
Compiling Strategic Games with
Complete Information into Stochastic CSPs

Frédéric Koriche, Sylvain Lagrue, Éric Piette, and Sébastien Tabary
CRIL Univ. Artois - CNRS UMR 8188, France-62307 Lens

{koriche, lagrue, epiette, tabary}@cril.fr

Abstract

Among the languages used for representing goals, ac-
tions and their consequences on the world for decision
making and planning, GDL (Game Description Lan-
guage) has the ability to represent complex actions in
potentially uncertain and competitive environments.
The aim of this paper is to exploit stochastic constraint
networks in order to provide compact representations of
strategic games, and to identify optimal policies in those
games with generic forward checking method. From
this perspective, we develop a compiler allowing to
translate games, described in GDL, into instances of the
Stochastic Constraint Optimization Problem (SCSP).
Our compiler is proved correct for the class GDL of
games with complete information and oblivious envi-
ronment. The interest of our approach is illustrated by
solving several GDL games with a SCSP solver.

Introduction
The ability for a computer program to effectively play any
strategic game, often referred to General Game Playing
(GGP), is a key challenge in AI (Nau, Ghallab, and Traverso
2004). Actually, a competition in GGP is annually organized
by AAAI. This competence to play at any game has led re-
searchers to compare various approaches, including Monte
Carlo methods, automatic constructions of evaluation func-
tions (Clune 2008), logic programming (Thielscher 2005),
and answer set programming (Möller et al. 2011). Of course,
the GGP problem is not confined to games: it can model se-
quential decision problems with mono or multi-agent.

In the context GGP, games are described in a represen-
tation language, called GDL for Game Description Lan-
guage (Love et al. 2008). Based on logic programming, the
first version of this language was able to capture any game
with complete and certain information. A new version of
this language, GDLII (GDL with Incomplete Information
(Thielscher 2010)), is expressive enough to handle games
with uncertain and incomplete information. In this setting,
uncertainty is modeled by the response of the environment,
which is simply one of the players. The aim of the environ-
ment, called random, is not to pursue a specific policy, but

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to convey uncertainty in the form of a probability distribu-
tion over a set of possible actions. Thus, the environment can
capture dice rolls, coin flips, or card shuffles.

A promising approach for meeting the GGP challenge is
the paradigm of constraint programming. Indeed, represent-
ing a game as a constraint network enables us to use general
search algorithms and propagation techniques for inferring
optimal policies. To this end, several formalisms have been
proposed for encoding games into constraint networks; they
include quantified constraint satisfaction problems (QCSP)
(Genta et al. 2008), strategic constraint satisfaction prob-
lems (Bessiere and Verger 2006) and, more recently, con-
straint games (Nguyen, Lallouet, and Bordeaux 2013). Yet,
these approaches cannot address random players and, more
generally, the connection with GDLII. The aim of this ar-
ticle is to handle GGP with an original viewpoint, based on
Stochastic Constraint Satisfaction Problems (SCSP) (Walsh
2002). This formalism is expressive enough to model and
solve games with complete information, including those de-
scribed in QCSP (Balafoutis and Stergiou 2006), but also to
capture random players. We show how to rewrite GDL games
in SCSP and to infer optimal strategies (in expectation) with
a generic constraint optimization algorithm.

GDL Formalism
The purpose of GDL is to provide a generic language
for representing any game, including collaborative games
and games with simultaneous actions. The GDLII version
(Thielscher 2010) handles games with partial observations
and stochastic actions. Our present study focuses on a frag-
ment of this version: games with complete information and
oblivious environment. For such games, the current state is
fully observable by all players, and the environment has a
random behavior which cannot be influenced by other play-
ers. This fragment of GDLII covers a well-studied class
in game theory (Cesa-Bianchi and Lugosi 2006); in prac-
tice, this class captures various strategy games where players
have no effects on the actions of the environment. Character-
istic examples are “dice games” in which players can choose
the dice they throw, but cannot influence the dice behavior.

Language. GDL is derived from logic programming with
negation and equality. Recall that the Herbrand universe of

61

Planning, Search, and Optimization: Papers from the 2015 AAAI Workshop

a logic program is the set of ground terms obtained from
function symbols (including constants) of the program. In a
GDL program, players and game objects are described by
constants, while fluents (or percepts) and actions (moves)
are described by terms. For example, in the tic-tac-toe game,
the term cell(2, 2, b) is a fluent indicating that the cell at
position (2,2) on the board is marked with a black token.

By Σ, we denote the Hebrand universe of a GDL program;
ΣF and ΣA respectively denote the subsets of Σ correspond-
ing to fluent terms and action terms.

The atoms of a program GDL are constructed from a finite
set of relation symbols and a countable set of variable sym-
bols. Some symbols have a specific role in the program; they
are described in Table 1.

