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Abstract

This paper introduces a work in progress method for
automating camera control in games using gaze track-
ing. Building on prior work by Burelli et al, we provide
characterization of features for the gaze tracker and test
a gaze-assisted camera control module in a first-person
shooter game. We report results from a pilot study on
the viability of gaze-assisted camera control. We also
discuss challenges and viability of gaze-assisted cam-
era controller for games and interactive applications. Fi-
nally, we present ongoing and future work in this area.

Introduction
In a 3D world the virtual camera serves as the window
through which the user visually interacts with the digital en-
vironment, and as such has a very large influence on the
user’s experience with the environment. Poorly designed
camera control schemes, even those that allow the user lots
of freedom to move the camera however they choose, can
have wholly detrimental effects on even the best designed
game experiences. Another negative aspect of explicitly user
controlled camera systems is that the burden of moving the
camera is placed entirely on the user and is something that
requires constant input and attention at all times during game
play.

An automated camera control system frees the player
form the burden of having to control the camera during
gameplay and allows them to focus completely on their ac-
tions within the game. In this paper we summarize our in
progress work on the development of a novel system for
gaze based camera control. We introduce several software
applications built for the project and a provide details on a
preliminary user study conducted for analysis of the system.
We then outline our proposed method and discuss possibili-
ties for work beyond the initial goals of the system.

Related Work
Much work has been done in automating control of the vir-
tual camera, using different methods and for different pur-
poses. A lot of work in automating virtual camera control
has been done for the purpose of creating improved dramatic
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experiences and computationally finding the optimal camera
location to fit with a specific sequence of shots for a desired
narrative effect. Many of these systems are constraint based
and compute the best location for the camera by optimiz-
ing over the 3D environment for locations that best satisfy
cinematic or dramatical constraints.

Burelli and Jhala utilized dynamic artificial potential
fields for automating the camera’s viewpoint in a 3D envi-
ronment, optimizing the camera’s ideal location and view
parameters over constraints of visibility, projection size, and
view angle (Burelli and Jhala 2009).

Yannakakis, et al. performed work in the area of player
modeling with heart monitor biological feedback as a means
for generating features for modeling which the affective
states that a player experiences based on changing cam-
era viewpoints in a game (Yannakakis, Martı́nez, and Jhala
2010). Their work utilized a neuro-evolutionary preference
learning model with feature selection over heart rate and
skin conductance bio-feedback data generated features and
camera parameter information for the purpose of predict-
ing a users emotional state while playing a game. The paper
yielded positive results in that the neuro-evolutionary prefer-
ence learning model was able to accurately predict the users
emotional state

Work that is most closely related to the work being pro-
posed in this paper was done by Picardi, et al (Picardi, Bu-
relli, and Yannakakis 2011) and Burelli (Burelli 2013). In
their paper the authors introduced a method for modeling the
player’s play styles and camera control preferences in a 3D
platformer environment. The authors were able to conclude,
using k-means clustering methods, that there were several
distinct player and camera behaviors identified, based on
the the gameplay area (fight, jump, collection). In (Burelli
2013), the author introduces a system for automating con-
trol of the camera in a 3D platforming game, with a general
implementation that is quite similar to the work proposed
in this paper, but differs in that is designed for a third per-
son camera game environment and assumes that particular
areas of the game will have distinct qualities for play styles,
whereas this work hopes to identify camera behavior purely
using models of visual attention, gaze, and gameplay in a
first person shooter environment.
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Characterizing Accuracy of the Gaze Tracker
In order to effectively utilize the gaze tracker in the experi-
ments and data gathering for training the system, the accu-
racy of the gaze tracking device must first be verified. The
bounds on the accuracy of the gaze tracker are also useful for
improving the estimation of the users intended focal target
object in acquiring data for training the neural network.

3 users were asked to use two different gaze tracking
based applications, GazeCorners and GazeHunt. The pur-
pose of both of the applications is for the user to follow a
distinctive target moving around a 2D background with their
gaze for a short period of time.

The experimental setup used in this study consisted of an
Intel Core i7 laptop PC clocked at 2.8 GHz, which proved
ample to run all applications sufficiently at 30 fps. The dis-
play used in the experiments is a 17” screen position 17”
away from the user. The resolution of the monitor is 1920 x
1080, which results in a pixel density of 130 ppi. At the dis-
tance that the monitor was placed with the dimensions and
pixel density mentioned, following the assumption that hu-
man foveal vision is within 2◦ (Fairchild 2005) and that the
GazeTracker was calibrated to ≤ 0.5◦, the accuracy of gaze
data measurement is within 2.5◦ which translates to a circu-
lar region with a radius of 0.43” surrounding approximately
76 pixels. The eye tracking device used in the experiments
of this paper is an EyeTribe device which streams gaze data
(focal location, pupil dilation, fixation/saccade) to the appli-
cations at a rate of 30Hz.

