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Abstract

Reinforcement learning is a general formalism for sequential
decision-making, with recent algorithm development focus-
ing on function approximation to handle large state spaces
and high-dimensional, high-velocity (sensor) data. The suc-
cess of function approximators, however, hinges on the qual-
ity of the data representation. In this work, we explore rep-
resentation learning within least-squares temporal difference
learning (LSTD), with a focus on making the assumptions on
the representation explicit and making the learning problem
amenable to principled optimization techniques. We reformu-
late LSTD as a least-squares loss plus concave regularizer,
facilitating the addition of a regularized matrix factorization
objective to specify the desired class of representations. The
resulting joint optimization over the representation and value
function parameters enables us to take advantages of recent
advances in unsupervised learning and presents a general yet
simple formalism for learning representations in reinforce-
ment learning.

Introduction
For tasks with large state or action spaces, where tabular
representations are not feasible, reinforcement learning al-
gorithms typically rely on function approximation. Whether
they are learning the value function, policy or models, the
success of function approximation techniques hinges on the
quality of the representation. Typically, representations are
hand-crafted, with some common representations including
tile-coding, radial basis functions, polynomial basis func-
tions and Fourier basis functions (Sutton 1996; Konidaris,
Osentoski, and Thomas 2011). Automating feature discov-
ery, however, alleviates this burden and has the potential to
significantly improve learning.

Representation learning techniques in reinforcement
learning first define a representation set (implicitly or ex-
plicitly) and then optimize an objective or use heuristics to
select a “good” representation from that set. For example,
for feature selection, the set of representations is all possible
subsets of the given features. There are numerous methods
to find a representation from this set, such as `1 regularized
least-squares temporal difference learning (LSTD) (Kolter
and Ng 2009), sparse LSTD using LASSO (Loth, Davy,
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and Preux 2007), feature selection based on the Bellman er-
ror (Parr et al. 2008) and online feature selection for model-
based reinforcement learning (Nguyen et al. 2013). Another
possible set of features is a subspace of the original feature
space. One heuristic approach to find a representation in this
set is to use random projections (Ghavamzadeh et al. 2010;
Fard et al. 2013); another is an optimization approach that
uses `2 regularized LSTD (Farahmand, Ghavamzadeh, and
Szepesvári 2008). Another approach is to optimize param-
eters of the commonly used basis functions and tile cod-
ing representations in reinforcement learning. Again, this
involves heuristic approaches, such as adaptive tile cod-
ing (Whiteson, Taylor, and Stone 2007), as well as explicit
objectives, such as maximizing likelihood of parameters for
basis functions (Menache, Mannor, and Shimkin 2005).

The choice of set strongly influences the ability to op-
timally select the representation. Though some sets may
be more powerful, such as neural network representations,
the optimization can become more difficult. Heuristic ap-
proaches to find a representation in this set can be sim-
ple, such as random representations (Sutton and Whitehead
1993) and linear threshold unit search (Mahmood and Sutton
2013); others are computationally intensive optimizations of
layered objectives, such as neural-Q iteration (Riedmiller
2005), evolutionary algorithms like NEAT (Stanley and Mi-
ikkulainen 2002) and deep reinforcement learning (Mnih et
al. 2013). Similarly, the set of instance-based representa-
tions can be very powerful, since kernel representations are
non-parametric and use a linear optimization to enable non-
linear learning with respect to the original feature space.
These approaches can have issues with storage of sam-
ples/states or choosing representative instances, such as in
locally weighted regression (Atkeson and Morimoto 2003),
sparse distributed memories (Ratitch and Precup 2004) and
proto-value functions (Mahadevan and Maggioni 2007).