Keywords Description
role(J) J is a player
init(F) the fluent F is part of the initial state
true(F) F is part of the current state
legal(J, A) J can do the move A
does(J, A) the move of J is A
next(F) F is part of the next state
terminal the current state is terminal
goal(J, N) J has N on the current state
random is the player environment

Table 1: GDL keywords

For example, legal(J, mark(X, Y)) indicates that player
J is allowed to mark the square (X, Y) of the board.

The rules of a GDL program are first-order clauses com-
posed of an atom for the consequent and a set of literals for
the antecedent. For example, the rule:

legal(random, noop)← true(control(bob))

indicates that noop (do nothing) is a legal action of player
random if it is the turn of player bob.

In order to be valid, a GDL program P must obey certain
syntactic conditions. Specifically, P must be stratified (Apt,
Blair, and Walker 1988) to admit a standard model, and al-
lowed (Lloyd and Topor 1986) to ensure that only finitely
many positive ground atoms are true in this model. Due to
space reasons, we refer to (Love et al. 2008) for details. Fur-
thermore, the GDL keywords must be used as follows:

(i) role only appears as facts;
(ii) true only appears in the body of rules;

(iii) init only appears in the head of rules and can
not depend on keywords true, legal, Does, next,
terminal and goal;

(iv) Does only appears in the body of rules and does not
depend on legal, terminal and goal;

(v) next only appears in the head of rules.
Finally, in the context of games with complete informa-

tion and oblivious environment, we add the conditions:
(vi) For each fluent F, there exists an instance f of F such

that init(f) is a fact.

(vii) Atoms legal(random, A), where A is an action, only
appear as facts.

Semantics. Markov games (a.k.a Stochastic games)
(Shoham and Leyton-Brown 2009) is a common model for
representing games with uncertain information. A Markov
game with n players over the Herbrand universe Σ is a tuple
〈N,S,A, P,R〉 such that: 1

• N = {1, . . . , n} is the set of players,

• S is the set of states;

• A = A1 × ... × An, where Ai is the finite set of actions
available to player i ;

• P : S × A × S → [0, 1] is the transition function;
P (s,a, s′) is the probability of moving from state s to
state s′ by applying action a ;

• R = 〈r1, ..., rn〉, where ri : S → R is the reward func-
tion of player i.

Together with the above tuple, a Markov game includes
an init state s0 ∈ S and a set Ster ⊆ S of terminal states.

Now, we show how to construct a Markov game from a
valid GDL program P.

A game state is a set of ground fluent terms. Because the
syntactic restrictions of GDL guarantee a finite derivation
of ground terms, all states are finite subsets of ΣF . The n
instances of role(R) define the n players of the stochastic
model, and the environment (random) is set to player n+ 1.
The initial state is built from the terms of init(F).

Concerning the legal moves of players in a given
state s = {f1, · · · , fm}, we denote strue the set
of facts {true(f1), ..., true(fm)}. The ground terms of
legal(J, A) derivable from P∪ strue, define all legal moves
of the player J in the state s. The final state Ster and the
vector of winning function R are constructed analogously,
using the atoms terminal and goal(R, N). In a game with
oblivious environment, the set of legal moves of n + 1, de-
noted L(n+1), is independent of the current state: it is built
from the terms of legal(random, A).

For the transition function, we need the current state and
the actions performed simultaneously in that state. For a vec-
tor a = 〈a1, · · · , an, an+1〉 of actions performed by the n
players and the environment (n+1), we denote adoes the set
of facts :{does(1, a1), ..., does(n+ 1, an+1)}

The next state is constructed using the ground terms of
next(F) derivable from P ∪ strue ∪ adoes. This state is
denoted Q(s,a). In particular, if a is the concatenation
a′ · an+1, then Q(s,a′ · an+1) describes the next state ob-
tained from s when, simultaneously, the players performed
a′ and the environment played an+1. The probability dis-
tribution associated to the transition function is captured by
the stochastic behavior of the environment: it defined by the
uniform distribution over all legal moves that can be played
by n+ 1 in the current state.

We note in passing that the resulting states are not neces-
sarily equiprobable. For example, a loaded dice with a prob-

1For a set U , we denote 2U the set of all finite subsets of U .

62

ability of 1/2 to give 6 can be modeled by ten actions of
random, whose the first five have the same effect (i.e. 6).

Definition 1 The semantic of a GDL program P (with obliv-
ious environment) is a Markov game 〈N,S,A, P,R〉 such
that:
• N = {i : P |= role(i) et i 6= random} ;
• S = 2ΣF ;
• Ai = {a : P ∪ strue |= legal(i, a), s ∈ S} ;

• P (s,a, s′) = |{an+1∈L(n+1):s′=Q(s,a·an+1)}|
|L(n+1)|

• ri(s) =

{
c if P ∪ strue |= goal(i, c),

0 otherwise.