For each experiment, RMS error testing was performed,
measuring the differences between the observed gaze loca-
tions and the target locations of the object in fixation in each
application. The equation defining RMS error can be seen
in Equation 1, where yt represents the target (x, y) position
and ŷt represents the observed gaze location at each time
sample.

RMSE =

√∑n
t=1(yt − ŷt)2

n
(1)

GazeCorners
The GazeCorners application asks a user to attempt to focus
on a red square that is 100 pixels on each side that remains
stationary in each of the 4 corners of the screen for 5 seconds
in each corner. A screenshot of the GazeCorners application
can be seen in Figure 1. The point of focus is the center of
the square, so the actual points that are supposed to fixated
on are (50, 50), (1870, 0), (1870, 1030), and (0, 1030). The
samples that are determined to be noise as a result of shift-
ing gaze in between corners when the square changes posi-
tion, and when the user must initially find the first corner are
not considered in determining RMS error. The application
runs for 20 seconds total and receives streaming gaze data
at 30Hz. Of the expected 600 samples, the mean number of
samples that were determined to be not noise was 530.

The results of the experiment are seen in Table 1. The
mean RMS error for the 3 users is 49.21. A mean RMS value
of 49.21 falls within the expected accuracy of the system,
since the effective area of interest was 100 pixels on each
side, or ±50 pixels from the target position.

Figure 1: A screenshot from the GazeCorners application.

User Calibration Score Overall RMSE
1 5 Stars (≤ 0.5◦) 48.40
2 5 Stars (≤ 0.5◦) 55.15
3 5 Stars (≤ 0.5◦) 44.08

Table 1: Accuracy results of GazeCorners.

GazeHunt
The GazeHunt application is similar to the GazeCorners ap-
plication in that it asks a user to fixate of an object on the
screen, but it differs in the fact that the object is constantly
moving, and there is a secondary task of pressing a button
when the target image changes color periodically. The same
3 users interacted with the GazeHunt application for a pe-
riod of 180 seconds (the expected length of time that they
will be playing the first person shooter game for data ac-
quisition). The target point is the center of the image of the
duck, whose dimensions are 122 x 90 pixels. An image from
the GazeHunt application can be seen in Figure 2 below.

Figure 2: A screenshot from the GazeHunt application.

Upon running the application with the 3 different users,
RMS errors were again calculated. The mean RMS error for
the 3 users is 64.80. A mean RMS value of 64.80 repre-
sents the sample standard deviation of the distance between
the target’s position and the user’s gaze position. The RMSE
values falls within the expected accuracy of the system, with
a small amount of discrepancy. Since the dimensions of the
target are 122 x 90, an RMSE value of 64.80 lands most of
the samples within the intended region on the x-axis, but a
little bit outside of the intended region on the y-axis. This
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User Calibration Score Overall RMSE Q1 RMSE Q2 RMSE Q4 RMSE Q4 RMSE
1 5 Stars (≤ 0.5◦) 64.95 54.57 62.07 78.57 62.37
2 5 Stars (≤ 0.5◦) 66.97 46.93 87.98 63.94 62.37
3 5 Stars (≤ 0.5◦) 62.48 69.95 69.53 54.31 54.08

Table 2: Accuracy results of GazeHunt.

can likely be explained random motion of the object of in-
terest in the y-direction, and the steady motion of the ob-
ject along the x-axis. The user’s gaze takes a small amount
of time to refocus on the new trajectory of the object when
it randomly changes direction. In addition to the error that
can be attributed to the motion of the target, there is a dis-
traction in that after the user completes the secondary task
of identifying the color change in the target, the HUD el-
ement showing the score is updated. Even though samples
that are determined to be noisy (more than 200 pixels out-
side of the target) are ignored, the motion of gaze away from
the target and back to it will result in some increased error.
The results of the experiment are shown in Table 2. In ad-
dition to the overall RMSE, the different RMS errors were
also calculated for the first, second, third, and fourth quar-
tiles of the data. Something to note about the results is that
the data does not suggest that the device becomes less cal-
ibrated over time, so purity of the data can be assumed for
longer play sessions.

