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Abstract

Over the past two decades, water markets have been suc-
cessfully fielded in countries such as Australia, the United
states, Chile, China, etc. Water users, mainly irrigators, have
benefited immensely from water markets. However, the cur-
rent water market design also faces certain serious barriers.
It has been pointed out that transaction costs, which exists
in most markets, induce great welfare loss. For example, for
water markets in western China discussed in this paper, the
influence of transaction costs is significant. Another impor-
tant barrier is the locality of trades due to geographical con-
straints. Based on the water market at Xiying Irrigation, one
of the most successful water market in western China, we
model the water market as a graph with minimum transaction
thresholds on edges. Our goal is to maximize the transaction
volume or welfare. We prove that the existence of transaction
costs results in no polynomial time approximation scheme
(PTAS) to maximize social welfare (MAX SNP-hard). The
complexities on special graphs are also presented. From a
practical point of view, however, optimal social welfare can
be obtained via a well-designed mixed integer linear program
and can be approximated near optimally at a large scale via a
heuristic algorithm. Both algorithms are tested on data sets
generated from real historical trading data. Our study also
suggests the importance of reducing transaction costs, for ex-
ample, institutional costs in water market design. Our work
opens a potentially important avenue of market design within
the agenda of computational sustainability.

Introduction

Water markets provide an efficient approach for water re-
allocation (Rosegrant and Binswanger 1994). The discus-
sion on water markets dates back to 1980s, followed by
heated debates (Howe, Schurmeier, and Shaw 1986; Sal-
iba 1987). Whereafter, the advantages of water markets have
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been proved worldwide, such as in Australia, United States,
South Africa, Chile and China (Bjornlund and McKay 2002;
Grafton et al. 2011). Previous study found that in an active
water market, agents with higher marginal product tend to
buy water from lower ones(Bjornlund and McKay 1998).
On the one hand, the existence of opportunity costs encour-
age water users to improve water use efficiency. (Nieuwoudt
and Armitage 2004; Turral et al. 2005). On the other hand, in
dry years, high-marginal-product agents can buy water from
markets to fulfill their demand and low-marginal-product
ones earn money by selling water. In this way, agents suf-
fer lower risks in drought years. (Ashton et al. 2009)

However, water markets typically do not work as well as
expected. One major cause is transaction costs which sig-
nificantly reduce the incentive for trading. (Carey, Sunding,
and Zilberman 2002; Archibald and Renwick 1998) Differ-
ent countries’ water markets meet different restrictions be-
cause of local policies and cultures. Our study focuses on
the water market in Xiying Irrigation in Northwestern China,
which was established in 2008 and is one of the most suc-
cessful water markets in China. Some properties of the stud-
ied area are as follows.
• Water is allocated to villages for each 2-month period.
• Water trades are conducted between villages.
• Most villages are only willing to trade with whose close

to them because the agents from close villages are usually
familiar with and trust each other.

• Villages are not willing to trade a tiny amount of water be-
cause of transaction costs (time costs, transportation costs,
human costs).

• Because of short trading period, high transaction costs and
small price differences, straddle has never been observed.

• Villages are not willing to abdicate the rights for deciding
prices, making it impractical to propose a mechanism with
pricing rule in the current market.

• Based on all the above properties, currently, villages pro-
pose their bids or asks to the center for trading and the
center recommends sellers to buyers. When a buyer and a
seller reach an agreement on volume and price, they need
to sign a contract.
In light of these observations, we model a water right mar-

ket (water market for short) as a directed bipartite graph con-
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sisting of a set of buyers and a set of sellers. An arc is ori-
ented from a buyer to a seller if and only if they are compati-
ble (geographically connected and not hard to make the trade
approved) and the buyer’s bid price is above the seller’s ask
price. On each arc, there is volume threshold indicating the
lowest transaction volume on this arc, if there is any. Each
vertex has a price and a capacity that specify the demand or
supply of the vertex.

A trading assignment is simply a feasible flow. The value
for each arc is its trading volume times the price differences
on the end vertices. The social welfare is the sum of values
for all arcs. Our goal is to compute a trading assignment that
maximizes (1) total trading volume; or (2) social welfare.