The initial and terminal states are defined by:

s0 = {f ∈ ΣF : G |= init(f)}
Ster = {s ∈ S : G ∪ strue |= terminal}

An Example. The Orchard (Obstgarten) game is a coop-
erative board game involving up to four players and a ran-
dom environment. The game consists in 4 trees, each con-
taining 10 fruits, and a raven with 9 items. During each
round of the game, each player rolls a six-sided dice whose
4 faces are associated to a specific tree where the player re-
moves a fruit of this tree, 1 face is associated to the raven
where the player removes an item of the raven and 1 basket
face where the player removes two fruits of his choice.

The goal is to remove all fruits of each tree before remov-
ing all items of the raven. Interestingly, the only decision
made by the player is to choose fruits to remove when the
die lands on the basket face. The optimal policy (wins 68.4%
of cases) is to take the fruits in the fullest tree.

A GDL description of a “restricted” Orchard game with
one player (bob), 2 trees with 2 fruits and a raven of size 1,
is reported in Figure 1. A four-sided dice is used: y (take one
fruit in the yellow tree), g (take one fruit in the green tree), b
(make a choice to remove two fruits) and r (remove an item
of the raven).

Stochastic CSPs
The stochastic CSP model that we present in this study ex-
tends the original framework of Walsh (2002) to deal with
soft constraints.

Formally, a Stochastic Constraint Satisfaction Problem
(SCSP) is a 6-tuple 〈X,Y,D, P, C, θ〉 where X is a set of
n variables, Y is a subset of X representing the stochas-
tic variables, D represents the set of domains associated to
variables of X , P is the set of probability distribution ap-
plied to domains of the stochastics variables, C is the set of
constraints and θ is the threshold value in R.

A SCSP is composed of decision variables and stochas-
tic variables. The decision variables have the same mean-
ing as those defined in the classical CSP framework. For
each stochastic variable, we associate a probability distri-
bution to the values of the domain. We denote D(x) the do-
main associated to variable x. More generally, for a subset
Z = {z1, · · · , zk} ⊆ X , we denote D(Z) the set of tuples
of values D(z1)× · · · ×D(zk).

% roles

role(bob)

role(random)

% integer operations

succ(0,0)

succ(0,1)

succ(1,2)

% colors of trees

tree(y)

tree(g)

% initialization of the state of the game

init(state(2,2,1))

init(control(random))

% definition of legals moves

legal(random,roll(D))

legal(bob,noop) ← true(control(random))

legal(bob,choice(C1,C2)) ← tree(C1), tree(C2),

true(control(bob))

% change in game

next(control(bob)) ← does(random,roll(b)),

true(control(random))

next(control(random)) ← true(control(bob))

next(control(random)) ← does(random,roll(D)),

true(control(random)), D 6= b

next(state(Y,G,R)) ← true(state(Y1,G,R)),

succ(Y,Y1),does(random,roll(y))

...

next(state(Y,G,R)) ← true(state(Y1,G1,R)),

succ(Y,Y1), succ(G,G1), does(bob,choice(g,y))

% goals and rewards

goal(bob,100) ← true(state(0,0,R))

% end of the game

terminal ← true(state(Y,G,0))

terminal ← true(state(0,0,R))

Figure 1: GDL Program of “restricted” Orchard Game

Each constraint of the SCSP is a pair c = 〈scpc, valc〉,
where scpc is a subset of X , called scope of c, and valc is a
function that associates to each tuple τ ∈ D(scpc) a value
(or utility) valc(τ) in R ∪ {−∞}. A constraint c is hard
if valc only returns −∞ or 0. In this case, c can be repre-
sented in the usual manner by a relation, noted relc which
contains the set of tuples allowed for scpc (i.e. the tuples τ
for which valc(τ) 6= −∞). In a SCSP, the scope of any
hard constraint is restricted to decision variables. We extend
the SCSP framework defined in Walsh (Walsh 2002) to deal
with soft constraints. Specifically, for any soft constraint c,
the range of its value function valc is R.

An instantiation I of a set Z = {z1, . . . , zk} of k variables
is a set {(z1, a1), . . . , (zk, ak)} such as ∀zi ∈ Z, ai ∈ D(zi)
and ∀zi, zj ∈ Z, zi 6= zj . By I|Z , we denote the projection
of I onto the subset of variables Z ⊆ X . The utility of I is
val(I) =

∑
c∈C valc(I|scpc

)
A policy π is represented by a tree in which each node is

a variable of X . The nodes associated to decision variables
have only one child, while the nodes associated to stochas-
tic variables have a child for each possible value of the do-
main. Edges are labeled by the value assigned to the corre-
sponding variable. Each path in the policy is a sequence of
assignments of values to variables. The leaves are labeled

63

by the utility associated to the sequence of assignments of
the corresponding path. The expected utility of a policy π
is defined as the sum of utilities of the leaves weighted by
their probability. A solution of SCSP is a policy π whose
expected utility is greater than or equal to the threshold θ.
Since θ > −∞, this implies that all hard constraints must
be satisfied by a solution.