User Study/Gathering Data
As a first step to the training of the learning algorithm for
controlling the camera, a preliminary user study was con-
ducted. The purpose for the user study was two-fold, to as-
sess the usability and interest in such a system, and to ac-
quire some initial gaze and gameplay based data for use in
training the learning algorithm.

Methodology
A beta-testing methodology was utilized for conducting user
tests. A playable version of the gaze controlled camera sys-
tem available for users to play, and I conducted surveys both
before and after they played two different versions of the
same game for 3 minutes each. The questions that the users
were asked upon completion of the experiment are listed in
the appendix to the paper.

One version of the game used a standard WASD and
mouse-look FPS control system, and the other was using
gaze to control the camera with WASD movement. The ini-
tial study included 8 participants with ages ranging from 25
to 28, and of the 8 users, 6 were male and 2 were female.
All of the users rated their level of expertise with the FPS
game genre at between Amateur and Expert level. The test-
ing setup is shown in Figure 3.

FPS Game
The game utilized in this study is a first person shooter game,
built in Unity, and implementing a TCP client application for
receiving gaze tracking data from the EyeTribe device. The
game’s environment is a realistic, canyonesque scene with

Figure 3: One of the users playing the FPS game.

rocky surroundings and several different rooms/areas for the
player to explore. There are several different areas where
enemies spawn, weapons are placed, and opportunities for
platforming-like behavior where the player can climb and
jump over rocks, ladders, roofs, and moving elevator plat-
forms.

Controls The game used in the experiment uses a stan-
dard FPS game control scheme, with WASD player move-
ment and camera movement using the mouse. Details of the
control scheme can be found in Table 3.

Input Action
WASD Movement
Mouse Move camera

Left click Fire weapon
Space Jump
Shift Sprint
Ctrl Crouch
E Pickup item
R Reload weapon

Table 3: Standard game controls.

For the modified version using gaze for moving the cam-
era, all of the controls remained the same, even the mouse
was given a very small amount of control over the camera
to give users the ability to aim more precisely than the gaze
tracking unit’s expected accuracy, but the great majority of
the camera’s movement was driven by the gaze. The update
function for the camera’s view vector is shown in Equation
2. Essentially the point that the user is focused on is moved
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to the center of the screen on every subsequent frame, damp-
ened to account for the speed of movement of the users fo-
cus.

camera(ρ, θ)t+1 = camera(ρ, θ)t+

(gaze(x, y)t − center(x, y)) ∗ dampening (2)

Enemies There are 2 different types of enemies in the
game and 4 different types of weapons in the game. The
enemies are zombies and alien robots. The zombies move
quickly and attack from close range while the alien robots
carry shooting weapons and attack from a distance, but move
very slowly. The enemies are shown in Figure 4.

(a) Zombie. (b) Alien robot.

Figure 4: Enemies in the FPS game.

Weapons The weapons in the game are a sword, a pistol, a
shotgun, and a sniper rifle. The weapons are shown in Figure
5.

A top-down view of the entire game world is shown in
Figure 6. The areas where enemies are spawn are marked on
the map with red circles, and the areas where weapons can
be picked up are marked with blue circles.

User Study Conclusions
All except for one of the participants expressed interest in
using the gaze controlled technology again, if the bugs of
the system were worked out and the control scheme fine
tuned more. In particular, the majority of the users primary
complaints were that were not able to accurately aim during
gameplay and that they felt as though they were “chasing”
the reticle around the screen with their gaze, causing them
to get dizzy and experience eye fatigue. These effects were
somewhat to be expected since the camera moves exactly
as their eyes move with accuracy only verified within ap-
proximately 60 pixels from where the user is actually look-
ing. As they attempted to focus on their intended target and
the reticle only came within the 60 pixels, they tried to fo-
cus harder and harder to get the reticle to be exactly where
they intended. Given the level of responses by the users to-
ward the things that they liked and their interest in using the
technology further, it seems as though it was a positive ex-
perience and their dissatisfaction with the accuracy of the
camera and system will be ameliorated with further testing,

(a) Katana. (b) Pistol.

(c) Shotgun. (d) Rifle.

Figure 5: Weapons in the FPS game.

Figure 6: A top-down view of the game world.

development, and with the integration of a smarter camera
control algorithm.
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Feature Data Type Description
Time stamp Float Time at which the events occurred.

Weapon Enum The weapon that the player is currently using.
Gaze point Vector2 The (x, y) location of the user’s gaze in the screen space.

Reticle vector Vector3 The look vector of the camera down the reticle.
Player location Vector3 The location of the player in the game world.