Our study on maximizing total trading volume and social
welfare is motivated by (Shapley and Shubik 1971), which
shows that any social welfare maximizing assignment cor-
responds to a stable matching outcome. In other words, our
study, similar as (Shapley and Shubik 1971), concern about
the property of stability instead of truthfulness.

Our contribution

• Transaction costs and locality feature induce compu-
tational barriers to maximizing social welfare or vol-
ume. Denote the problem of maximizing trading vol-
ume by MAX-VOLUME and the other by MAX-WELFARE.
We prove that MAX-VOLUME is NP-HARD and MAX-
WELFARE is MAX SNP-HARD. Even on simple graphs, the
computational complexity is still high. MAX-WELFARE
is NP-HARD even on some “sparse” graphs1 and binary
trees. MAX-WELFARE can be solved in polynomial time
on line graphs and cycle graphs but with a high order.

• We overcome the computational barrier perfectly by well-
designed optimization and a heurstic algorithm. We de-
signed a novel mixed linear integer program to solve the
MAX-WELFARE problem. The performance of both algo-
rithms are proved to be efficient on data sets generated
based on historical trading data.

• We compare the running time and social welfare with dif-
ferent transaction thresholds, which suggests the impor-
tance of reducing transaction costs.

Additional related work

Matching market has a long history in economic literature
(see (Myerson and Satterthwaite 1983; Barbera and Jack-
son 1995; Shapley and Shubik 1971) and (Roth and So-
tomayor 1992, Chapter 8)). The computation problem on
matching market has also been considered in various set-
tings (Kalagnanam, Davenport, and Lee 2000; Sandholm
and Suri 2001; 2002; Blume et al. 2009; Li et al. 2014;
Liu, Tang, and Fang 2014; Luo and Tang 2015). Our work
differs from them in that we have thresholds on arcs and we
consider special structures of graphs. Our problem is also
related to a variant of the maximum flow problem where
each edge has a minimum flow requirement. This version of
maximum flow can be solved in polynomial time (Ford and
Fulkerson 2010). The difference is that, in our model, even

1It is defined later as k connected graph.

an edge is labeled with a transaction threshold, the trading
volume can still be 0; while in the maximum flow model,
this volume has to be above the minimum flow in any feasi-
ble solution.

Erfani et al (2014) build a model for water market in Eng-
land via optimization. Our work is significantly different
from that because of local policies. In addition, our work
is quite involved in computation issues. Water right market
design has in fact been considered in the multiagent system
literature as well (Giret et al. 2011; Almajano et al. 2012).
They consider the problem of computer assistance system,
rather than from an optimization lens.

Preliminaries

A water right market can be modeled by a directed bipartite
graph G = (V, E), where V = VB ∪ VS . VB denotes the
set of buyers, while VS denotes the set of sellers. Agent vi
has a price pi ∈ R+ for each unit of water and the maxi-
mum amount of water qi ∈ R+ it demands/supplies. Each
directed arc vivj ∈ E denotes that seller vi can sell water
right to buyer vj . vi and vj are connected if and only if three
properties must hold in reality: (1) vi and vj are not distant
and familiar with each other; (2) vi is a seller and vj is a
buyer; (3) pi < pj .

The first constraint is particularly interesting as it distin-
guishes our market from a common marketplace and endows
our market with graph properties.

For each arc vivj , there is a minimum amount of trans-
action volume thij imposed, if a transaction were to occur
between vi and vj . This transaction threshold ensures that
each transaction covers its cost that is not reflected in the
current model.

A trading assignment of the market is a flow from sellers
to buyers. We denote the trading volume on vivj by fij . Ac-
cording to local policies, it is always the case that the center
shall not specify any trading price but to leave the price bar-
gaining process to the buyer and seller that are involved2.
After the bargaining phase, a price pij ∈ [pi, pj ] is derived.

