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Abstract

In this paper we theoretically study the minimum Differen-
tially Resolving Set (DRS) problem derived from the classical
sensor placement optimization problem in network source lo-
cating. A DRS of a graph G = (V,E) is defined as a subset
S ⊆ V where any two elements in V can be distinguished
by their different differential characteristic sets defined on
S. The minimum DRS problem aims to find a DRS S in
the graph G with minimum total weight

∑
v∈S w(v). In this

paper we establish a group of Integer Linear Programming
(ILP) models as the solution. By the weighted set cover the-
ory, we propose an approximation algorithm with the Θ(lnn)
approximability for the minimum DRS problem on general
graphs, where n is the graph size.

1 Introduction

In networks, locating diffusion source nodes plays a key
role in epidemic control (Shah and Zaman 2011), data
provenance estimation (Zhou et al. 2010), virus traceabil-
ity (Han et al. 2008) and trendsetter identification (Ze-
jnilovic, Gomes, and Sinopoli 2013). Generally, it is of-
ten impossible to observe the state of all nodes in a net-
work, and we wish to estimate the diffusion sources from
sparsely placed sensors (Pinto, Thiran, and Vetterli 2012).
Since it is costly to place sensors in a network, how to se-
lect a few sensors for accurate source inference with mini-
mal network search costs is an important question for net-
work management (Zejnilovic, Gomes, and Sinopoli 2013;
Seo, Mohapatra, and Abdelzaher 2012).

In this paper we study the problem of selecting a small
subset of nodes S ⊆ V in a network G = (V,E) to
place sensors for source locating. Under the observation
that a sensor placed on a node v can record the ‘infected’
time when the state of the node v changes by receiving
unwanted information (Gomez Rodriguez, Leskovec, and
Krause 2010), our goal is to select a subset of nodes S with
minimum total cost such that the source can be uniquely lo-
cated by the differentials of ‘infected’ times recorded by the
sensor set S. To this end, we formulate a novel minimum
Differentially Resolving Set (DRS) problem and connect it to
the problem of finding sensors in network source locating.

Copyright c© 2016, Association for the Advancement of Artificial
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We focus on the Computational Complexity and Approxima-
bility of the minimal DRS problem, and theoretically pro-
pose a group of Integer Linear Programming (ILP) models
as the solution and establish a Θ(lnn) approximability of
this problem on general graphs.

1.1 Problem Formulation

We consider a network G = (V,E) as an undirected graph
where |V | = n and |E| = m. Assume that information
is diffused by the shortest path. Let d(u, v) be the shortest
distance between nodes u ∈ V and v ∈ V . If node u is the
source and starts a diffusion at an unknown time point t0,
then nodes v and w are infected at time points tv := t0 +
d(u, v) and tw := t0+d(u,w) respectively. The differential
time in Eq. (1) cancels time t0 and can be used as a measure
to locate diffusion source in the network G.

δ(u; v, w) := tw − tv = d(u,w)− d(u, v) (1)

Let S ⊆ V (|S| ≥ 2) be the nodes set to place sensors and
we set an anchor node v∗ ∈ S. Assume that node u is the
diffusion source, then the differential characteristic set for u
can be defined as follows,

Δ(u; v∗, S) :=
{(

v, δ(u; v∗, v)
)}

v∈S\{v∗}
(2)

Also, we have the following definition,
Definition 1. (Differentially Resolving Set) A set S ⊆ V
with |S| ≥ 2 is defined as a Differentially Resolving Set
(DRS) if there exists an anchor node v∗ ∈ S such that
Δ(u′; v∗, S) �= Δ(u′′; v∗, S) holds for all different sources
u′ and u′′. v∗ is called an anchor for S, and V is differen-
tially resolved by

{
(v∗, v)

}
v∈S\{v∗}.

We give a toy example to explain DRS in Fig. 1.
Consider the graph G in Fig. 1 (a) and a subset of
nodes S := {A,B,C} with the anchor node A. The
differential characteristic sets for nodes A,B,C,D,E
and F are {(B, 1), (C, 1)}, {(B,−1), (C, 1)},
{(B, 1), (C,−1)}, {(B,−1), (C,−1)}, {(B, 1), (C, 0)}
and {(B,−1), (C, 0)

}
respectively, which can be reor-

ganized as in Fig. 1 (b). Obviously, any two differential
characteristic sets are different. Hence, S is a DRS
according to Definition 1.

