Rethinking the Sense-Plan-Act Abstraction: A Model
Attention and Selection Framework for Task-Relevant Estimation

Lawson L. S. Wong
Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology
32 Vassar St., 32-G418; Cambridge, MA 02139, USA
lsw@csail.mit.edu

Introduction

Robots performing service tasks such as cooking and cleaning in human-centric environments require knowledge of certain environmental states in order to complete tasks successfully. For example, storage locations of specific ingredients and utensils are needed for cooking; dirtiness of particular regions of space may be required for efficient cleaning. Typically these task-critical states cannot be directly observed, and must be estimated by using (noisy) perception and prior domain knowledge. Bayesian filtering solves such estimation problems for a wide variety of state characteristics; given a particular set of variables (uncertain states) to be estimated, Bayesian filtering techniques most likely already exist in that particular regime. While much effort has gone into developing various estimators, less attention has been placed on why the particular estimation problem arises.

In this work, I argue that state estimation should no longer be treated as a black box. Estimating large sets of variables is computationally costly; just because a technique exists to estimate the values of certain variables does not justify its application. For robots whose ultimate mission is to complete tasks, only variables that are relevant to successful completion should be estimated. Returning to cooking and cleaning, while cooking, a robot should not prioritize estimating cleanliness of its surroundings. Similarly, while cleaning a specific room, not only should a robot not be concerned with estimating variables used in the cooking task, it should not even estimate cleanliness of other rooms.

Of course, the selection of relevant variables is not so clear-cut in practice. Lack of cleanliness in the kitchen environment may lead to food contamination during cooking. Yet, as argued earlier, we want to avoid estimating all uncertain variables at once. Instead, I propose to initially only track a minimal set of directly-relevant variables, and gradually increase the sophistication of models on-demand, in a local fashion. This estimator refinement process is triggered by violations in expectations of task success. With respect to state estimation, if observed empirical quantities differ significantly from the current probabilistic model, then this indicates the model must be improved. In the remainder, I demonstrate this through a proof-of-concept case study.

A Tale of Two Estimators

Previously, I have developed two different estimators for the world modeling problem, the estimation of objects’ states within the world. Abstractly, on the level of object attributes, a system exists that takes black-box attribute detections, such as object type and pose, and estimates the objects that are present (including their number, which is unknown) and their attribute values (Wong, Kaelbling, and Lozano-Pérez 2013). Although this gives an elegant ‘semantic’ view of objects as clusters in joint-attribute space, it ignores crucial information related to the geometric realization of objects, such as their physical extent in space. In particular, low-level observations on whether specific ‘voxels’ of space are occupied/free cannot be easily incorporated on the object-attribute level. Such observations are traditionally tracked using occupancy grids (Moravec and Elfes 1985), and we developed a second estimator that attempts to fuse object-attribute estimates with geometric occupancy grids (Wong, Kaelbling, and Lozano-Pérez 2014).

The latter estimator can be viewed as a refinement of the former, because it fuses extra observations with the former model. The drawback of doing so is computational complexity: because the method reasons over grids of space, its representation scales with the volume of space covered, which, under discretization, typically results in many more grid cells compared to the number of objects seen. Moreover, the number of observations that need to be handled differs greatly as well; for example, each image of a scene with several objects on a table will only result in several attribute detections, but each image pixel generates an occupancy observation (or more). Ideally, we would track only the coarse object-attribute estimates (and only objects with relevant attribute values), and if the estimate is not sufficiently accurate (e.g., too much uncertainty), nearby occupancy information is incorporated via the finer estimator.

A Proposed Framework: Attention-Mismatch-Refinement-Learning

The above behavior emerges from a attention-mismatch-refinement-learning framework, wherein a small subset of task-relevant variables are estimated, and only upon differing from expected task outcomes (e.g., success) is the estimator incrementally refined by expanding the model class.
• **Attention: Task relevance.**
 Without constraints, the model can always be refined until the level of raw data (model-free). For many tasks, however, only a small subset of variables benefit the task with additional accuracy. Intelligent systems need a way to ‘focus’ on relevant variables for given tasks.

• **Mismatch: Fault detection.**
 If deviations between expected and observed values exceed thresholds, *informed by the task*, the current model is inadequate, and must be refined. Possible techniques for determining the task-informed thresholds for triggering refinement include execution monitoring (Pettersson 2005), Bayesian optimization (Snoek, Larochelle, and Adams 2012), and metareasoning (Cox and Raja 2011).

• **Refinement: Model class expansion.**
 Once a relevant variable’s model is identified as inadequate, a larger model class should be explored, *for a small subset of related variables only*. In principle, any hierarchy of estimators and models should work; possible methods include using grammars that generate increasingly-complex models (Grosse, Salakhutdinov, and Tenenbaum 2012), and a recent approach that uses a hierarchical decomposition of variables to produce a partition of variables with varying fineness (Steinhardt and Liang 2014).

• **Learning: Estimating parameters.**
 Expanded model classes will have additional parameters to be learned. Non-parametric ‘models’ (empirical estimates) can be used as a final refinement.

Case Study: 1-D Colored Intervals Domain
As a proof-of-concept, consider the domain and task depicted in Figure 1(a). The task is to locate (to some specified uncertainty tolerance) red objects on the real line, given a list of ‘images’ as input, each of which contains a small set of noisy attribute (location, length, and color) detections and a larger set of occupancy observations. The naïve solution is to run all estimators on all the observations, as depicted in Figure 1(c). Since the task is to locate only red objects, this approach, while sound, is inefficient, especially if the domain is significantly larger and contains few red objects.

Instead, consider the estimator in Figure 1(b). Only objects whose color attribute is red with high probability are given *attention;* the rest is discarded/ignored. This is conceivably the minimal estimator for the task. However, these observations are very noisy (e.g., the output of an entire object detection pipeline) and lead to large variance in the posterior attribute distribution, above the required tolerance.

The performance of this estimator is therefore *mismatched* for the task, and therefore estimator *refinement* is necessary.

The refinement process involves adding new variables to the estimator and estimating their values based on a buffer of lazily-stored recent observation values. Variables are ranked and added (up to a threshold) if they provide sufficient improvement in expected cost $f(\cdot)$ (in this case, $f = \text{variance}$):

$$f(p_X|Y) \triangleq E_{y \sim p_Y} \left[f(p_X) - f(p_X|Y = y) \right]$$

$$p_Y = \int p_Y|X=x p_X(x) \, dx$$

This leads to the addition of two sets of variables. The first set, for the left red object, is a subset of occupancy grid cells; their primary purpose is to distinguish the boundary of the object more finely. The second set, for the right red object, is more interesting: not only does it include associated occupancy grid cells, it also includes the attribute-level variables of the nearby blue object. This latter variable is helpful because of the domain constraint that objects cannot overlap each other, which introduces correlations between the states of the two objects (Wong, Kaelbling, and Lozano-Pérez 2012). Incorporating these new variables in the refined estimator sufficiently reduces the variance for successful task completion.

References