We aim to optimize two objectives in this paper: trading
volume and social welfare. Trading volume is defined to be

V O =
∑

vivj∈E
fij (1)

While, social welfare3 is defined to be

SW =
∑

vi∈VS

∑

vivj∈E
fij ∗ (pij − pi) +

∑

vi∈VB

∑

vjvi∈E
fji ∗ (pi − pji)

=
∑

vivj∈E
fij ∗ (pj − pi) (2)

For an instance in which the price differences between any
buyer and any seller are the same, social welfare is reduced

2the price is even fixed in some markets since 2013. However,
we also care about the case without this policy.

3The same concept also appears in related work like (Brooks
and Harris 2008)
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to trading volume. Therefore, maximizing social welfare is
a harder problem than maximizing trading volume.

To sum up, a feasible trading assignment satisfies the fol-
lowing constraints:

• Transaction threshold constraints: ∀vivj ∈ E , if fij > 0,
then fij ≥ thij .

• Supply/demand feasibility constraints: ∀vi ∈ VS ,∑
vivj∈E fij ≤ qi and ∀vi ∈ VB,

∑
vjvi∈E fji ≤ qi

Remarks: In reality, the marginal value of a single unit
water may change along with the amount of water they own,
such as piecewise linear. This can be solved by adding some
constraints to our model and won’t affect our theoretical re-
sults. As the curve of the valuation for single unit water is
hard to estimate, we only consider the case of fixed marginal
valuation.

Water right trading assignments

In this section, we investigate the computation problems for
the two objectives: trading volume and social welfare. De-
note the problem of maximizing trading volume by MAX-
VOLUME and the other by MAX-WELFARE.

Maximizing total trading volume

As mentioned before, MAX-VOLUME can be regarded as
a special case of MAX-WELFARE. So, the NP-HARDNESS
of MAX-VOLUME implies the NP-HARDNESS of MAX-
WELFARE.

In this subsection, we prove the decision version of MAX-
VOLUME is NP-COMPLETE, that is, deciding whether the to-
tal trading volume can reach a fixed value X . We do this by
a reduction from the well-known NP-COMPLETE problem
PARTITION

Definition 1. Given a set of n objects O = {o1, o2, . . . .on},
the weight of oi is wi. The PARTITION PROBLEM is to de-
cide whether there is a subset S of O satisfying

∑
oi∈S wi =∑

oi∈O\S wi. It is a well-known NP-COMPLETE problem.

Theorem 1. Deciding whether the total trading volume can
reach a fixed value X is NP-COMPLETE.

Proof. Given a solution, we can easily verify whether the
total trading volume reaches x. So, this problem is in NP.

Given an instance of PARTITION PROBLEM, O =
{o1, o2, . . . .on}, where oi has weight wi. We construct an
instance of water market as follows. We set X =

∑
oi∈O wi.

The graph of the water market is G = (V, E). V contains
n sellers v1, v2, . . . , vn and two buyers vn+1 and vn+2 For
each seller vi(i = 1, 2, . . . , n), pi = 0, qi = wi. For
each buyer vi(i = n + 1, n + 2), pi = 1, qi = X/2.
∀i = 1, 2, . . . , n, ∀j = n+1, n+2, vivj ∈ E with thij = qi.

We claim that the total trading volume can reach X if and
only if the PARTITION PROBLEM has a feasible partition.
Given a feasible trading assignment, for i = 1, 2, . . . , n,
fi,n+1 > 0 if and only if we put oi into S. In this way,
we have constructed a feasible partition. Given a feasible
partition, for i = 1, 2, . . . n, if oi ∈ S, set fi,n+1 = qi,
fi,n+2 = 0; else set fi,n+2 = qi, fi,n+1 = 0. In this way,

we obtain a feasible trading assignments. Both directions
then follow directly. So a feasible trading assignment cor-
responds to a feasible partition. Therefore, we have proved
the theorem.

Inapproximability

We have known that MAX-WELFARE is NP-HARD. In ad-
dition, we show that MAX-WELFARE is not even approxi-
mative with o(1) error ratio in polynomial time. We need
to introduce a complexity class called MAX SNP (Papadim-
itriou and Yannakakis 1991). It is known that MAX SNP-
COMPLETE problems do not have polynomial algorithm to
achieve an approximation ratio4 more than g (unless P=NP),
where g is a constant less than 1.