Intuitively, if a set S is a DRS with respect to an anchor
node v∗, we have a one-to-one mapping between source
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(a) Graph

Source A B C D E F
tB − tA 1 -1 1 -1 1 -1
tC − tA 1 1 -1 -1 0 0

(b) Corresponding relation

Figure 1: A toy example of DRS.

u and the differential characteristic set Δ(u; v∗, S) as in
Eq. (3),

u ↔ Δ(u; v∗, S). (3)

This mapping can be used to detect the source uniquely
based on the infected times collected by sensors placed on
the set S ⊆ V in three steps:
1. Calculate the differential characteristic set Δ(u; v∗, S) by

δ(u; v∗, v) = d(u, v)− d(u, v∗) for each potential source
node u;

2. When a diffusion starts from an unknown node, sensor
v ∈ S can record an infected time tv . By calculating
the differential time δ(∗; v∗, v) = tv − tv∗ for each v ∈
S\{v∗}, we can establish a differential characteristic set
using Δ(∗; v∗, S) := {(

v, δ(∗; v∗, v))}
v∈S\{v∗}.

3. Compare Δ(∗; v∗, S) with all the characteristic sets estab-
lished in the 1st step and locate the source uniquely.

Recall the example in Fig. 1, we place three sensors at S =
{A,B,C} to record the ‘infected’ times. The time records
are, say, tA = 6, tB = 5, and tC = 5 respectively, i.e.
tB − tA = −1 and tC − tA = −1, then we can infer that
the diffusion source is node D by the one-to-one mapping as
shown in Fig. 1 (b).

The above procedure shows that a DRS can uniquely de-
termine a source node. However, placing sensors often in-
curs a cost. A natural question is, how to find a DRS with
minimal cost? Let the cost (or the weight) of selecting node
v be w(v) and denote the family of all DRSs by D, then the
optimization problem can be given as follows,

S∗ = arg min
S∈D

∑
v∈S

w(v). (4)

The above function aims to select a subset of nodes S ⊆
V with minimum placing or monitoring cost and the source
can be uniquely located by the ‘infected’ times of nodes in
S. In the sequel, we call Eq. (4) as the minimum DRS
problem.

1.2 Related Work

Resolvability problem. The differential resolvability prob-
lem extends the well-studied resolvability problem, where a
subset of nodes S ⊆ V is a resolving set (RS) of G if there
exists a one-to-one mapping between node u and its char-
acteristic set

{(
v, d(u, v)

)}
v∈S

for all u in V . The mini-
mum cardinality of a RS of G is known as the metric dimen-
sion md(G) of G, which has been extensively studied due to
its theoretical importance and diverse applications (see e.g.,

(Chartrand and Zhang 2003; Epstein, Levin, and Woeginger
2012) and references therein). The problem of finding mini-
mum RS is NP-hard even for planar graphs, split graphs, bi-
partite graphs and bounded degree graphs (Dı́az et al. 2012;
Epstein, Levin, and Woeginger 2012). A lot of research
efforts have been devoted to obtaining the exact values or
upper bounds of the metric dimensions of special graphic
classes (Cáceres et al. 2007).

