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Abstract

Evolutionary game theory provides the principal tools
to model the dynamics of multi–agent learning algo-
rithms. While there is a long–standing literature on evo-
lutionary game theory in strategic–form games, in the
case of extensive–form games few results are known
and the exponential size of the representations currently
adopted makes the evolutionary analysis of such games
unaffordable. In this paper, we focus on dynamics for
the sequence form of extensive–form games, provid-
ing three dynamics: one realization equivalent to the
normal–form logit dynamic, one realization equivalent
to the agent–form replicator dynamic, and one realiza-
tion equivalent to the agent–form logit dynamic. All
the considered dynamics require polynomial time and
space, providing an exponential compression w.r.t. the
dynamics currently known and providing thus tools that
can be effectively employed in practice. Moreover, we
use our tools to compare the agent–form and normal–
form dynamics and to provide new “hybrid” dynamics.

Introduction

Evolutionary game theory provides the most elegant tools
to model the dynamics of players’ strategies in strategic–
interaction situations (Cressman 2003). Differently from
classical game theory, it drops the assumption of rationality
and assumes players to be adaptive. Nevertheless, the steady
states of evolutionary dynamics constitute a subset of solu-
tions of (non–evolutionary) game theory, e.g., in the inner of
the strategy space only Nash equilibria can be steady states.
Evolutionary game theory plays a prominent role in artifi-
cial intelligence, especially in multi–agent learning (Tuyls
and Parsons 2007), where it is shown that the dynamics
of any multi–agent learning algorithm can be modeled by
means of evolutionary equations, providing thus a formal
tool to study the expected dynamics of the algorithms and
to design novel algorithms starting from known evolution-
ary dynamics (Tuyls, Hoen, and Vanschoenwinkel 2006;
Panait, Tuyls, and Luke 2008)—see also the recent compre-
hensive survey (Bloembergen et al. 2015).

While there is a long–standing literature on evolutionary
game theory for strategic–form games, only sporadic results
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are known for extensive–form games and no coherent treat-
ment is available so far (Cressman 2003). The most of the
works focus on the application of the replicator dynamic
(one of the most famous dynamic equations) to the normal
form of extensive–form games. However, the normal form is
exponentially large in the size of the game tree, making its
application affordable only to toy instances. Very few works
study the application of the replicator dynamic to the agent
form of extensive–form games (Cressman, Gaunersdorfer,
and Wen 2000; Cressman 2000), showing that in games
with nature the agent–form dynamics may be not realiza-
tion equivalent to the normal–form ones (i.e., the probabil-
ity distributions over the terminal nodes may be different).
The agent form is more compact than the normal form, but it
is exponentially large in the size of the game tree. Recently,
Gatti, Panozzo, Restelli (2013) resorted to the sequence form
to design polynomially (in the game tree size) concise dy-
namics. However, the constraints over the sequence–form
strategies (different from those of agent and normal forms)
obstacle the design of evolutionary dynamics directly in
the sequence form. Nevertheless, the sequence form may
be an effective tool to provide, without loss of informa-
tion, an exponentially concise representation of dynamics
defined in the normal form, as shown in (Gatti, Panozzo,
and Restelli 2013), where the authors provide a dynamic
defined on the sequence form that is realization equivalent
to the normal–form replicator dynamic and that requires
polynomial time and space in the game tree size. Interest-
ingly, this result paved the way to the design of novel multi–
agent learning algorithms working directly on the sequence
form and whose dynamics can be modeled as variation of
the replicator dynamic (Panozzo, Gatti, and Restelli 2014;
Lanctot 2014).

Original contributions In this paper, we extend the state
of the art on evolutionary dynamics defined on the se-
quence form. Specifically, we provide a sequence–form logit
dynamic that is realization–equivalent to the normal–form
logit dynamic (Blume 1993; Ferraioli 2013) and that re-
quires polynomial time and space—the logit dynamic is
strictly related to Quantal Response Equilibrium (Mck-
elvey and Palfrey 1998), that is widely used in literature
to model bounded–rational players (Yang, Ordóñez, and
Tambe 2012). Furthermore, we show that the agent–form
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replicator dynamic and the agent–form logit dynamic admit,
by means of the sequence form, a representation that is poly-
nomial in the size of the game tree. The problem whether
any agent–form or normal–form dynamic admit a sequence–
form realization–equivalent dynamic requiring polynomial
computation time and space remains open. The representa-
tion of the normal and agent forms by means of the same
(sequence) form allows us to provide a direct comparison
of the two dynamics, showing for the first time that, except
in degenerate games, they are realization equivalent if and
only if all the sequences have length equal to one. Finally,
we show that the sequence form provides a tool to combine
the agent–form and normal–form dynamics, giving rise to
new “hybrid” dynamics unexplored so far.