Papadimitriou and Yannakakis (1991) list 10 known prob-
lems that are MAX SNP-COMPLETE, including MAX CUT,
MAX 3-SAT and MAX 2-SAT.

Theorem 2. MAX-WELFARE is MAX SNP-HARD.

Proof. Our proof is based on the fact that MAX IS-3 (max-
imum independent set with degree of each vertex bounded
by 3) is a MAX SNP-COMPLETE problem (Berman and Fu-
jito 1995).

Given an instance I of MAX IS-3 on graph G = (V, E),
we construct an instance I ′ of water right assignment prob-
lem as follows. Without loss of generality, G can be con-
sidered connected. G′ = (V ′, E ′) denotes the graph of I ′.
For each vertex vi ∈ V , seller ai and buyer bi are in V ′,
qai

= qbi = |V|, pai
= 0, pbi = 1/|V| aibi ∈ E ′ with

thaibi = |V|. For each edge vivj ∈ E , eij ∈ V ′ denotes a
buyer in the graph with peij = qeij = 1. aieij , ajeij ∈ E ′,
thaieij = thajeij = 1. We have the maximum social wel-
fare OPT (I ′) = |E| + OPT (I), where OPT (I) denotes
the optimal solution for the MAX IS-3 instance, OPT (I ′)
denotes the optimal social welfare in the water right assign-
ment problem. In fact our instance is constructed for the
vertex cover problem. Given the optimal solution for I ′, we
have that there is an optimal solution where all eij’s are as-
signed with sellers. In this specific solution, If ai is assigned
to bi, it indicates vi is not in the minimum vertex cover of G,
thus in the maximum independent set.

To finish this proof, we need the so-called L-reduction5.
Specifically for our problem, c denotes a solution for I ,
which can be constructed from a solution c′ of I ′ in poly-
nomial time. If we can prove OPT (I ′) ≤ αOPT (I) and
OPT (I)− c ≤ β(OPT (I ′)− c′) (α and β are positive con-
stants), it implies our problem is harder to be approximated.

On the one hand, We notice that |V ′| = |V| ∗ 2 + |E| ≤
|V| ∗ 2 + |V| ∗ 3/2 = 3.5|V|. The size of a maximum inde-
pendent set is at least |V|/4. We have OPT (I ′) ≤ 3.5|E| ≤
14OPT (I).

On the other hand, we claim OPT (I)− c ≤ OPT (I ′)−
c′. Given a solution s′ of I ′ with social welfare c′, we can
construct a solution s for I with cost c as follows. (1) for
every unassigned eij , force seller ai to sells to an amount
eij . This step will not decrease social welfare. (2) if ai and

4the cost of a solution divided by the cost of an optimal solution
5described in (Papadimitriou and Yannakakis 1991)
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bi are assigned to trade, put vi into the independent set. In
this way, we construct a feasible solution for the MAX IS-
3 problem. If step (1) is not performed, OPT (I) − c =
OPT (I ′)−c′. Since step (1) will not increase OPT (I ′)−c′,
so OPT (I)− c ≤ OPT (I ′)− c′ holds.

So, max-welfare is MAX SNP-HARD.

A mixed integer linear program for
MAX-WELFARE

We have already known that MAX-WELFARE is NP-HARD
(because of the NP-HARDNESS of MAX-VOLUME) and can-
not be approximated efficiently. However, this difficulty can
be resolved, to a certain degree, by a concise formulation
of mixed integer linear programming (MIP). We will show
in the experiment section that, with MIP solvers such as
CPLEX 6, we can scale this problem to considerably large
instances.

A key observation here is that the flow on any edge is
either 0 or no less than the transaction threshold. We can
then use a 0/1 indicator xij to denote the flow be 0 or no
less than the transaction threshold. Let fij denote the trading
volume on the arc vivj .