In the case of diffusion source locating problem, we usu-
ally lose the ability to tell how long it took for a diffusion to
go from source to sensors, and only know the differences in
the arrival times at different nodes in sensor set S. To cater
for this situation, we introduce DRS, a modified version of
RS.
Source locating problem. Recently, there have been a
surge of researches towards the source locating problem.
Shah and Zaman (2011) studied this problem under the
SI model and developed a rumor centrality estimator. By
employing the rumor centrality estimator, multiple sources
detecting was investigated in (Luo, Tay, and Leng 2013),
and single source with partial observations was considered
in (Karamchandani and Franceschetti 2013). The detec-
tion rate of rumor centrality estimator under a priori distri-
bution of the source was evaluated in (Dong, Zhang, and
Tan 2013). Besides the SI model, source detection under
the SIR model has also been studied (Zhu and Ying 2013;
2014), where a sample-path-based estimator for detecting
single source was developed. They later proved that the
sample-path-based estimator remains effective with sparse
observations (Zhu and Ying 2014). The effectiveness of the
sample-path-based estimator under the SIS model with par-
tial observations was investigated in (Luo and Tay 2013).
In addition, several other source detecting algorithms have
also been proposed recently, including the eigenvalue-based
estimator (Prakash, Vreeken, and Faloutsos 2012), the dy-
namic message-passing algorithm (Lokhov et al. 2014), the
fast Monte Carlo algorithm (Agaskar and Lu 2013), and the
divide-and-conquer approach (Zang et al. 2015).

Compared with the above source locating methods, we
focus on the sensor placement problem, which is abstracted
from diffusion source inference, from a combinatorial opti-
mization viewpoint. Our goal is to find a set of sensors with
minimum monitoring cost that can guarantee a DRS, i.e., the
diffusion source can be uniquely located by the differentials
of arrival times recorded by such a set of sensors.

1.3 Our Contributions

In this paper, we study the minimum DRS problem in terms
of computational complexity and algorithmic approximabil-
ity for efficient source locating in networks. Our contribu-
tions are summarized as follows,

1. We define DRS in Definition 1, formulate the minimum
DRS problem in Eq. (4), and connect it to the problem of
finding sensors in network source locating.

2. We establish two sufficient and necessary conditions
for finding the DRS in a network, i.e., in what condition
the partially collected information is sufficient to uniquely
identify the diffusion sources (Proposition 2 and Proposition
4).
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Table 1: Major variables in the paper
Variables Descriptions

G = (V,E) graph G with node set V and edge set E
n number of nodes in the graph G
m number of edges in the graph G
v∗ anchor node

DRS differentially resolving set
D family of all DRSs

d(u, v) length of the shortest path between u, v ∈ V
δ(u; v, w) differential time defined in Eq. (1)

A coefficient square matrix defined in Eq. (5)
IP integer programming model (7) - (9)
y∗ one of the optimum solutions to IP model

ILP¬i integer linear programming model (10) - (12)
Y¬i family of feasible solutions to ILP¬i model
y∗
¬i one of the optimum solutions to ILP¬i model

(Ũ ,Si, w̃) set cover problem associated with ILP¬i

Ci family of feasible solutions to (Ũ ,Si, w̃)

Ci∗ one of optimum solutions to (Ũ ,Si, w̃)
w, w̃ weight defined in Eq. (14) and Eq. (18)
f , g mappings defined in Eq. (16) and Eq. (17)
Ci
ga output of Algorithm 1

3. We propose a group of Integer Linear Programming
(ILP) models to solve the minimum DRS problem (Theorem
1).

4. We develop a (1 + o(1)) lnn-approximation algorithm
to solve the minimum DRS problem in time O(n4 · lnn ·
OPT ) (Algorithm 1, Eq. (23) and Theorem 5).

The rest of the paper is organized as follows. Section 2
discusses DRS in detail. Section 3 presents a group of in-
teger linear programming (ILP) models to solve the mini-
mum DRS problem. Section 4 presents the approximation
algorithm for general graphs. Section 5 concludes the paper.
Table 1 outlines the major variables used.

2 The DRS Analysis

Before the discussion of the minimal DRS problem in
Eq. (4), in this section we first investigate the properties of
DRS, which provide a basic for the latter models.

Proposition 1. If a set S is a DRS with an anchor node
v∗ ∈ S, then any node v ∈ S can be the anchor for S.