Normal to terrain Vector3 Measuring the slope of the ground the player is on.
Player health Int Player’s current health.

Reticle intersects enemy Boolean Whether or not the reticle is currently over an enemy target.
Gaze intersects weapon Boolean Whether or not the player is looking at a weapon.
Gaze intersects enemy Boolean Whether or not the player is currently looking at an enemy.
Gaze intersects HUD Boolean Whether or not the player is looking at the HUD.

Gaze intersects weapon Boolean Whether or not the player is looking at a weapon.
Num active enemies Integer Number of enemies in the area.

Num enemies in frame Integer Number of enemies visible to the player.
Average enemy distance Float How close the enemies are to the player.

Room size Float Represents the area of the region the player is in.
Kill score Int Total number of enemies killed up to this point.

Table 4: Features generated in the FPS game each frame.

Proposed System

The automated camera control system will utilize a neural
network based approach to determine the best location and
direction of the camera while the user is playing the game.
The system is similar to the gaze controlled camera that the
players played in the user study, except with a much more
intelligent design for determining whether the location that
the player is focusing on in the screen space is intended to
be a target or not.

First person shooter games require extremely precise ac-
curacy in order for the player to play the game effectively,
which (without removing many of the the elements of chal-
lenge in FPS games) the automatic camera control system in
it’s current state cannot provide.

In traditional FPS games, the user controls the camera
and bullets are fired down the look vector of the camera, in
the automated camera control system, the reticle movement
will be decoupled from the movement of the camera, so
the player can aim away from the camera look vector while
playing the game using the mouse. This will have the effect
of addressing the issue that the players identified with not
being able to aim precisely enough in that they will regain
the pixel wise control that they are used to in FPS games,
assuming that the automatic camera control system is able
to effectively frame the most salient elements of the envi-
ronment.

This type of control scheme is most similar to rail-shooter
games, or shooting games that do not allow the user to con-
trol the camera, but do allow the user to aim within the view-
ing space. In rail-shooters the camera moves along a fixed
path, whereas in the gaze-based version the camera’s mo-
tion will be dynamically updated via the output of the neural
network.

Generating Gaze Based Features
On each frame, the game records information about the
player’s gaze and various information about what is going on
in the game at the time. The logged data is outlined in Table
4. Based on the responses and data gained in the initial user
study, it is important that the features that are generated are
able to address the issues that the players brought up when
integrated with a learning-based camera control system, in
particular, ensuring that the object(s) that the user is trying
to focus on, attack, and acquire are present in the frame.

The logging of this data allows more features about the
player’s gameplay and camera control behavior to be calcu-
lated. The features provide a higher level view of the player’s
behavior and are necessary for modeling the player’s camera
control behaviors. Several of the features are adapted from
the modeling setup described in Picardi, et al. and the details
of the calculated features are outlined below.

• Time watching enemies: the amount of time the player
focuses on enemies.

• Time watching HUD: the amount of time that the player
was focused on elements of the HUD.

• Time watching pickup items: the amount of time the
players looked at items they can interact with.

• Time searching for targets/items: the amount of time
that the player spent looking around the environment/not
focusing on anything for an extended period of time.

• Camera speed: the relative speed of the camera, S =
∆Camera(θ, φ)/T where S is speed and T is time. θ
and φ are the polar and azimuthal angles. Relative speed
is computed over the previous 1 second of game play.

• Number of weapons picked up: the amount and type of
weapons acquired.

• Number of health packs picked up: the number of
health recovery items picked up.
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• Average health: the player’s average health over the past
10 seconds.

• Number of enemies spawned: the number of enemies
that the player triggered to appear.

• Number of enemies killed: the number of enemies that
the player defeated.

• Firing accuracy: The number of targets hit versus the
number of bullets fired.

• Time with enemies in front: the amount of time that
players spent with enemies in vision.

• Time with enemies in rear: the amount of time that play-
ers had enemies primarily behind their front facing vector.

• Time surrounded by enemies: the amount of time that
the players were surrounded (enemies evenly spaced
around the player) by enemies.

• Average enemy distance: the distance that the player
stayed away from active enemies.

Modeling Players
Similar to the work done by Picardi et al., the system will
employ a k-means clustering methodology for determining
the different types of player behaviors (Picardi, Burelli, and
Yannakakis 2011).

The clustering will consist of gameplay features based on
nearby enemies, nearby items, game objects in frame, game
objects being focused on, amount of shots fired, amount of
jumps, camera speed, and other features similar to the ones
outlined above, and will serve to create a model that relates
different camera behaviors to different types of players.