Regardless of the approach, it is key to (1) make the rep-
resentation learning set explicit, so the algorithm target is
clear, (2) connect the representation selection to learning
performance and (3) facilitate selection of the representa-
tion from that set. We propose to look at representation
learning as a matrix factorization: factorizing the features
in a basis dictionary and new representation. Matrix fac-
torization has been an important advance in unsupervised
learning, because it unifies many unsupervised learning al-
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gorithms into one framework (Xu, White, and Schuurmans
2009; White and Schuurmans 2012; De la Torre 2012), in-
cluding (exponential family) principal components analy-
sis, k-means clustering, mixture model clustering, canon-
ical correlation analysis and normalized graph cut. More-
over, there have been important advances in convex formu-
lations for a restricted class of matrix factorization prob-
lems (Bach, Mairal, and Ponce 2008; Zhang et al. 2011;
White et al. 2012), facilitating optimization for at least two
important classes of representation learning: sparse coding
and subspace learning.

In this work, we show how to extend LSTD to include
an unsupervised, matrix factorization component that ports
these advances to reinforcement learning. Regularized ma-
trix factorization clarifies the assumptions on the data distri-
bution (from the chosen loss) and structure of the representa-
tion (from the chosen regularizer). In addition to making the
representation set explicit and facilitating optimization, our
proposed joint objective over the representation and value
function function parameters connects the representation se-
lection to prediction performance.

Our main contributions are

1. a novel formulation of LSTD as the combination of a
least-squares loss and concave regularizer on the value
function parameters (giving a new loss called the CRTD);

2. an explicit joint optimization over the value function pa-
rameters and the representation that is amenable to known
optimization techniques.

The resulting approach removes the need for matrix inver-
sion that can be a problem in LSTD, since the algorithm is
a stochastic minimization of an objective function. More-
over, the representation learning component remains gen-
eral, since matrix factorization encompasses many options
for the representation depending on the chosen constraints.

Background

In reinforcement learning, an agent interacts with its en-
vironment, receiving observations and selecting actions to
maximize a scalar reward signal provided by the environ-
ment. This interaction is usually modeled by a Markov de-
cision process (MDP). An MDP consists of (S,A, P,R)
where S is the set of states;A is a finite set of actions; P , the
transition function, which describes the probability of reach-
ing a state s′ from a given state and action (s, a); and finally
the reward function R(s′), which returns a scalar value for
transitioning from state-action (s, a) to state s′. The state of
the environment is said to be Markov if Pr(st+1|st, at) =
Pr(st+1|st, at, . . . , s0, a0).

Learning a Value Function

One important goal in reinforcement learning is to learn the
value function for a policy. A value function approximates
the expected total discounted future reward for following

policy π : S ×A→ [0, 1] from a given state st:
V π(st) =

E

[ ∞∑
k=0

γkR(st+k)
∣∣∣ si ∼ P (·|si−1, ai−1), ai ∼ π(·|si)

]
This value function satisfies the Bellman equation

V π(s) = R(s) + γ
∑
a

π(a|s)
∑
s′

P (s′|s, a)V π(s′) (1)

For a finite number of states and actions, this formula can be
re-expressed in terms of matrices and vectors for each state

V π = R+ γPπV π

where V π, R ∈ Rn are vectors of state values and rewards,
and Pπ ∈ Rn×n is the probability of transitioning between
two states under policy π

Pπi,j =
∑
a

π(a|s = i)P (s′ = j|s = i, a)

Given the reward function and transition probabilities, the
solution can be analytically obtained: V π = (I−γPπ)−1R.

In practice, however, we likely have a prohibitively large
state-action space. The typical strategy in this setting is to
use function approximation to learn V π(s) from a trajec-
tory of samples: a sequence of states, actions, and rewards
s0, a0, r0, s1, a1, r1, s2, r2, a2 . . ., where s0 is drawn from
the start-state distribution, st+1 ∼ P (·|st, at) and at ∼
π(·|st). Commonly, a linear function is assumed:

V̂ π(s) = φT (s)w

for w ∈ Rk a parameter vector and φ : S → Rk a feature
function describing states. With this approximation, how-
ever, typically we can no longer satisfy the Bellman equation
in (1), since solving for Φw = R+γPπΦw with Φ ∈ Rn×k
may not be defined if Φ is not invertible. Reinforcement
learning algorithms, such as LSTD, therefore focus on find-
ing an approximate solution to the Bellman equation, despite
this representation issue.