Game theoretical preliminaries

Extensive–form game definition A perfect–information
extensive–form game (Fudenberg and Tirole 1991) is a tuple
(N,A, V, T, ι, ρ, χ,u), where: N is the set of players (i ∈ N
denotes a generic player), A is the set of actions (Ai ⊆ A
denotes the set of actions of player i and a ∈ A denotes a
generic action), V is the set of decision nodes (Vi ⊆ V de-
notes the set of decision nodes of i), T is the set of terminal
nodes (w ∈ V ∪ T denotes a generic node and w0 is root
node), ι : V → N returns the player that acts at a given
decision node, ρ : V → ℘(A) returns the actions available
to player ι(w) at w, χ : V × A → V ∪ T assigns the next
(decision or terminal) node to each pair 〈w, a〉 where a is
available at w, and u = (u1, . . . , u|N |) is the set of players’
utility functions ui : T → R. Games with imperfect infor-
mation extend those with perfect information, allowing one
to capture situations in which some players cannot observe
some actions undertaken by other players. We denote by Vi,h

the h–th information set of player i. An information set is a
set of decision nodes such that when a player plays at one
of such nodes she cannot distinguish the node in which she
is playing. For the sake of simplicity, we assume that every
information set has a different index h, thus we can univo-
cally identify an information set by h. Furthermore, since
the available actions at all nodes w belonging to the same
information set h are the same, with abuse of notation, we
write ρ(h) in place of ρ(w) with w ∈ Vi,h. An imperfect–
information game is a tuple (N,A, V, T, ι, ρ, χ,u, H) where
(N,A, V, T, ι, ρ, χ,u) is a perfect–information game and
H = (H1, . . . , H|N |) induces a partition Vi =

⋃
h∈Hi

Vi,h

such that for all w,w′ ∈ Vi,h we have ρ(w) = ρ(w′). We
focus on games with perfect recall where each player re-
calls all the own previous actions and the ones of the oppo-
nents (Fudenberg and Tirole 1991).

(Reduced) Normal form (von Neumann and Morgen-
stern 1944) It is a tabular representation in which each
normal–form action, called plan and denoted by p ∈ Pi

where Pi is the set of plans of player i, specifies one ac-
tion a ∈ Ai per information set of player i. We denote by πi

a normal–form strategy of player i and by πi(p) the prob-
ability associated with plan p. The number of plans (and
therefore the size of the normal form) is exponential in the
size of the game tree. The reduced normal form is obtained

L1 R1

l r

L3 R3L2 R2

1.1

2.1

1.31.2

4 , 4

6 , 1 9 , 3 2 , 1 4 , 2

Figure 1: Example of two–player perfect–information
extensive–form game, x.y denote the y–th node of player x.

from the normal form by deleting replicated strategies (Ver-
meulen and Jansen 1998). Although reduced normal form
can be much smaller than normal form, it is still exponential
in the size of the game tree. Hereafter, we shall only consider
the plans in the reduced normal form.
Example 1. The reduced normal form of the game in Fig-
ure 1 and a pair of normal–form strategies are:

player 2
l r

pl
ay

er
1

L1∗ 4, 4 4, 4

R1L2L3 6, 1 2, 1

R1L2R3 6, 1 4, 2

R1R2L3 9, 3 2, 1

R1R2R3 9, 3 4, 2

π1(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 L1∗
0 R1L2L3

1
3 R1L2R3

0 R1R2L3

1
3 R1R2R3

π2(p) =

⎧⎨
⎩1 l

0 r

Agent form (Kuhn 1950; Selten 1975) It is a tabular rep-
resentation in which each player i is replicated in a number
of fictitious players, called agents and denoted by i.h, each
per information set, and all the agents of the same player
have the same utility Ui. An agent–form strategy is com-
monly said behavioral and is denoted by σi. We denote the
strategy of agent i.h by σi.h and by σi.h(a) the probability
associated with action a ∈ Ai where h is such that a ∈ ρ(h).
In the agent form, each agent has a number of strategies that
is linear in the size of the game, but the size of the tabular
representation is exponential in the number of information
sets of the game tree.
Example 2. The agent form of the game in Figure 1 and a
pair of behavioral strategies are:

agent 2.1

ag
en

t1
.1 l r

L1 4, 4, 4, 4 4, 4, 4, 6

R1 6, 1, 6, 6 2, 1, 2, 2

L2

agent 2.1

ag
en

t1
.1 l r

L1 4, 4, 4, 4 4, 4, 4, 4

R1 9, 3, 9, 9 4, 2, 4, 4

R2

L3

agent 1.2
agent 2.1

ag
en

t1
.1 l r

L1 4, 4, 4, 4 4, 4, 4, 6

R1 6, 1, 6, 6 2, 1, 2, 2

L2

agent 2.1

ag
en

t1
.1 l r

L1 4, 4, 4, 4 4, 4, 4, 4

R1 9, 3, 9, 9 4, 2, 4, 4

R2

R3

agent 1.2

σ1.1(·) =

⎧⎨
⎩1 L1

0 R1

σ1.2(·) =

⎧⎨
⎩0 L2

1 R2

σ1.3(·) =

⎧⎨
⎩0 L3

1 R3

σ2.1(·) =

⎧⎨
⎩

8
10 l

2
10 r
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Sequence form (von Stengel 1996) It is a tabular rep-
resentation that presents additional constraints. Sequence–
form actions are called sequences. A sequence q ∈ Qi of
player i is a set of |q| consecutive actions a ∈ Ai where
Qi ⊆ Q is the set of sequences of player i and Q is the set
of all the sequences. A sequence can be terminal, if, com-
bined with some sequence of the opponents, it leads to a ter-
minal node, or non–terminal otherwise. The initial sequence
of every player, denoted by q∅, is said empty sequence. We
denote by q(a) the sequence whose last action is a, by a(q)
the last action of q, and by a ∈ q the fact that a is con-
tained in q. Furthermore, we denote by h(a) the information
set in which a can be played, and similarly h(q) the infor-
mation set in which the last action of q can be played. We
denote by q|a the extended sequence obtained by appending
a to sequence q, by q \ a the sequence obtained by remov-
ing the last action a from q, and by q → h the fact that q
leads to information set h (i.e., there are a ∈ A, q′ ∈ Q such
that q′ = q|a and h(q′) = h). Finally, we denote by xi the
sequence–form strategy of player i and by xi(q) the proba-
bility associated with sequence q ∈ Qi. Well–defined xi are
such that, for every information set h ∈ Hi, the probabil-
ity xi(q) assigned to the sequence q such that h(q) = h′ is
equal to the sum of the probabilities xi(q

′)s where q′ = q|a
for all the a ∈ h′. Sequence–form constraints are xi(q∅) = 1
and xi(q) =

∑
a∈ρ(h(q)) xi(q|a) for every sequence q and

for every player i. The player i’s utility is represented as a
sparse multi–dimensional array, denoted, with an abuse of
notation, by Ui, specifying the value associated with every
combination of terminal sequences of all the players. The
size of the sequence form is linear in the game tree size.

Example 3. The sequence form of the game in Figure 1 and
a pair of sequence–form strategies are:

player 2
q∅ l r

pl
ay

er
1

q∅
L1 4, 4

R1

R1L2 6, 1

R1R2 9, 3

R1L3 2, 1

R1R3 4, 2

x1(q) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 q∅
1
3 qL1
2
3 qR1
1
3 qR1L2
1
3 qR1R2

0 qR1L3
2
3 qR1R3

x2(q) =

⎧⎪⎪⎨
⎪⎪⎩

1 q∅
1 ql

0 qr

Realization equivalence The relation of realization
equivalence, requiring two strategies to induce the same
probability distribution over the terminal nodes, can be writ-
ten, for sequence form strategies, as follows:

Definition 4. Strategies xi and πi are realization equivalent
if and if, ∀q ∈ Qi, xi(q) =

∑
p∈Pi:a(q)∈p πi(p).

Definition 5. Strategies xi and σi are realization equivalent
if and if, ∀q ∈ Qi, xi(q) =

∏
a∈q σi.h(a)(a).

Evolutionary dynamics For the sake of brevity, we report
here only evolutionary dynamics with continuous time and
two players for player 1, for details see (Sandholm 2010).
The continuous–time normal–form replicator and logit dy-
namic equations with two players are, respectively:

π̇1(p, t) = π1(p, t)[(ep − π1(t))U1π2(t)], (1)

π̇1(p, t) =
exp
[

epU1π2(t)

η

]
∑

p′∈P1

exp

[
e
p′U1π2(t)

η

] − π1(p, t), (2)

where ei is the vector in which the component correspond-
ing to the i–th plan/action is “1” and the others are “0”. The
continuous–time agent–form replicator and logit dynamics
equations with two players are, respectively:

σ̇1.h(a, t) = σ1.h(a, t)·⎡
⎣(ea − σ1.h(t))U1

∏
h′∈H1:h′ �=h

σ1.h′ (t)
∏

h′∈H2

σ2.h′ (t)

⎤
⎦ , (3)

σ̇1.h(a, t) = −σ1.h(a, t)+

exp

⎡
⎣ eaU1

∏
h′∈H1:h′ �=h

σ
1.h′ (t)

∏
h′∈H2

σ
2.h′ (t)

η

⎤
⎦

∑
a′∈ρ(h)

exp

⎡
⎣ e

a′U1
∏

h′∈H1:h′ �=h

σ
1.h′ (t)

∏
h′∈H2

σ
2.h′ (t)

η

⎤
⎦
. (4)

where a ∈ ρ(h) and η ∈ (0,+∞) is the exploration param-
eter.

Normal–form equivalent logit dynamic
We initially provide the sequence–form continuous–time
evolutionary dynamic for player 1, the equation for player 2
is analogous:

ẋ1(q, t) =

∑
p∈P1:a(q)∈p

exp

⎡
⎣

∑
q′∈Q1:a(q′)∈p

e
q′U1x2(t)

η

⎤
⎦

∑
p′∈P1

exp

⎡
⎣

∑
q′∈Q1:a(q′)∈p′

e
q′U1x2(t)

η

⎤
⎦

−x1(q, t). (5)

Theorem 6. Continuous–time evolutionary dynamic (5) is
realization equivalent to the continuous–time normal–form
logit dynamic (2).

Proof. Define eq as a vector with 1 in the position related
to sequence q and 0 elsewhere. Note that eq is not, generally,
a well–defined sequence–form strategy. The proof follows
from the following calculations for every q ∈ Q1:

ẋ1(q, t) =
d

dt

⎛
⎝ ∑

p∈P1:a(q)∈p

π1(p, t)

⎞
⎠ (6)

=
∑

p∈P1:a(q)∈p

π̇1(p, t) (7)

=

∑
p∈P1:a(q)∈p

exp
[

epU1π2(t)

η

]
∑

p′∈P1

exp

[
e
p′U1π2(t)

η

] −
∑

p∈P1:a(q)∈p

π1(p, t)

︸ ︷︷ ︸
x1(q,t)

(8)

=

∑
p∈P1:a(q)∈p

exp

⎡
⎣

∑
q′∈Q1:a(q′)∈p

e
q′U1x2(t)

η

⎤
⎦

∑
p′∈P1

exp

⎡
⎣

∑
q′∈Q1:a(q′)∈p′

e
q′U1x2(t)

η

⎤
⎦

− x1(q, t) (9)
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where in (6) we apply the derivative w.r.t. time to the con-
dition stating that x1(t) and πi(t) are realization equivalent
(see Definition 4), in (7) we move the derivative operator
inside the sum operator, in (8) we apply the definition of
normal–form logit dynamic to πi(p.t) forcing, by the con-
dition of realization equivalence applied in (6), x1(q, t) to
evolve as the corresponding normal–form strategy, in (9)
we expand the term epU1π2(t) as

∑
q′∈Q:a(q′)∈p

eq′U1x2(t)

making the evolution to depend on sequence–form strate-
gies (notice that U1 in epU1π2(t) and in eqU1x2(t) are
different, being defined in two different strategy spaces).
This expansion is possible as follows. Denote by x̄1 the
pure sequence–form strategy realization–equivalent to plan
p. x̄1 is such that x̄1(q) = 1 if q ∈ p and 0 in the
other positions. Then, we have epU1π2(t) = x̄1U1x2(t) =( ∑

q∈Q1:a(q)∈p

eq

)
U1x2(t) =

∑
q∈Q1:a(q)∈p

eqU1x2(t). This

completes the proof. �

Notice that evolutionary dynamic (5) allows one to work
only with sequence–form strategies in place of normal–
form strategies, using thus a number of equations that is
linear in the size of the game tree and overcoming the
numerical–stability issues the normal–form strategies suf-
fer of (i.e., the number of plans rising exponentially, the
probability of each plan decreases exponentially). How-
ever, although the above dynamic provides an exponential
compression of the normal–form dynamic, it requires ex-
ponential time due to the sum over all the plans p ∈ P1.
However, we provide a recursive polynomial–time proce-
dure that, given a sequence q̄, returns the value of the

term
∑

p∈P1:a(q̄)∈p

exp

[ ∑
q′∈Q1:a(q′)∈p

eq′U1x2(t)

η

]
. This is pos-

sible because such a term can be factorized in a polynomial
number of sub terms.