Proof. For v ∈ S\{v∗}, we want to prove that v is also a an-
chor for S. Namely, for any u′ �= u′′, we want to search for
a node v̄ ∈ S satisfying δ(u′; v, v̄) �= δ(u′′; v, v̄). Since v∗
is an anchor of S, for any u′ �= u′′, by Definition 1 there
exists v′ ∈ S such that δ(u′; v∗, v′) �= δ(u′′; v∗, v′). If
δ(u′; v∗, v) �= δ(u′′; v∗, v), then let v̄ = v∗. If δ(u′; v∗, v) =
δ(u′′; v∗, v), combined with δ(u′; v∗, v′) �= δ(u′′; v∗, v′),
we have δ(u′; v, v′) �= δ(u′′; v, v′), then let v̄ = v′.

Proposition 1 reveals that the differentially resolving
property does not depend on the choice of anchor node.
Henceforth we will not specify the anchor node when we
mention the DRS, except for the application scene of diffu-
sion source inference.

Proposition 2. Let S ⊆ V , then S is a DRS if and only if,
for any u′ �= u′′ in V , there exists v′ �= v′′ in S such that
δ(u′; v′, v′′) �= δ(u′′; v′, v′′).

Proof. (⇒) It is just a corollary of Definition 1. (⇐) Fix a
node v∗ ∈ S. Suppose for any u′ �= u′′ in V , there exists
v′ �= v′′ in S such that δ(u′; v′, v′′) �= δ(u′′; v′, v′′). We
claim that the two equations δ(u′; v∗, v′′) = δ(u′′; v∗, v′′)
and δ(u′; v′, v∗) = δ(u′′; v′, v∗) can not hold simultane-
ously. Otherwise, we will have δ(u′; v′, v′′) = δ(u′′; v′, v′′),
which contradicts the assumption. In other words, either
δ(u′; v∗, v′′) �= δ(u′′; v∗, v′′) or δ(u′; v′, v∗) �= δ(u′′; v′, v∗)
holds, which means Δ(u′;S, v∗) �= Δ(u′′;S, v∗). Hence S
is a DRS by Definition 1.

Proposition 3. Let S ⊆ S′ ⊆ V . If S is a DRS, then S′ is
also a DRS.

Proof. It can be easily reached by the necessary and suffi-
cient condition in Proposition 2.

Proposition 2 establishes a sufficient and necessary condi-
tion for finding the DRS in a network. Proposition 3 presents
a conduction of differentially resolving property.

3 Programming Models

We consider a network G = (V,E) as an undirected graph
where |V | = n and |E| = m. For the sake of simplicity, we
define V := {1, 2, ..., n}. Let d(u, v) be the length of the
shortest u − v path for all u, v ∈ V . The coefficient square
matrix A of n(n− 1)/2-order is defined as follows,

A(u,v)(i,j) =

{
1, if δ(u; i, j) �= δ(v; i, j)
0, if δ(u; i, j) = δ(v; i, j)

(5)

where 1 ≤ u < v ≤ n, 1 ≤ i < j ≤ n. Let yi in Eq. (6)
denote whether a node i belongs to a DRS S for 1 ≤ i ≤ n,

yi =

{
1, if i ∈ S
0, if i /∈ S

(6)

i.e., yi = 1S(i). From now on the set S is also viewed as
a {0, 1}-valued vector y = (yi)

n
i=1 of n-dimension. The

integer programming (IP ) model for the minimum DRS
problem in Eq. (4) can be formulated as follows,

(IP ) : min
n∑

k=1

w(k) · yk (7)

subject to:

n−1∑
i=1

n∑
j=i+1

A(u,v)(i,j) · yi · yj ≥ 1, 1 ≤ u < v ≤ n (8)

yk ∈ {0, 1}, 1 ≤ k ≤ n (9)

The following proposition shows that a feasible solution of
(8) and (9) defines a DRS S of G, and vice versa.

Proposition 4. A set S is a DRS of G if and only if con-
straints (8) and (9) are satisfied. In other words, the IP
model is equivalent to the minimal DRS problem.
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Proof. (⇒) Suppose that S is a DRS, then for any u �= v
there exist i �= j in S such that δ(u; i, j) �= δ(v; i, j) by
Proposition 2. Without loss of generality we may assume
that u < v and i < j. It follows that A(u,v),(i,j) = 1 and
consequently constraints (8) and (9) are satisfied.