For example, consider the SCSP presented on Figure 2
and the associated policy π. The decision variables are x
and z (assigned to the value 0). The domain of the stochastic
variable y contains tree values (0, 1 et 2), with same proba-
bility 1

3 . Since π does not violate the hard constraint ch, and
satisfies the soft constraint cs with expected utility 2/3 ≥ θ,
this policy is a solution of the SCSP.

X = {x, y, z} D(x) = D(y) = D(z) = {0, 1, 2}
Y = {y} P (0) = P (1) = P (2) = 1/3

C = {ch, cs} ch : x = z

cs(x, y) =

1 if x+ y ≥ 1

0 else

θ = 1/2

x

y

zz z

0 1 1

0

0 1 2

0 0 0

Figure 2: A SCSP and a policy π

From GDL to SCSP
In order to rewritte a GDL program into an SCSP, it is nec-
essary to fix in advance a time horizon T , whose values
t ∈ {1, · · · , T} capture the rounds of the game. In this sec-
tion, we present a compilation method that takes as input a
GDL program P and a time horizon T , and returns as output
the set of variablesX , the domains D, the constraints C, and
the probability distributions P of the corresponding SCSP.
This compilation is divided into four steps detailled below.

Eliminating Functions. Given a GDL program P, the
components of the associated SCSP are extracted from the
terms, atoms and rules of P. In particular, the domains and
constraints use ground terms derivable from P. Altough the
syntactic restrictions of GDL allow us to derive all ground
terms of P appearing as fluents and actions, the cost of
such queries in a stratified logic program can be prohibitive
(Dantsin et al. 2001).

To circumvent this issue, we transform the GDL program
P into a program P′ without function symbols, using the
method of Lifschitz et Yang (2011). This method includes

two steps: flattening that reduces the nested terms, followed
by elimination which replaces functions by predicates.

Flattening is specified as follows: for each function sym-
bol f appearing in P, construct an equivalent program Pf,
called f-flattened, wherein each occurence of a term of the
form f(t1, · · · , tk) is transformed by the equality of the
form f(t1, · · · , tk) = Z, where Z is a renaming variable.

For example, if the GDL program P contains the ground
atom legal(random, roll(c)), then in Pf the atom is re-
placed by the conjunction legal(random, Z), roll(c) = Z.
By flattening all function symbols f occurring in P, the re-
sulting program does not contain any nested term. We note
that flattening is polynomially bounded by the number of
functions and the depth of terms.

The elimination step replaces each function symbol f
of arity k with a relation symbol F of arity k + 1. In
doing so, each equality of the form f(t1, · · · , tk) = Z is
replaced by the atom F(t1, · · · , tk, Z). Finally, the rule2:
(∃!Z)F(t1, · · · , tk, Z) is added to P′ for ensuring the equiv-
alence of the stable models between P and P′.

Extracting Variables. The set X of the variables of the
SCSP is obtained in the following way. To each round
t ∈ {1, · · · , T}, we associate the variables rolet, controlt,
and terminalt. Intuitively, rolet captures the players at turn
t, controlt indicates who must play at turn t, and terminalt
indicates whether the game is over, or not, at turn t.

To each instance i of role(J) and to each game round
t ∈ {1, · · · , T − 1} we associate a variable ai,t indicat-
ing the action performed by player i at turn t. Similarly, the
variables arandom,t are associated to the action of the envi-
ronment at turn t.

The SCSP variables associated with fluents are extracted
from predicates of P′. Specifically, if F(X1, · · · , Xk, Z) is an
atom such as the renaming variable appears in one of pred-
icats init, true and next, then F is thus a fluent, and
hence, the corresponding variable ft is added to X .

Besides actions and fluents, a GDL program can include
“static” relation symbols which are merely used to establish
relationships between fluents (e.g. succ(I,J)). To each
static relation and round t, a corresponding SCSP variable
is associated.

Extracting Domains. Based on previous considerations,
terminalt is boolean, and the domain of rolet and controlt
is the set {1, · · · , N + 1} formed by the players and the
environment (random).

The domain of every fluent variable f is given by all com-
binations of constants c1, · · · , ck which can be instantiated
by the atoms A of the form F(t1, · · · , tk, z). These domains
can be extracted in a simple way by filtering the following
network. To each fluent F of arity k + 1, add the variables
fv1 , · · · , fvk and f c1 , · · · , fck . The domains of fv1 , · · · , fvk are
initially formed by all constant symbols occurring in the pro-
gram P. The domains of f c1 , · · · , fck are formed by the set of
constant symbols occurring at position i of any atom pre-
fixed by F in P. For each index i, add an edge (fvi , f

c
i), and

2In logic programming ∃! means “there exists exactly one”.