Least-Squares Temporal Difference Learning
LSTD finds the minimum of the mean-square projected
Bellman error (MSPBE) (Sutton et al. 2009):

min
w∈Rk

‖Φw −Π(R+ γPπΦw)‖2D (2)

where D ∈ [0, 1]n×n is a diagonal matrix giving the distri-
bution over states, ||z||2D = zTDz and the projection matrix
for linear value functions is Π = Φ(ΦTDΦ)−1ΦTD.

For simplicity, we first present LSTD and our representa-
tion learning extension assuming that we have the transition
model and reward function. We describe how to move to a
trajectory of samples in the last section.

The closed-form solution for this loss is the solution to the
following linear system (Bradtke and Barto 1996):

w =
(
ΦTDΦ

)−1
ΦTD (R+ γΦ′w)

=⇒ ΦTD (Φ− γPπΦ)︸ ︷︷ ︸
A

w = ΦTDR︸ ︷︷ ︸
b

Given samples, LSTD forms approximations to the matri-
ces A and b and solves the system w = A−1b.
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Factorized representation learning for LSTD
We now show that LSTD corresponds to the minimization
of a squared loss plus a concave regularizer.

min
w
||Φw −R||2D − 2γwTΦTDPπΦw

∇w = (ΦTDΦ)w − ΦTDR− γΦTDPπΦw = 0

=⇒ (ΦTDΦ− γΦTDPπΦ)w = ΦTDR

=⇒ ΦTD(Φ− γPπΦ)w = ΦTDR (LSTD)

We call ||Φw − R||2D − 2γwTΦTDPπΦw the Concave-
Regularized-TD (CRTD) loss and distinguish it from the
MSPBE because they are not equivalent, even though the
minimization of the two losses results in the same solu-
tion (see the Appendix for the difference). Unfortunately, the
minimization over w for this loss is not a convex optimiza-
tion, since f(w) = wTΦTDPπΦw is convex (making the
negative of the function concave)1.

This form does, however, facilitate specifying represen-
tation learning in terms of regularization strategies used in
unsupervised learning. In particular, we can add a regular-
ized matrix factorization loss to find a representation:

min
Φ∈Rn×k,B∈B

L(ΦB,X) + α||Φ||

where L is any convex loss, X ∈ Rn×d is the default (ex-
panded) feature set,B ∈ B ⊂ Rk×d is a learned basis dictio-
nary and α is the weight on the regularizer. For example, X
could be all cross products of the observations, and Φ could
be a subset of these expanded features. The structure of the
learned representation Φ, depends on the chosen regularizer,
|| · ||. For example, ||Φ||1,1 imposes sparsity and ||Φ||1,2 im-
poses a subspace structure to reduce the dimension of the
representation. Both of these forms can be useful for deal-
ing with high-dimensional , high-volume data.

We obtain the following Factorized-Representation
CRTD (FR-CRTD) optimization, where we overload f , for
convenience:

min
w,Φ,B∈B

||Φw −R||2D − γf(w,Φ) + L(ΦB,X) + α||Φ||

This new joint optimization combines a supervised and un-
supervised loss, directing representation learning based both
on the desired structure and on prediction performance. For
a fixed representation, Φ, the optimization reduces to LSTD.

Improved optimization for FR-CRTD
Let U = [w B] ∈ U , where U is a constraint set on U . We
use a change of variables, Z1 = Φw, Z2 = ΦB to obtain a
simpler optimization.

min
U=[w B]∈U,Φ

||Φw −R||2D − γwTΦTDPπΦw

+L(ΦB,X) + α||Φ||
(3)

≡ min
Z=[Z1 Z2]

||Z1 −R||2D − γZT1 DPπZ1 + L(Z2, X) + α|||Z|||∗

1f(w) is convex since it is the composition of a linear function,
Φw, and a convex function, the `2 norm.

where

|||Z|||∗ = min
U∈U

min
Φ:ΦU=Z

||Φ||

is the induced regularizer given the regularizer on Φ. We
can simplify further using Y = [R X] and e1 = [1 0 . . . 0],
giving

min
Z

L(Z, Y )− γeT1 ZTDPπZe1 + α|||Z|||∗ (4)

where L now contains both the loss between ΦB and X and
the loss between Φw and R.