(⇐) According to (6) set S = {i ∈ V |yi = 1}. If con-
straints (8) are satisfied, then for each 1 ≤ u < v ≤ n,
there exist i < j in V , such that A(u,v),(i,j) · yi · yj = 1,
which implies i, j ∈ S and A(u,v),(i,j) = 1 (i.e. δ(u; i, j) �=
δ(v; i, j)). By Proposition 2, it follows that the set S is a
DRS of G.

Note that IP model (7)− (9) has n variables and n2/2−
n/2 non-linear constraints. Since non-linear optimization
problem is very hard to handle, the IP model (7) − (9) has
serious limitations on solving the minimal DRS problem. To
address the issue, we break up the IP model into a series of
integer linear programming (ILP¬∗) models. The core
idea is to make some yi fixed (equal to 1) and optimize other
{yk}k �=i. Specifically, for each i ∈ V , we consider the fol-
lowing formulation.

(ILP¬i) : min

n∑
k=1

w(k) · yk (10)

subject to:
n∑

k=1

A(u,v)(i,k) · yk ≥ 1, 1 ≤ u < v ≤ n (11)

yi = 1, yk ∈ {0, 1}, k �= i (12)

where A(u,v)(i,i) := 0 and A(u,v)(i,k) := A(u,v)(k,i) in the
case of i > k.
Proposition 5. If constraints (11) and (12) are satisfied,
then the set S = {k ∈ V |yk = 1} is a DRS of G.

Proof. If constraints (11) and (12) are satisfied, then for
each 1 ≤ u < v ≤ n, there exist k �= i in V , such
that A(u,v),(i,k) · yk = 1, which implies i, k ∈ S and
A(u,v),(i,k) = 1 (i.e. δ(u; i, k) �= δ(v; i, k)). By Proposi-
tion 2, it follows that the set S is a DRS of G.

Now we have established a series of linear models
{ILP¬i}ni=1 drawn from non-linear model IP . Such a
transformation leads to a fundamental question that, what
is the relationship between them?
Theorem 1. Let y∗¬i denote one of the optimum solutions to
ILP¬i model (10)− (12), then we have that

y∗ := arg min
y∈{y∗¬i}n

i=1

n∑
k=1

w(k) · yk (13)

is one of the optimum solutions to IP model (7) − (9). In
Eq. (13) the bold letter y = (yk)

n
k=1 stands for a {0, 1}-

valued vector of n-dimension.

Proof. For the sake of simplicity, we define

w(y) :=
n∑

k=1

w(k) · yk. (14)

From Proposition 5, each y∗¬i corresponds to a DRS, and so
do y∗. Hence it suffices to prove that

w(y∗) ≤ w(y)

holds for any y satisfying constraints (8) and (9). Assume
yi0 = 1, then y satisfies the constraints (11) and (12) with
i replaced by i0, i.e., y is a feasible solution of (ILP¬i0).
Therefore, we have

w(y∗) ≤ w(y∗¬i0
) ≤ w(y)

where the first ‘≤’ is from Eq. (13) and the second ‘≤’ stems
from that y is a feasible solution of (ILP¬i0).

So far, we have proposed a series of linear models
{ILP¬i}ni=1 to solve the minimal DRS problem. Specif-
ically, we solve linear models {ILP¬i}ni=1 separately, get
the optimum solution y∗¬i to each model, and select the one
with minimal weight, i.e., y∗ := argminy∈{y∗¬i}n

i=1
w(y), as

the solution to minimal DRS problem. Theorem 1 explains
that y∗ is optimum.

Since each ILP¬∗ model has n − 1 variables and
n2/2 − n/2 linear constraints, the mathematical program-
ming model can be solved to optimality only for low dimen-
sion problems.

4 An Approximation Algorithm

In this section, we propose an algorithm for the minimal
DRS problem in general graphs that can achieve an approx-
imation ratio of (1 + o(1)) lnn. We first transform each
ILP¬∗ model to a weighted set cover problem and then use
the greedy algorithm to solve the weighted set cover prob-
lem within logarithmic approximation.