64

GDL Variable SCSP Domain SCSP
role(J) rolet {random, bob, undefined}
legal(bob,A) abob,t {{choice} × {r, v} × {r, v}} ∪ {noop, undefined}}
legal(random,A) arandom,t {{roll} × {c, p, r, v}}
next(state(...)) statet {(3, 3, 2), . . . , (0, 0, 0)} ∪ {undefined}
next(control(...)) controlt {bob, random, undefined}
succ(...) succt {(0, 0), (0, 1), (1, 2), (2, 3), undefined}
tree(...) treet {r, v, undefined}
terminal(...) terminalt {true, false}

Table 2: Variables and domains at time t associated to the Orchard game

add an edge (fvi , g
v
j) whenever the same variable symbol ap-

pears at position i in an atom prefixed by F and in position
j by a atom prefixed by G. By arc-consistency, we remove
in every variable fvi the constants without support. Thus, the
values of fvi are given by the union of the values of f ci and
the values of neighboring variables gvj with a support. Based
on this filtered network, the domain of the fluent variable ft
is D(ft) = D(fv1)× · · · ×D(fvk).

Domains of action variables are extracted analogously, by
first identifying from the relation legal(j,A) the actions
A involved in the construction of the domain of aj,t.

Technically, we add the value undefined to every do-
main of decision variables, because if terminal t take the
value true, all variables different from terminal at t′ > t
are instantiated to undefined.

Table 2 illustrates the extraction of SCSP variables and
domains from the Orchard game specified in Figure 1.

Extracting Constraints. To each rule R of the GDL pro-
gram P and each round t, we associate a constraint CR,t.
The cscopes are specified by the rewriting rules of Table 3.

Atom GDL Scope of the constraint
init(f(...)) {f0} ∈ scpC0

true(f(...)) {ft} ∈ scpCt

does(j,a(...)) {aj,t} ∈ scpCt

next(f(...)) {ft+1} ∈ scpCt

legal(j,a(...)) {aj,t} ∈ scpCt

goal(j,N) {rolet} ∈ scpscoret
terminal {terminalt} ∈ scpterminal

Table 3: rewriting rules for the constraint scopes

In the SCSP model, all constraints are hard, except the
constraint related to the game scores. Thus, for each rule R
of the program P, the semantic of the corresponding con-
straint CR,t is a “relation” over the domain of its scope. This
relation is constructed as follows. After eliminating function
symbols, we know that all terms of R in P have been replaced
with predicates in the corresponding rule R′ of P′. Without
loss of generality, suppose that R′ is of the following form:

A1, · · · , Ak ← B1, · · · , Bk′
Note that, due to the flattening step, the consequent of R′ can
include more than one atom. Since R′ expresses an implica-
tion, the relation ofCR,t must capture this implication. From

this perspective, let A (resp. B) denote the set {A1, · · · , Ak}
(resp. {B1, · · · , Bk′}). Let U(Ai) denote all combinations of
constants which are instances of Ai, and U(A) (resp. U(B))
denote the join of this combination on A (resp. B). Further-
more, let C(B) (resp. C(AB)) denote all combinations of con-
stants which are instances of the conjunction on B (resp.
A ∪ B). The combinations of constants which are instances
of R′ are therefore:

C(AB) ∪ (U(A) on (U(B) \ C(B)))

These instances can be obtained using a conjunctive query
on R′. The resulting projection on scpCR,t

gives relCR,t
.

By the syntactic restriction (vi) of GDL programs, the con-
straint associated to init allows exactly one value per fluent
f0. The soft constraint scoret associates to each player j the
value N given in goal(j,N) if the body of the associated
rule for this atom is true, and the value 0 otherwise.

Finally, the component P of SCSP is formed by giving a
uniform probability distribution over the domain of randomt
at each turn t.

Equivalence Between Models. In the resulting SCSP in-
stance, we denote by Xf,0 the set of fluent variables occur-
ring in the initial state, and by Xf,t (resp. Xa,t) the set of
fluent (resp. action) variables appearing at time t. By con-
struction,

X =

(
T⋃
t=0

Xf,t

)
∪

(
T−1⋃
t=1

Xa,t

)
Based on these notations, our SCSP instance determines a
directed acyclic graph (DAG), denoted GSCSP,T , whose ver-
tices S and edges A are built as follows:
• the only allowed tuple s0 ∈ D(Xf,0) is a vertex of S;
• if st ∈ D(Xf,t) is a vertex of S and st+1 ∈ D(Xf,t+1)

given by the concatenation st · st+1 is an allowed tuple,
then st+1 is a vertex of S and (st, st+1) is a edge of A.

Each edge (st, st+1) is labeled by the probability k
d where

d is the size of D(arandom,t) and k is the number of allowed
tuples (st, a, st+1) where a ∈ D(arandom,t). Finally, each
vertex st is labeled by the associated table of each player i
in the domain of rolet, its utility given by scoret(i).

Similarly, we associate to a GDL program P, the follow-
ing DAG GSCSP,T : each state s of the Markov game of P is

65

rewritten by removing the function symbols (using flatten-
ing) and retaining the arguments (combination of constants).
The set of vertices is the set S of states of the Markov game
of P′ reachable from the initial state by any path of size at
most T − 1.3 An edge (st, st + 1) is added between two
vertices iff there is a vector of legal actions a for st, such as
st+1 = Q(st,a). Each edge (st, st+1) is labeled by the pro-
portion of actions a of random for which st+1 = Q(st,a·a).
Finally, each vertex st is labeled by its reward vectorR(st).