Recent advances in (semi-supervised) matrix factoriza-
tion (Bach, Mairal, and Ponce 2008; Zhang et al. 2011;
White et al. 2012) indicate that the induced regularizer ||| · |||
is convex as long as the regularizer on Φ sums over all latent
features, i.e.

∑k
i=1 ||Φ:,i|| where 1 ≤ k ≤ ∞ and for a re-

stricted class of constraint sets, U . See the Appendix for a list
of efficiently computable convex induced regularizers on Z.
Though this list is currently quite restricted, FR-CRTD does
not rely on the above set and can advance as more efficiently
computable induced regularizers are discovered. The ability
to benefit from advances in the large field of unsupervised
learning is a strong benefit of FR-CRTD.

The resulting optimization over Z = [Z1 Z2] is the addi-
tion of a convex problem with a concave regularizer. Though
this optimization seems difficult, minimization of concave-
convex problems has been studied, which we leverage in the
next section to find an efficient optimization approach.

Once we obtain Z, we can use a boosting procedure to re-
cover the parameters U and Φ (Zhang, Yu, and Schuurmans
2012). For certain settings, it is more simple; for example,
for U = {U : ||Ui,:||2 ≤ 1} and ||Φ||1,2 the recovery is sim-
ply a singular value decomposition: for Z = QΣMT with
Q and M orthonormal and Σ a diagonal matrix of singular
values, U = MT and Φ = QΣ. Since the recovery proce-
dures rely only on the regularizer on Φ, they apply to this
setting despite the addition of the concave component.

Minimizing the concave-convex FR-CRTD loss
Once we have this concave-convex form, there are several
optimization strategies that we can explore. First, we can
use the concave-convex procedure (CCCP) (Yuille and Ran-
garajan 2002). CCCP linearizes the concave component on
each iteration, to make the problem convex (Sriperumbudur
and Lanckriet 2009). In this setting, the CCCP algorithm that
minimizes (4) would be:

Z(l+1) ∈ arg minZL(Z, Y )− 1TZ ◦ ∇R(Z(l))1

where R(Z) = γeT1 Z
TDPπZe1, ◦ is the component-wise

product and the inner product with 1 on either sides sums all
the entries. Because energy functions can be decomposed
into a convex plus concave function (Yuille and Rangarajan
2002), there may also be more specific algorithms available
to more efficiently solve our concave-convex problem.

Another potential option is to reformulate the objective
to enable use of global solution methods that minimize a
concave objective with convex constraints (Hoffman 1981).
This would require formulating the equivalent constrained
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optimization, which moves the convex component of the
loss to a constraint: minZ:L(Z,Y )+α|||Z|||∗−c≤0−R(Z). The
effectiveness of this optimization approach is left for future
research, but could be a promising avenue for convex, gen-
eralized representation learning for reinforcement learning.

Learning from samples
To practically deal with real-world streams of data and large
state-spaces, we cannot assume we have explicit knowledge
of the (large) transition model Pπ and R. Though these
could be learned, it is often desirable to be able to solve the
parameters without needing to find these models.

To avoid using the models, we define matrices approxi-
mated from sampled quartets (si, ai, ri, s

′
i)

Φ̄ ≡


φ(s1)T

φ(s2)T

...
φ(st)

T

 , Φ̄′ ≡

φ(s′1)T

φ(s′2)T

...
φ(s′t)

T

 , R̄ ≡

r1

r2

...
rt


For LSTD, we can express the closed form solution in

terms of these approximate matrices:

w =
(
Φ̄T Φ̄

)−1
Φ̄T
(
R̄+ γΦ̄′w

)
Importantly, it has been shown that, as t → ∞, the
fixed point for this approximate problem converges to the
fixed point of the original problem (2), with probability
one (Bradtke and Barto 1996).