4.1 Transformation to weighted set cover
problems

Generally speaking, a weighted set cover problem consists
of a universe set U , a family of sets S = {S1, . . . , Sm} sat-
isfying U ⊆ ∪S := ∪m

k=1Sk, and a weight w(Si) assigned
to each set Si. The goal is to find a subfamily of sets C ⊆ S
such that U ⊆ ∪C so as to minimize the total weight of the
sets in C (Cygan, Kowalik, and Wykurz 2009). We denote
a weighted set cover problem by an ordered triple (U,S, w)
hereafter.

Back to the ILP¬i model, we establish a new weighted
set cover problem equivalent to it. Specifically we construct
the universe set Ũ as follows

Ũ :=
{
(u, v)

∣∣1 ≤ u < v ≤ n
}

Define a family of sets Si = {Si
1, . . . , S

i
n} like this

Si
k :=

{
(u, v)

∣∣A(u,v)(i,k) = 1
}

for each k ∈ {1, . . . , n}. Obviously, we have Si
i = ∅ here.

We assign each set Si
k a weight w(k), i.e.,

w̃(Si
k) := w(k).

Proposition 6. For the constructed universe set Ũ and fam-
ily of sets Si = {Si

1, . . . , S
i
n}, we have Ũ = ∪n

k=1S
i
k

holds, i.e., the ordered triple (Ũ ,Si, w̃) defines a weighted
set cover problem.
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Proof. It suffices to prove that, for any (u, v) ∈ Ũ , there
exists some k ∈ {1, . . . , n} such that (u, v) ∈ Si

k, i.e.
A(u,v)(i,k) = 1. First, we can easily verify that

δ(u;u, v) �= δ(v;u, v) (15)

Second, we claim that the two equations δ(u; i, u) =
δ(v; i, u) and δ(u; i, v) = δ(v; i, v) can not hold si-
multaneously. Otherwise, we will have δ(u;u, v) =
δ(v;u, v), which contradicts Eq. (15). In other words, either
δ(u; i, u) �= δ(v; i, u) or δ(u; i, v) �= δ(v; i, v) holds, which
means that there exists such a k satisfying A(u,v)(i,k) =
1.

Proposition 7. There exists a one-to-one correspondence
between the family Y¬i of all feasible solutions to the inte-
ger linear programming (ILP¬i) model and the family Ci

of all feasible solutions to the weighted set cover (Ũ ,Si, w̃)
problem. Specifically there exist two mappings f : Y¬i →
Ci and g : Ci → Y¬i such that f ◦ g and g ◦ f are both
identity mappings.

Proof. We can define the mappings f and g as follow

f(y) := {Si
k}k∈{j|yj=1}\{i} (16)

and
g(Ci) :=

(
1Ci∪{Si

i}(S
i
k)
)n
k=1

(17)

for each y ∈ Y¬i and Ci ∈ Ci. It is easy to verify that both
f and g are well defined, i.e., f(y) ∈ Ci for each y ∈ Y¬i

and g(Ci) ∈ Y¬i for each Ci ∈ Ci. From the definitions, it
is trivial that f ◦ g and g ◦ f are both identity mappings.

Theorem 2. Assume a subfamily Ci∗ ⊆ Si is one of opti-
mum solutions to the weighted set cover (Ũ ,Si, w̃) problem,
then g(Ci∗) is one of optimum solutions to ILP¬i model.

Conversely, assume y∗¬i is one of optimum solutions to
ILP¬i model, then f(y∗¬i) is one of optimum solutions to
the weighted set cover (Ũ ,Si, w̃) problem.

Proof. For the sake of simplicity, we denote

w̃(Ci) :=
∑

Si
k∈Ci

w̃(Si
k) (18)

which satisfies that

w̃(Ci) = w
(
g(Ci)

)− w(i) (19)

for each Ci ∈ Ci and

w̃
(
f(y)

)
= w(y)− w(i) (20)

for each y ∈ Y¬i. If Ci∗ is one of optimum solutions to the
weighted set cover (Ũ ,Si, w̃) problem, for any y ∈ Y¬i, we
have

w(g(Ci∗)) = w̃(Ci∗) + w(i)

≤ w̃(f(y)) + w(i)

= w(y).