Optimization 1

Maximize
∑

vivj∈E
fij ∗ (pj − pi)

Subject to fij ≥ thij ∗ xij , ∀vivj ∈ E
fij ≤ qj ∗ xij , ∀vivj ∈ E
∑

vivj∈E
fij ≤ qi, ∀vi ∈ VS

∑

vivj∈E
fij ≤ qj , ∀vi ∈ VB

Theorem 3. Optimization 1 always returns the solution of
MAX-WELFARE

Intuitively, when we focus on an edge vivj independently,
it needs to satisfy the first two constraints. xij can only be
0 or 1. When xij = 0, the first two constraints become
0 ≤ fij ≤ 0, indicating fij = 0, denoting the case where
vi and vj don’t trade. When xij = 1, the first two con-
straints become thij ≤ fij ≤ qj . From the last constraint
and the range of fij , fij ≤ qj can always be satisfied.
thij ≤ fij described the transaction threshold. So, we found
when xij = 1, the first two constraints require exactly satis-
fying the transaction threshold. In one word, xij = 0 covers
the case where vi and vj don’t trade with each other, while
xij = 1 covers the case then they trade. xij is independent
of all the others and represents two separated intervals.

Lines and cycles

As shown above, the computational problem for our model
is NP-HARD and even MAX SNP-HARD. We are curious to

6http://www-01.ibm.com/software/commerce/optimization/
cplex-optimizer/

explore the complexities on special graphs, such as lines, cy-
cles, trees and some other sparse graphs. These results can
also be helpful to markets with geographic constraints and
interesting as theoretical problems. First, we show MAX-
WELFARE is polynomial for line graphs and cycle graphs.
Definition 2. A line is a graph G = (V, E), where V =
{v1, v2, . . . , vn}, vivj ∈ E only if |(i− j)| = 1.
Definition 3. A cycle is a graph G = (V, E), where V =
{v1, v2, . . . , vn}, vivj ∈ E only if |(i− j)| = 1 modulo n .

Algorithm 1 provides a polynomial algorithm for solv-
ing MAX-WELFARE on a line graph. In a line, if two neigh-
bors do not conduct a trade, the graph can be divided into
two independent lines. If two neighbors conduct a trade, the
transaction threshold constraints take effect. Given that all
the transaction thresholds on a line graph take effect, we
know that we can solve the MAX-WELFARE via linear pro-
gramming (Optimization 2). So if we divide the line graph
properly into several small line graphs, this problem can be
solved efficiently. With the analysis above, we show that dy-
namic programming can be implemented to solve this case.

Optimization 2

Maximize
∑

vivj∈E
fij ∗ (pj − pi)

Subject to fij ≥ thij , ∀vivj ∈ E
∑

vivj∈E
fij ≤ qi, ∀vi ∈ VS

∑

vivj∈E′
fij ≤ qj , ∀vj ∈ VB

Based on Optimization 2 and Algorithm 1, we can fur-
ther compute MAX-WELFARE for a cycle. The idea is as fol-
lows. (1) If each pair of neighbors conduct trade with each
other, the maximum social welfare can be solved by linear
programming. (2) If there exists two neighbors who do not
conduct trade with each other, the graph is reduced to a line
graph.

Tree graph and k-connected graphs

We finally consider some simple cases where MAX-
WELFARE is NP-HARD. Surprisingly, we prove that even if
the graph is a binary tree or the maximum degree is as small
as 4, MAX-WELFARE can still be NP-HARD. We formally
state the two NP-HARD results as follows. Both proofs are
non-trivial but omitted because of the page limit.
Theorem 4. For general binary tree graphs, deciding
whether social welfare can reach X is an NP-COMPLETE
problem.

Proof. Given a solution, we can easily verify whether the
total social welfare on a tree reaches X . So, this problem is
an NP problem.