Theorem 1 For all time horizons T , the graphs GSCSP,T et
GP,T are identical.

Proof (Sketch). Based on the rewritting rule associated to
init, the root ofGSCSP,T and the root ofGP,T are identical,
and given by the unique vertex s0. Suppose by induction hy-
pothesis that st belongs to bothGSCSP,T andGP,T . Consider
a state st+1 ∈ D(Xf,t+1) such as st · st+1 is an allowed
tuple of the SCSP. So, there is a tuple a ∈ D(Xa,t) such
as st · a · st+1 is allowed by the SCSP. This implies that
a is a vector of legal actions, and so st+1 belongs to both
GSCSP,T and GP,T . Similarly, the edge (st, st+1) belongs to
both graphs. Since the environment is oblivious and its do-
main of actions is the same for P and SCSP, the edge labels
are identical. Finally, using the rewritting of goal(j,N) in
scoret, the vertex labels are identical.

Resolution and Experiments
Resolution. We use some preprocessing techniques to im-
prove the efficiency of the resolution of the generated SCSP.
The first technique is to merge hard constraints of same
scope. Specifically, given an SCSP P , two hard constraints
ci and cj of P (with associated relation relci and relcj) such
as scpci = scpcj are converted to a unique constraint ck
such that relck = relci ∪ relcj and scpck = scpcj = scpci .

Second, we remove all unary constraints (e.g. constraints
c such that |scpc| = 1). The domain of the variable involved
in the constraint is restricted to values allowed by the tuples
of the associated relation.

The final preprocessing technique is to identify univer-
sal variables in each constraint. A variable is “universal” if
whatever the value assigned, the constraint is always satis-
fied. In formal terms, given a constraint c, a variable x ∈
scpc is universal if |relc| is equal to the product of the size
of the domain of x with the number of tuples of the relation
associated to the constraint ci such as scpci = scpc \ {x}.
Such variables are removed from the scope of constraints.

The algorithm used to solve SCSP instances is presented
in Algorithm 1. Based on (Balafoutis and Stergiou 2006),
this algorithm is a Forward Checking (FC) method
adapted for SCSP. Since our algorithm is applied to game
solving, our version returns a solution policy whereas the
original algorithm in (Balafoutis and Stergiou 2006) returns
a satisfaction threshold. Here, the idea is to iteratively build
a solution policy of the SCSP by propagating choices in the
search space of policies. Given an SCSP P , an ordering is
defined on X and the algorithm 1 instantiates the variables

3The size of a path is given by the number of its arcs.

Algorithm 1: FC
Data: threshold θh policy π, int i
Result: policy π, satisfaction θ

1 if i > |X| then return (π, 1)
2 θ ← 0
3 foreach vj ∈ D(xi) do
4 if prune[i, j] = 0 then
5 if check(xi, vj , θh) then
6 π ← π ∪ {(xi, vj)}
7 if xi ∈ S then
8 p← prob(xi, vj)
9 qi ← qi − p

10 (π, θt)← FC(θh−θ
p
, π, i+ 1)

11 θ ← θ + p ∗ θt
12 restore(i)
13 if θ ≥ θh then return (π, θ)

14 else
15 (π, θt)← FC(θh, π, i+ 1)
16 θ ← max(θ, θt)
17 restore(i)
18 if θ ≥ θh then
19 return (π, θ)
20 else
21 π ← π \ {(xi, vj)}

22 return (π, θ)

of P following this order. When a decision variable is en-
countered, the algorithm tries to assign successively each
value in its domain. This value is added to the current policy
and the maximum threshold is returned to the previous re-
cursive call. When a stochastic variable is encountered, FC
deals with each value in its domain, and returns the sum of
all the answers to the subproblems weighted by the prob-
abilities of their occurence. When instantiating a decision
variable or a stochastic variable, the algorithm calls the func-
tion check (Algorithm 2). This function prunes values from
the domains of unassigned variables and checks whether this
does not lead to a domain wipeout or exceed the threshold.
The bound θh is also used to prune the search space and we
identify all policies satisfying θ ≥ θh. If all variables are
instantiated without breaking any constraint, FC returns a
couple (π, θ) corresponding to a solution policy.

An array prune[i, j] is used to record the depth at which
the value vj ∈ D(xi) has been removed by forward check-
ing, 0 indicating that the value is still in the domain of the
variable. Each stochastic variable xi has an upper bound qi
(initially set to 1) capturing the probability that the remain-
ing values in D(xi) can contribute to a solution.