Automating Camera Control
Once the different camera profiles have been generated, an
artificial neural network can be trained using the data from
the users and the profiles of the players. The neural net-
work will be trained using a structured prediction supervised
learning methodology for determining the best location for
the camera given the recently acquired input data from play
of the game. In structured prediciton learning, the output of
the A high-level visualization of the neural network can be
seen in Figure 7.

Figure 7: A high level view of the neural network to be used.

Future Work
Completing ANN Training
Currently, there is a good deal of work to be done in explor-
ing the details of the neural network features, algorithm, and
training.

Improving Features
The current system utilizes the gaze data streamed from the
eye tracking device as an empirical location of focus in the
game, but with more intelligent algorithms, such as one em-
ploying techniques similar to the one developed by Vidal et
al. in their Pursuits application (Vidal et al. 2013), it could be
possible to more accurately and intelligently identify what
the player’s focus of attention is on. This improvement will
enable the learning algorithm to be more effectively tuned
as to salient elements of the environment.

Gathering More Qualitative Data
Once the initial system is completed, a more comprehensive
user study can be performed that focuses on analyzing the
effectiveness of the system. Possible questions that could be
asked to the users, in addition to the questions previously
asked, upon playing game using the new, automated camera
control system could include:

• What would you like to see changed in the automated
camera control version of the game?

• What would make the automated camera control system
feel more natural?

In addition to qualitative user data, quantitative user data
as the the effectiveness of the camera system in allowing the
user to perform well in the game when compared with the
traditional camera control systems can be analyzed. Some
examples of the quantitative features that could be analyzed
are outlined below.

• What type of firing accuracy were the players able to
achieve when compared to the user controlled camera
scheme?

• How fast were they able to complete the level, compara-
tively?

• How effective were the players at killing the enemies and
avoid damage?

The analysis of the above information, in addition to the
previously analyzed features, would provide critical infor-
mation in to what might be required for players to gain com-
pentency with a new type of camera control system, as many
of the users in the previous study expressed dissatisfaction
with the gaze based system and said that they specifically
felt like they were “too used” to the traditional methods.

Generalization for Other Games
Once this system has been developed and iterated on, fur-
ther research in to a framework for generating a general-
ized feature set and learning algorithm for creating an auto-
mated camera control system in different types game envi-
ronments, both 2D and 3D.
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Belief Modeling

Some research has been done in to whether or not visual at-
tention is actually a primary indicator of mental focus while
playing a game. Ideally this study, and the following com-
prehensive user experience study, will provide a good idea
about whether or not gaze data is a valid indicator of what
the users are intending to see in the game, but further in-
formation about what the users have seen and believe to be
true or find interesting about a game world could prove to be
valuable in determining the optimal placement of the camera
in an automated camera control system.

Conclusion
In this paper we have presented a new technique for au-
tomating the control of the camera in a game environment.
We began by presenting initial results bounding the expected
accuracy of the gaze tracking device used in the study and
the results of an initial user study in gauging the interest
that user’s have for an automated camera control system that
is based on gaze input. We followed by detailing a neural
network based approach to automating the control of the
camera in a first person shooter environment, using k-means
clustering for generating features of areas of play and mod-
els of player camera control proles and features from game-
play and player gaze as inputs. We have further discussed the
implications of such a system and outlined some possibili-
ties for future work in the area of automated camera control
using gaze input.
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Appendix
Questionnaire
After playing each version of the game for 5 minutes each,
the users were asked the following questions:

1. Which camera control system did you prefer, the mouse
controlled or the gaze controlled system?

2. Why did you prefer the one you preferred?
3. What did you like about the mouse controlled system?
4. What did you like about the gaze controlled system?
5. Please rate the level of enjoyment you got from playing

each version of the game on a scale of 1 (not fun at all) to
5 (very fun).

6. What did you find enjoyable about the mouse controlled
game experience?

7. What did you find enjoyable about the gaze controlled
game experience?

8. Please rate the level of frustration you got from playing
each version of the game on a scale of 1 (not frustrating)
to 5 (very frustrating).

9. What did you find frustrating about the mouse controlled
game experience?

10. What did you find frustrating about the gaze controlled
game experience?

11. Please rate how easy it was to play each version of the
game on a scale of 1 (not easy) to 5 (very easy).

12. What suggestions do you have for improving the gaze
controlled game experience?

13. Would you be interested in seeing more of this type of
game technology available?
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