Hence g(Ci∗) is one of optimum solutions to ILP¬i model.

Conversely, if y∗
¬i is one of optimum solutions to ILP¬i

model, for any Ci ∈ Ci, we have

w̃(f(y∗
¬i)) = w(y∗¬i)− w(i)

≤ w(g(Ci))− w(i)

= w̃(Ci).

Hence f(y∗
¬i) is one of optimum solutions to the weighted

set cover (Ũ ,Si, w̃) problem.

Proposition 7 and Theorem 2 tell us that we can approx-
imate the ILP¬i model from the view of the weighted set
cover (Ũ ,Si, w̃) problem.

4.2 Approximation of the ILP¬i model

For a large network, any straightforward method for ex-
actly solving the weighted set cover (Ũ ,Si, w̃) problem suf-
fers from combinatorial explosion. Therefore, we consider
approximately solving the problem with greedy algorithm,
which is an efficient method to find a good approximate so-
lution.

We first define the cover range function C as follows

C(Ci) :=
⋃

Si·∈Ci

Si
·

for each subfamily Ci ⊆ Si. Let |C(Ci)| denote the number
of elements in C(Ci). Define the marginal increment Δ of
the cover range function C as follows

Δ(Ci, Si
· ) :=

∣∣∣C(Ci ∪ {Si
· }
)∣∣∣− ∣∣∣C(Ci

)∣∣∣ (21)

Now we present the greedy algorithm (Algorithm 1) for the
weighted set cover (Ũ ,Si, w̃) problem. This algorithm it-
eratively selects a new set Si

∗ that maximizes the weighted
incremental change of |C(·)|, to be included into the cover
Ci, until the universe set Ũ is covered.

Algorithm 1: Finding a minimum weighted cover Ci
ga

1: initial Ci
ga ← ∅

2: while C(Ci
ga) �= Ũ do

3: Si
∗ ← arg max

Si·∈Si\Ci
ga

Δ(Ci
ga,S

i
· )

w̃(Si· )

4: Ci
ga ← Ci

ga ∪ {Si
∗}

5: end while
6: output Ci

ga

Proposition 8. The marginal increment Δ is submodular in
the sense that

Δ(Ci
1, S

i
· ) ≥ Δ(Ci

2, S
i
· ) (22)

for any Ci
1 ⊆ Ci

2 and Si
· ∈ Si\Ci

2.

Proof. By the definition in Eq. (21), it is trivial to verify that

Δ(Ci, Si
· ) =

∣∣∣Si
·
∖
C(Ci)

∣∣∣
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Based on this observation, it follows that∣∣∣Si
·
∖
C(Ci

1)
∣∣∣ ≥ ∣∣∣Si

·
∖
C(Ci

2)
∣∣∣

for any Ci
1 ⊆ Ci

2 and Si
· ∈ Si\Ci

2, since we have C(Ci
1) ⊆

C(Ci
2). Hence Eq. (22) is reached and Δ is submodular.

Theorem 3. The time complexity of Algorithm 1 is O(n3 ·
lnn · OPT ) for the weighted set cover (Ũ ,Si, w̃) problem
with an approximation ratio of (1 + o(1)) lnn, where OPT

is the size of the optimum solution to (Ũ ,Si, w̃).

Proof. By the submodularity of Δ, the classical weighted
set cover theory (Cygan, Kowalik, and Wykurz 2009) en-
sures the result on the approximation ratio of (1+o(1)) lnn.
To implement Algorithm 1, we first design a table (denoted
as TABLE I) to store the distance values

{
d(u, v)

}
u,v∈V

be-
tween each pair of nodes in G, which takes time of O(n2).
Based on TABLE I, we design another table {A(u,v)(i,k)}
with i fixed (denoted as TABLE II), which also takes time of
O(n3). By using TABLE II, it needs time O(n3) to select
each Si

∗ in the third row of Algorithm 1. Note that the whole
loop takes at most O(lnn · OPT ) times in the worst case.
Overall, the algorithm runs in O(n3 · lnn) time.