In Algorithm 2, the function allowed takes as input two
pairs (xi, vj) and (xk, vl) and attempts to find an allowed
tuple in relc for each constraint involving xi and xk. Algo-
rithm 2 fails if at least one decision variable has an empty
domain or if a stochastic variable has so many values re-
moved that we can not hope to satisfy the constraints. More
precisely, when a value vl is removed from a stochastic vari-
able xk, we reduce qk to prob(xk ← vl), the probability that

66

Algorithm 2: check
Data: Variable xi,int vj , threshold θ
Result: boolean check

1 for k ∈ i+1 to |X| do
2 DomainEmpty ← true
3 foreach vl ∈ D(xk) do
4 if prune[k, l] = 0 then
5 if !allowed((xi, vj), (xk, vl)) then
6 prune[k, l]← i
7 if xk /∈ S then
8 DomainEmpty ← false
9 else

10 qk ← qk − prob(xk, vl)
11 if qk < θ then return false

12 if DomainEmpty then return false

13 return true

xk takes the value vl. Once the algorithm has reduced qk to
a value which is less than θ, the function returns false and a
backtrack occurs since it is impossible to instantiate xk and
while satisfying all constraints.

Procedure restore (not illustrated) is called to restore
values that have been removed from decision variables and
to reset qi for stochastic variables when a backtrack occurs.

Once a solution policy π has been inferred by FC at time
horizon T , we need to estimate the reward of π at final states.
To this end, the UCB algorithm (Auer, Cesa-Bianchi, and
Fischer 2002) is used with Monte-Carlo simulations. Specif-
ically, after reaching the horizon T for resolution, UCB uses
simulations on all next states and estimated reward of move
a, na is the number of times move a has been played so far,
and n is the total number of moves played so far.

Experiments. We applied our rewritting method and res-
olution algorithm to several GDLII games:

• Backgammon is a standard 2-player board game with 2
dices and 15 pieces by player. The playable pieces are
moved according to the roll of dies, and a player wins by
removing all of his pieces from the board.

• Can’t stop is a board game with 4 dices and 3 buddhists
by player, our version involving only two players. The
board includes 9 climbs of different sizes, and the goal
is to reach the top of three climbs with three buddhists.

• Kaseklau is a little 2-player board game with a mouse and
a cat. The goal is to roll the 2 dices to advance mouse and
cat on different squares where slices of cheese are placed.

• Orchard is a 2-player board game in cooperation with a
die. This game is explained in figure 1.

• Yathzee is a 2-player game where the goal is to get the
highest score by rolling five dices. At each round, the
dices can be rolled up to three times in order to make one
of the 13 scoring combinations.

• Tic-tac-toe is a well-known deterministic game with two
players (X and O) who iteratively mark a 3x3 grid.

All games have been parsed and Table 4 presents the
resulting SCSP parameters: number of variables (#vars),
maximum domain size (maxDom) and number of constraints
(#constraints).

Figure 3 shows running times for different horizons.
Backgammon is the most difficult game, with the largest
number of variables, each with a large domain, and an im-
portant number of constraints. Yathzee is also challeng-
ing even with relatively few variables, but with many con-
straints. The Orchard game is very specific: it includes only
one variable with large domain, while other variables have a
small domain. Thus, it can be quickly solved for some small
horizons, but the complexity increases with horizon. Can’t
Stop is resource consuming due to the large scope of con-
straints. The others games (Kaseklau and Tic Tac Toe) are
solved in a reasonnable amount of time because the gener-
ated SCSP are small.

Game #vars maxDom #constraints

Backgammon 76 768 86

Can’t Stop 16 1296 409

Kaseklau 18 7776 106

Orchard 9 146410 40

“restricted” Orchard 9 100 22

TicTacToe 19 18 37

Yathzee 12 30 8862

Table 4: Translated games in SCSP and characteristics.

0 1 2 3 4 5
0

20
40
60
80

Backgammon

0 1 2 3 4 5
0

10

20

30

Can’t Stop

0 1 2 3 4 5 6
0

1

2

Kaseklau

0 1 2 3 4 5
0
5

10
15
20

Orchard

0 1 2 3 4 5
0

0.2

0.4

0.6

TicTacToe

0 1 2 3 4 5
0

10

20

Yathzee

Figure 3: Running times for different horizons: The X axis
plots the horizon and the Y axis plots the time in hundreds of
seconds to solve the problem. Horizon 0 is the parsing time.

We present now results obtained for the “restricted” Or-
chard (the GDL program is described in Figure 1), and the
winning policies for this game are given in Table 5. We fo-
cus on the values of variables abob,t and state0,t in the poli-
cies satisfying the constraint network with horizon 4 and a
threshold of 50%. The values of state0,t are triplets com-
posed of the number of fruits in the trees r and v and the

67

size of the raven c. The values of the variable abob,t corre-
spond to the 4 actions of fruit choice: (r, v), (v, r), (r, r),
(v, v) and the action “noop”. The player random rolls the
dice with the same probability.