Given an instance I1 of PARTITION PROBLEM, O =
{o1, o2, . . . , on}, oi’s weight is wi. We construct an instance
of water market to solve it as follows. Without loss of gen-
erality, we assume n = 4k, k is an integer. We construct
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Algorithm 1 Dynamic programming algorithm for MAX-
WELFARE on a line graph
Input: Given a line graph G = (V, E), ∀vi, price pi, de-

mand/supply qi. ∀vivj ∈ E , transaction threshold thij .
Output: maximum social welfare and the corresponding

flow assignments.
1: In this algorithm, We call Optimization 2 via

solve(input(i, j)), where input(i, j) denotes all the in-
puts on the line interval between vi and vj .

2: ans(−1) ← 0, ans(0) ← 0, ans(i) denotes the max-
imum social welfare on the subgraph between v1 and
vi.

3: F (−1) ← {}, F (0) ← {}, F (i) denotes the trading
volume assignment corresponding ans(i)

4: for i ← 1, 2, . . . , n do
5: ans(i) ← 0, F (i) ← {}
6: for j ← 0, 1, . . . , i do
7: tempans, tempF ← solve(input(j, i))
8: if ans(i) < tempans+ ans(j − 1) then
9: ans(i) ← tempans+ ans(j − 1)

10: F (i) ← F (j − 1)
⋃
tempF

11: end if
12: end for
13: end for
14: Output ans(n) as maximum social welfare, F (n) as the

corresponding assignments.

a complete binary tree with n leafs. Obviously, the height
of this tree is an odd number 2k + 1, with the same k as
before. All the agents with an odd height are sellers, while
the others are buyers. In our tree, leafs and root have special
properties. For all the others, they satisfy: (1) the quantity of
a vertex vi is

∑
lj∈descendant(vi)

wj , where descendant(vi)
is the set of vi’s descendants; (2)the price of a seller is 0,
while the price of a buyer is 2. For a leaf li, qli = wi,
pli = 1, the transaction threshold between li and its father is
wi. All the other arcs’ transaction thresholds are 0. We de-
fine S =

∑
oi∈O wi, which is the total weight of O. For the

root r, pr = 0, qr = S/2.
Let X = (2k − 1

2 )S. Social welfare can reach X if and
only if I1 has a solution. Buyers can buy at most kS, the
seller other than leafs can sell at most (k− 0.5)S. Each unit
traded between them brings 2 unit welfare. Each unit sold by
leafs can bring 1 unit. So the maximum possible social wel-
fare is X , which can only be reached when leafs sell exactly
S/2 units.

Thus, this problem is NP-COMPLETE.

Definition 4. We call a bipartite graph k-connected graph,
if

1. all the vertices are allocated on a line,
2. the distance between two adjacent vertices is 1,
3. there can be an arc between two vertices only if the dis-

tance between the two vertices is no more than k.

Theorem 5. For k ≥ 2, deciding whether social welfare can
reach Y on a k-connected graph is NP-COMPLETE.

The proof for Theorem 5 can be found in the full version
in the supplemental materials. It is proved by a reduction
from PARTITION PROBLEM. The rough idea is to construct
two kinds of sellers with different properties such that the
maximum revenue can only be reached when the answer of
PARTITION PROBLEM is true.

Experimental evaluation

In this section, we develop a data generator based on his-
torical data. Then, we characterize a model to simulate the
current assignment algorithm as our baseline. Finally, we
compare the efficiency and scalability among our MIP algo-
rithm, our modified LP algorithm and the currently utilized
algorithm.

Data generator

As the reported supplies/demands are not well maintained
during the preceding years, we can only make use of the
conducted trades during these years. We make use of the
fact that about 80 percent of all the trades are between two
villages within 10 kilometers. For simplification, we assume
two villages with distance smaller than 10 km are compati-
ble. We use the actual locations of villages in the real-world
map of Xiying irrigated area, one of the irrigated areas at
Shiyang River Basin. Each time, one agent appears at the
position of one village in Xiying irrigated area and its supply
or demand is generated according to the historical distribu-
tion. The thresholds are set to be one third of one’s supply
or demand. The valuations (asks and bids) on each unit of
water are uniformly distributed between 0.15 and 0.25 yuan
per m3.

Additional algorithms used in experiments

We introduce two additional algorithms for experiments: (1)
The greedy algorithm currently in use. (2) a modified LP
algorithm based on Optimization 2.