Theorem 4. (Approximation of the ILP¬i model) Denote
the output of the greedy algorithm (Algorithm 1) as Ci

ga, then
g(Ci

ga) can approximate the ILP¬i model with a ratio of
(1 + o(1)) lnn.

Proof. From Proposition 7, we know that g(Ci
ga) is a feasi-

ble solution to the (ILP¬i) model. Let y∗ be any optimum
solution to the (ILP¬i) model. By Theorem 2, f(y∗) is one
of optimum solutions to the weighted set cover (Ũ ,Si, w̃)
problem. Hence, we have

w
(
g(Ci

ga)
)

= w̃(Ci
ga) + w(i)

≤ (1 + o(1)) lnn · w̃(f(y∗)) + w(i)

≤ (1 + o(1)) lnn · (w̃(f(y∗)) + w(i)
)

= (1 + o(1)) lnn · w(
g ◦ f(y∗)

)
= (1 + o(1)) lnn · w(

y∗)
where the first two ‘=’s are from Eq. (19), the third ‘=’ comes
from Proposition 7 that g ◦ f is an identity mapping, the
1st ‘≤’ stems from Theorem 3, and the second ‘≤’ is from
simple scale method.

4.3 Approximation of the minimal DRS problem

Given the integer linear programming (ILP¬i) model, we
can first employ Algorithm 1 to output an approximate so-
lution Ci

ga to the weighted set cover (Ũ ,Si, w̃) problem.
By Theorem 4, we know that g(Ci

ga) can approximate the
ILP¬i model with a ratio (1 + o(1)) lnn.

Similarly, we can run Algorithm 1 for each i ∈
{1, . . . , n} to obtain n approximate solution

{Ci
ga

}n

i=1
to different weighted set cover problems. After the g-
transformation in Eq. (17), we can obtain n approximate

solutions
{
g(Ci

ga)
}n

i=1
to the n integer linear programming{

ILP¬i

}n

i=1
models respectively.

Inspired by Theorem 1, we select the one, say g(Ci0
ga),

which has the minimum weight, i.e.,

w(g(Ci0
ga)) = min

{
w
(
g(Ci

ga)
)
: i = 1, . . . , n

}
(23)

as the approximate solution to the IP model (7) − (9). In
other words, we may select g(Ci0

ga) ∈ {0, 1}n as the approx-
imate solution to the minimal DRS problem by Proposition
4. According to the definition of g(Ci0

ga), we obtain Theorem
5 as follows.

Theorem 5. The minimal DRS problem can be approxi-
mated in O(n4 · lnn · OPT ) time within an accuracy ratio
of (1 + o(1)) lnn.

Proof. Proof. According to Theorem 3 and Eq. (23), the
time complexity for getting g(Ci0

ga) is O(n4 · lnn · OPT ).
Let y∗ be an optimal solution to the minimal DRS prob-
lem in Eq. (4). Based on Theorem 1, there exists some
j0 ∈ {1, . . . , n} such that w(y∗

¬i0
) = w(y∗), where y∗

¬j0

is one of optimum solutions to the (ILP¬j0) model. Based
on Theorem 4, we have

w(g(Ci0
ga)) ≤ w(g(Cj0

ga))

≤ (1 + o(1)) lnn · w(y∗¬j0
)

= (1 + o(1)) lnn · w(y∗)
where the first ‘≤’ is from Eq. (23), the second ‘≤’ comes
from Theorem 4, and the last ‘=’ stems from the choice of
y∗¬i0

above. Hence Theorem 5 holds.

5 Conclusions

In this paper we theoretically studied the minimum differen-
tially resolving set (DRS) problem derived from the sensor
placement optimization for diffusion source inference in net-
works. We presented a group of integer linear programming
(ILP) models as the solution. We presented an algorithm
with time complexity of O(n4 ·lnn·OPT ) for general mini-
mal DRS problem within an accuracy ratio of (1+o(1)) lnn.

In the future, we will study the minimal DRS problem
under stochastic diffusion models (Bailey and others 1975),
develop more efficient and effective heuristics, and conduct
experiments on real-world social network data to evaluate
the performance of the proposed methods.
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