The winning strategies are those involving the action
abob,t. It is interesting to note that for t = 1 the amount
of fruits in each tree is not modified. The computed strategy
showed in the table for t = 1 is to select a fruit in each tree.
For t = 2, the only feasible action is “noop” because it is
the turn of random. The first four solutions capture the sit-
uation where the random takes the basket twice. Solutions
5 and 6 are those where the player has the choice at time 1
(so she chooses one fruit in each tree), then random takes a
fruit in tree v followed by a fruit in tree r (solution 5) or the
opposite (solution 6). Importantly, the number of solutions
depends on the threshold. With a threshold value of 50%,
the computed solutions correspond to the expected optimal
strategy for the Orchard game.

Variable t=1 t=2 t=3 t=4

state0,t 2 2 1 1 1 1 1 1 1 0 0 1

abob,t choice v r noop choice v r undefined

state0,t 2 2 1 1 1 1 1 1 1 0 0 1

abob,t choice r v noop choice v r undefined

state0,t 2 2 1 1 1 1 1 1 1 0 0 1

abob,t choice v r noop choice r v undefined

state0,t 2 2 1 1 1 1 1 1 1 0 0 1

abob,t choice r v noop choice r v undefined

state0,t 2 2 1 1 1 1 1 0 1 0 0 1

abob,t choice v r noop noop undefined

state0,t 2 2 1 1 1 1 0 1 1 0 0 1

abob,t choice v r noop noop undefined

Table 5: Winning policies for the “restricted” Orchard game (in
initial state, state0,0 = (2 2 1) and abob,0 = noop)

Conclusion
In line with the paradigm of constraint programming for
solving combinatorial optimization problems, we have pro-
posed to use stochastic CSPs for solving GDLII games with
full observation and oblivious environment. The semantics
of this representaiton language is a Markov game. Our com-
piler GDL-to-SCSP is proved correct by the equivalence of
models at each horizon. Using a variant of Forward Check-
ing for solving SCSP instances, our first experiments on a
series of GDLII games revealed that constraint program-
ming is a promising approach for inferring optimal policies
in strategic games with uncertainty.

This work calls for many perspectives. One of them is
to extend our model to non-oblivious environments, whose
probability distributions over actions may depend on the cur-
rent state. Another perspective of research is to devise filter-
ing methods for SCSP in order to accelerate the search of
solution policies.

References
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. Foundations
of deductive databases and logic programming. In Minker,
J., ed., Foundations of Deductive Databases and Logic Pro-
gramming. Morgan Kaufmann. chapter Towards a Theory
of Declarative Knowledge, 89–148.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Mach. Learn.
47(2-3):235–256.
Balafoutis, T., and Stergiou, K. 2006. Algorithms for
stochastic CSPs. In Proc. of CP’06, 44–58.
Bessiere, C., and Verger, G. 2006. Strategic constraint satis-
faction problems. In Proc. of CP’06 Workshop on Modelling
and Reformulation, 17–29.
Cesa-Bianchi, N., and Lugosi, G. 2006. Prediction, Learn-
ing, and Games. Cambridge.
Clune, III, J. E. 2008. Heuristic evaluation functions for
general game playing. Ph.D. Dissertation, University of Cal-
ifornia, Los Angeles, USA. Adviser-Korf, Richard E.
Dantsin, E.; Eiter, T.; Gottlob, G.; and Voronkov, A. 2001.
Complexity and expressive power of logic programming.
ACM Comput. Surv. 33(3):374–425.
Genta, I. P.; Nightingalea, P.; Rowleya, A.; and Stergiou, K.
2008. Solving quantified constraint satisfaction problems.
Artificial Intelligence 172(6-7):73877.
Lifschitz, V., and Yang, F. 2011. Eliminating function sym-
bols from a nonmonotonic causal theory. In Knowing, Rea-
soning, and Acting: Essays in Honour of Hector J. Levesque.
College Publicaions.
Lloyd, I. W., and Topor, R. W. 1986. A basis for deductive
database systems. ii. J. Log. Program. 30(1):55–67.
Love, N.; Hinrichs, T.; Haley, D.; Schkufza, E.; and Gene-
sereth, M. 2008. General game playing: Game description
language specification. Technical report.
Möller, M.; Schneider, M. T.; Wegner, M.; and Schaub, T.
2011. Centurio, a general game player: Parallel, Java- and
ASP-based. Künstliche Intelligenz 25(1):17–24.
Nau, D.; Ghallab, M.; and Traverso, P. 2004. Automated
Planning: Theory & Practice. Morgan Kaufmann.
Nguyen, T.-V.-A.; Lallouet, A.; and Bordeaux, L. 2013.
Constraint games: Framework and local search solver. In
Proc. of ICTAI’13, 8–12.
Shoham, Y., and Leyton-Brown, K. 2009. Multiagent Sys-
tems: Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press.
Thielscher, M. 2005. Flux: A logic programming method for
reasoning agents. Theory Pract. Log. Program. 5(4-5):533–
565.
Thielscher, M. 2010. A general game description language
for incomplete information games. In Proc. of AAAI’10,
994–999.
Walsh, T. 2002. Stochastic constraint programming. In
Proc. of ECAI’02, 111–115.

68