The greedy algorithm is presented as follows.7 We sup-
pose that villages come to the market in a random order.
When an agent x comes to the market, the conductor looks
up the current market for one or more partners. If someone
can trade with x, the conductor recommends them to trade
with each other. If more than one agent in the market can
trade with x, let them trade with x one by one until x is no
longer able to trade with anyone else in the market. The vol-
ume of a trade in this algorithm is always the minimum of
the left supply of the seller and the left demand of the buyer.

The modified LP algorithm composes of two stage. First,
without considering thresholds, run the Optimization 2 on
the graph with thij’s set to be 0. Second, remove all the
trades whose volumes are below thresholds from the output
of LP. Finally, conduct the remaining trades.

We implement both algorithms and compare their perfor-
mances to the MIP algorithm.

Experimental results

All our experiments are conducted on a desktop with a quad-
core CPU and 4G RAM. We run our algorithm on generated

7We cannot give a formal version due to page limit.
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graphs with different number of agents (asks and bids) and
compare it with the simulated greedy algorithm. Figure 1
compares the social welfare yields by the three algorithms
(the greedy algorithm, the modified LP and the MIP) and
Figure 2 compares the volumes.

From the results, we get the following observations and
conclusion:

• The social welfares or volumes of MIP and modified LP
are close.

• The greedy algorithm performs badly on social welfare
and the gap becomes larger with the increasing of market
size.

• When the number of agents is more than 100, the greedy
algorithm gets good results on trading volume but poor
results on social welfare.

Currently, only very few trades occur in each period in
the same irrigated area, which is often less than 50. So the
greedy algorithm does not loss much in social welfare. An
intuitive reason for the good performance of the greedy algo-
rithm is that only few pairs can be matched and the results of
the greedy algorithm are not very far from the optimal. How-
ever, the water right market in China is rapidly growing. If
allowing each village to report orders at different prices, the
number of agents8 in our model will increase dramatically.
After the number of bids has increased, the greedy algorithm
will induce significant welfare loss. So it is important to re-
place it with our optimized algorithm.

Take the possibility of permitting multi-bid for single
agent into consideration, the number of agents in our model
can be quite large. So we test the time scalability of our MIP.
The results shown in figure 3 indicates that MIP performs
well on a graph with no more than 600 nodes. However,
modified LP can handle graphs with 2000 nodes easily.

To sum up, (1) when the market has less than 50 few
agents, the greedy algorithm won’t cause much loss but MIP
is surely better; (2) when the number of agents is no more
than 700, MIP yields optimal solution; (3) when the number
of agents is greater than 700, modified LP performs good on
computation and social welfare.

Conclusion

In this paper, We investigate China’s village-level water right
market from both theoretical and experimental perspectives.

For the theoretical part, we show most related computa-
tional problems are NP-HARD, or cannot be efficiently ap-
proximated. We use MIP to solve the most general case and
propose polynomial time algorithms when the underlying
graphs are lines or cycles.

For the experimental part, our results show that when the
market is large Our MIP algorithm can play a significant
role in increasing social welfare. At the same time, though
our algorithm is NP-HARD in theory, it performs quite well
even on a graph with hundreds of nodes – which is impor-
tant, because the more intuitive greedy algorithm that might

8In our model, one agent only proposes one bid or one ask. So,
a village may corresponds to multiple agents in our model.
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Figure 1: Comparison betweem the social welfares of opti-
mal MIP, modified LP and the greedy algorithm. The lines
connect medians and the best/worst cases are labelled.

Figure 2: Comparison betweem the trading volumes of opti-
mal MIP, modified LP and the greedy algorithm.
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Figure 3: Running time of MIP and modified LP on markets
with different sizes in log range. Memory-limit-exceeded in-
stances are labeled as 1000 seconds.
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develop “naturally” in a market results in a less thick market
and, perhaps more critically, significant decreases in over-
all social welfare compared to our optimization-based algo-
rithm. When the graph has thousands of agents, modified LP
is a better trade off.
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