher-scored graphs
(see (Tran et al. 2009) for details).

Our DDLearn approach was able to learn an optimal pol-
icy for all of the iQuestions and required on average 25
episodes to find the optimal policy. The optimal policy found
by DDLearn has an average of 4.5 steps. Fig. 2 summarizes
the results by showing the number of steps averaged over
all individual iQuestions together with the variance. Please
note that DDLearn performs better than #Segments because
it learns which qss cannot be disambiguated (if the correct
mapping is not provided by the keyword matching compo-
nent for some subset of the query segments) and thus does
not ask for this qss. In contrast, #Segments asks for every qs
exactly once. Also note that Heuristic shows better perfor-
mance than Random but with a relatively large variance.
Disambiguating Series of Queries In a preliminary ex-
periment, we investigate how our approach compares to ac-
tive learning (see Sec. 1). A greedy selection strategy se-
lects the next dQuestion to be asked according to a heuris-
tic (see above). Since active learners do also “learn” from
experience by remembering all correct mappings for each

29



Figure 2: Summary of results for individual query disam-
biguation

iQuestion, they would also show an optimal disambiguation
when the same iQuestion is presented twice. However, ac-
tive learning methods do not explore different policies and
do not consider future rewards. In contrast, our approach
does not rely on a deterministic greedy strategy based on
a fixed heuristic ranking, but can learn an abstract disam-
biguation strategy that generalizes beyond single iQuestions.
Thus, DDLearn can improve with every iQuestion, beyond
the individual answer of this particular iQuestion.

As reported in Table 3, DDLearn needs a training phase
to learn the optimal sequence. We trained DDLearn on a
sequence of three iQuestions, namely: Give me all songs
by Petula Clark., Since when does Fugazi exist?, How
many artists are called John Willams?. This setup is called
DDLearn heuristic-free series and its performance is tested
on the remaining unseen 83 iQuestions.

The performance is compared to active learning in order
to assess whether the series setup requires less dQuestions
in the first episode of an unseen iQuestion. For about half of
the test-iQuestions, DDLearn required fewer dQuestions for
disambiguation than active learning. For 28 (34%) of iQues-
tions, DDLearn heuristic-free series was able to beat active
learning on average by two dQuestions. Please note that
this obviously does not apply to any combination of train-
and test-iQuestions, specifically for the QALD iQuestions
which are very heterogeneous. Still, for this small number
of question it is a convincing proof of concept, although of
course more experiments will be required to investigate this
further.

Summing up, we presented the first reinforcement learn-
ing based disambiguation dialogue learner (DDLearn) that is
evaluated on a reasonably sized real-world linked data set.
Although it learns perfect disambiguation policies and ap-
pears to have an advantage over active learning techniques
in our preliminary experiments, the question remains how
such an approach is applied in broader domains with “real”
human users. In this respect, we are mainly restricted by
the availability of suitable training data, but it is likely that
more sophisticated generalization techniques are needed to
deploy this in a large real-world system with a large num-
ber of user interactions. One idea to generate such training
data would be to exploit implicit user feedback as it is gen-
erated by user interactions with structured content as well as
expressive natural language content like user ratings, com-
ments and discussions. Besides the data, the conversational
repertoire needs to be extended e.g., to also disambiguate the
query type or to cover even more general purpose commu-

nications beyond question answering. This would also re-
duce the dependency on the pre- and post-processing com-
ponents. Eventually, this might allow to train a flexible and
adaptive conversational agent for any purpose.

References
Cuayahuitl, H. 2009. Hierarchical Reinforcement Learning
for Spoken Dialogue Systems. Ph.D. Dissertation, University
of Edinburgh.
Damljanovic, D.; Agatonovic, M.; and Cunningham, H.
2012. Freya: An interactive way of querying linked data
using natural language. In ESWC 2011 Workshops.
Driessens, K. 2004. Relational reinforcement learning.
Dzeroski, S.; Raedt, L. D.; and Driessens, K. 2001. Rela-
tional reinforcement learning. Machine Learning 43(1/2):7–
52.
Ghavamzadeh, M., and Mahadevan, S. 2004. Learning
to communicate and act using hierarchical reinforcement
learning. In Procs. AAMAS’04.
Lehmann, J., and Bühmann, L. 2011. Autosparql: Let users
query your knowledge base. In The Semantic Web: Research
and Applications.
Levin, E., and Pieraccini, R. 1997. A stochastic model of
computer-human interaction for learning dialog strategies.
1883–1886.
Lison, P. 2013. Model-based bayesian reinforcement learn-
ing for dialogue management. In Procs. of the 14th Annual
Conference of the International Speech Communication As-
sociation (Interspeech 2013). (accepted).
Nickles, M., and Rettinger, A. 2013. Interactive rela-
tional reinforcement learning of concept semantics. Ma-
chine Learning 1–36.
Nickles, M. 2012. A system for the use of answer set pro-
gramming in reinforcement learning. In Logics in Artificial
Intelligence, volume 7519 of LNCS. Springer.
Ponsen, M.; Croonenborghs, T.; Tuyls, K.; Ramon, J.; and
Driessens, K. 2009. Learning with whom to communi-
cate using relational reinforcement learning. In Procs. AA-
MAS’09.
Rieser, V., and Lemon, O. 2011. Reinforcement learning for
adaptive dialogue systems. Springer.
Tran, T.; Wang, H.; Rudolph, S.; and Cimiano, P. 2009.
Top-k exploration of query candidates for efficient keyword
search on graph-shaped (rdf) data. In Procs. of the 2009
IEEE International Conference on Data Engineering, 405–
416.
van Otterlo, M. 2005. A survey of reinforcement learning in
relational domains. Technical report.

30