Moving to samples is more complicated for FR-CRTD,
since we cannot use the matrix of next features, Φ′. To avoid
learning Φ′, we need P̂π such that P̂πΦ̂ = Φ̂′. Fortunately,
this linear transformation is quite simple in practice, since
Φ̂′ is Φ̂ shifted by one index. Of course, we do not have
access to the last vector in Φ̂′, but we can simply drop that
last sample as a reasonable approximation to the loss.

Define

P̂π =



0 1 0 . . . 0
0 0 1 . . . 0

...
0 . . . 0 1 0
0 . . . 0 0 1
0 . . . 0 0 0


The resulting model-free FR-CRTD optimization for Ŷ =

[R̂ X̂] can now be stated as:

min
Z
L(Z, Ŷ )− γeT1 ZT P̂πZe1 + α|||Z|||∗

The samples, unfortunately, will not always be perfectly
aligned or in order, such as is the case when multiple
episodes or trajectories are obtained. Again, we can ignore
constraints across boundaries, but in general, the problem of
estimating P̂π is an important avenue for future work.

Discussion
Several interesting questions arise from viewing LSTD and
representation learning under the FR-CRTD optimization.

The first natural question is about the generality of this
approach. Because the set of regularizers on Φ to obtain a
convex formulation is limited, this suggests few structures
can be chosen. If we do not require convexity, however, we
can use a wider class of regularizers in Equation (3). For
example, if we wanted to learn a representation similar to tile
coding, we could add the constraint that Φ ∈ [0, 1] and use
a large regularizer weight on a sparsity regularizer to push
most entries to zero. This optimization is no longer convex,
but we can still optimize the non-convex objective over the
variables w, B and Φ.

In addition, we can notice an interesting generalization
of LSTD by generalizing the least-squares loss on the re-
ward prediction to any convex loss in Equation (4). If we
choose a Bregman divergence, for example, this generaliza-
tion suggests certain distributional assumptions on the re-
ward (White and Schuurmans 2012). The relationship to the
original fixed-point problem, however, becomes unclear and
requires further exploration.

Second, it is important to notice that FR-CRTD main-
tains the fixed-point interpretation of LSTD. A complaint
about the sparse LASSO approach to LSTD (Loth, Davy,
and Preux 2007) was that the fixed-point interpretation was
lost after adding a sparse regularizer. In this situation, how-
ever, if we compute and fix the representation in the inner
optimization, we are simply doing an LSTD outer optimiza-
tion.

Third, we need to consider computational complexity,
which is typically a large consideration for high-velocity,
high-dimensional data that occurs in realistic sequential
decision-making tasks. The types of representations the for-
malism specifies, such as sparse or subspace representations,
is key for high-dimensional data. The current algorithms for
this objective, however, have poor computational complex-
ity. One strategy is to develop an online approach for opti-
mizing FR-CRTD, which has been possible for several regu-
larized matrix factorization problems (Warmuth and Kuzmin
2008; Mairal et al. 2010). Generally, however, there has been
little development of online algorithms for regularized ma-
trix factorization; this is likely the most crucial research di-
rection for making FR-CRTD a practical option.

Finally, viewing LSTD as a least-squares loss plus con-
cave regularizer provides a new intuition. Maximizing the
inner product corresponds to finding vectors pointing in the
same direction. LSTD, therefore, is balancing minimizing
the angle between the current and next state values and pre-
dicting the reward for the current state.

Overall, formalizing representation learning as a matrix
factorization facilitates extending recent and upcoming ad-
vances in unsupervised learning to the reinforcement learn-
ing setting. The generality of the approach and easy to un-
derstand optimization make it a promising direction for rep-
resentation learning in reinforcement learning.
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Appendix
Relationships between the CRTD and the MSPBE
Even though the minimization of the FR-CRTD is equivalent to the minimization of the MSPBE, they are themselves not
equivalent. The difference becomes clear when we explicitly write out the MSPBE loss. Recall that the projection operator in the
MSPBE is Π = Φ(ΦTDΦ)−1ΦTD, the Bellman operator is TV = (R+γPV ) and theMSPBE(V ) = ||V −ΠTV ||2D (Sutton
et al. 2009). We will use the following simplifications

DΦ(ΦTDΦ)−1ΦTD = D since ΦT (DΦ(ΦTDΦ)−1ΦTD) = ΦTD (5)

ΦTDΠ = ΦTD since ΦTD(Φ(ΦTDΦ)−1ΦTD) = ΦTD (6)

ΠTDΦ = DΦ since ΠTDΦ = (ΦTDΠ)T = (ΦTD)T = DΦ (7)

ΠTDΠ = D since ΠT = DΦ(ΦTDΦ)−1ΦT giving (8)

ΠTDΠ = DΦ(ΦTDΦ)−1ΦTDΠ = DΦ(ΦTDΦ)−1ΦTD = D

wTΦTD(TΦw) = (TΦw)TDΦw since this in an inner product (9)

Now we can write out the MSPBE with some simplifications

MSPBE(w) = ||Φw −Π(TΦw)||2D
= (wTΦT − (TΦw)TΠT )D(Φw −ΠTΦw)

= wTΦTDΦw −wT ΦTDΠ︸ ︷︷ ︸
ΦTD

TΦw − (TΦw)T ΠTDΦ︸ ︷︷ ︸
DΦ

w + (TΦw)T ΠTDΠ︸ ︷︷ ︸
D

TΦw

= wTΦTDΦw − 2wTΦTD(R+ γPΦw) + (RT + γwTΦTPT )D(R+ γPΦw)

= wTΦTDΦw − 2wTΦTDR− 2γwTΦTDPΦw +RTDR

+ γRTDPΦw + γwTΦTPTDR+ γ2wTΦTPTDPΦw

Notice that the first part of the last equality is actually the CRTD! So, we can write

MSPBE(w) = CRTD(w) + 2γwTΦTPTDR+ γ2wTΦTPTDPΦw

Since the minimization of CRTD leads to the same solution as minimizing the MSPBE (as their minimum both corresponds
to the LSTD solution), this last factor should not influence the chosen w. Interestingly, these last components are on the next
state value (i.e. PΦw), so intuitively, it is possible that they may not be needed for choosing the best params for this state value.

List of known convex induced regularizers
The introduced matrix factorization approach for representation learning formalized the approach using a constraint set on B
and a regularizer on Φ. Interestingly, it can equivalently be formulated without constraints and instead regularizers on both
parameters (Bach, Mairal, and Ponce 2008).

Regardless of the choice, the list of tractable induced norms remains the same. The following constitute some of the known
(and used) regularizer and constraint set options that result in an efficient, closed-form induced regularizer on Z:

1. The regularizer ||Φ||1,1 is chosen for sparsity. For U = {U : ||Ui,:||q ≤ 1}, the induced norm is ||ZT ||q,1. For U = {[w B] :

||w||q1 ≤ 1, ||Bi,:||q2 ≤ β}, the induced norm on Z is
∑
j max

(
||ZT1 ||1,q1 , 1

β ||Z
T
2 ||1,q2

)
. Previously, these induced norms

lead to trivial vector quantization solutions (Zhang et al. 2011); with the concave regularizer, this may no longer be the case.
2. The regularizer ||Φ||1,2 is chosen for subspace learning. For U = {U : ||Ui,:||2 ≤ 1}, the induced norm is ||Z||tr. For
U = {[w B] : ||w||2 ≤ 1, ||Bi,:||2 ≤ β}, the induced norm on Z is max0≤η≤1 ||Z||tr.

3. The regularizer ||Φ||1,p can be useful to push down large values. The `∞ norm is used to bound maximum values, and as p
gets larger, `p approaches the `∞ norm. For 1 < p < 2, we could also imagine some blended behaviour between p = 1 and
p = 2. In general, however, p 6= 1, 2,∞ is not commonly used. If it is chosen, then for U = {U : ||Ui,:||1 ≤ 1}, the induced
norm is ||Z||p,1
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