The recursive procedure is reported in Algorithm 1 and
exploits the formulas, requiring a polynomial number of op-
erations, reported in the following box.

∑
p∈P1:a(q̄)∈p

exp

⎡
⎣

∑
q∈Q1:a(q)∈p

eqU1x2(t)

η

⎤
⎦ = Eq∅ (q̄)

Λq′ (q) =

⎧⎨
⎩1 if there is x′

1 s.t. x′
1(q) = 1 and x′

1(q
′) = 1

0 otherwise

Eq′ (q) = Λq′ (q) exp
[
eq′U1x2(t)

η

] ∏
h∈H1:q′→h

Eh(q)

Eh(q) =
∑

q′|a∈Q1:a∈ρ(h)

Eq′|a(q)

Algorithm 1 performs a depth–first search, visiting each
node and edge of the game tree once. Algorithm 1 must be
executed |Q1| times, one for each sequence and thus its com-
plexity is linear in the size of the game tree.

Algorithm 1 RECURSIVE–EXP

1: procedure RECURSIVE–EXP(z, q)
2: if z ∈ Q then

3: Hz ← {h ∈ H s.t. ι(h) = 1 and z → h}
4: for all h′ ∈ Hz do

5: Eh′ (q) ← RECURSIVE–EXP(h′, q)

6: return Ez(q) as defined in the box
7: else (z ∈ H)
8: Qz ← {q|a ∈ Q s.t. a ∈ ρ(h)}
9: for all q′ ∈ Qz do

10: Eq′ (q) ← RECURSIVE–EXP(q′, q)

11: return Ez(q) as defined in the box

The term Λq′(q) is equal to 1 when a(q) and a(q′) can
coexist in the same plan p and 0 otherwise. It is used to dis-
card all the contributions due to sequences that are mutually
exclusive to q̄. Eq′(q) is the contribution due to sequence q′
when we are computing Eq∅(q) and it is defined as the mul-
tiplication of all the contributions Eh(q) due to the informa-
tion set h directly achievable from q′ and the term due to the
utility immediately achievable by playing q, while Eh(q) is
given by the sum of all the contributions due to the actions
played at h when we are computing Eq∅(q). Below, we re-
port a sketch of the application of the algorithm.

Example 7. By the application of Algorithm 1 to compute
Eq∅(q∅) for player 1 in the game of Figure 1, we obtain (for
the sake of presentation, we omit time t):

exp

[
eqL1

U1x2

η

]
+

(
exp

[
eqR1L2

U1x2

η

]
+ exp

[
eqR1R2

U1x2

η

])
(
exp

[
eqR1L3

U1x2

η

]
+ exp

[
eqR1R3

U1x2

η

])
. (10)

Computing the corresponding value by using the normal–
form strategies, we obtain:

exp

[
eL∗U1π2

η

]
+ exp

[
eR1L2L3

U1π2

η

]
+ exp

[
eR1L2R3

U1π2

η

]
+

exp

[
eR1R2L3

U1π2

η

]
+ exp

[
eR1R2R3

U1π2

η

]
.

By replacing:

exp

[
eR1L2L3

U1π2

η

]
= exp

[
(eqR1L2

+ eqR1L3
)U1x2

η

]

and doing the same with the other terms based on normal–
form strategies and subsequently by factorizing the terms,
we obtain (10).

Hence, we can state the following result.

Corollary 8. The compute time and space of the
continuous–time normal–form logit dynamic can be expo-
nentially compressed without loss of information by means
of the sequence form.

The above results rise the following question:
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Question 9. Does any (continuous–time and/or discrete–
time) normal–form evolutionary dynamic admit a
realization–equivalent sequence–form dynamic requir-
ing compute time and space that are polynomial in the size
of the game tree?

We leave the question open here. Our conjecture is that
the answer to the question is negative and is based on the
existence of some dynamics (e.g., Smith and Brown–von
Neumann–Nash) using highly non–linear operators (i.e., ab-
solute value) that seem not admitting any exponential com-
pression from the normal form to the sequence form.

Agent–form equivalent dynamics

Replicator dynamic

We initially provide the sequence–form continuous–time
evolutionary dynamic for player 1, the equation for player 2
is analogous:

ẋ1(q, t) = x1(q, t) |q|
[(

dq(x1(t)) − x1(t)
)
U1x2(t)

]
, (11)

where:

dq(x1(t)) =

∑
a∈q

ra(x1(t))

|q| ,

ra(q,x1(t)) =

⎧⎪⎪⎨
⎪⎪⎩

x1(q, t) ∀a′ ∈ q, a′ 	∈ ρ(h(a))

0 ∃a′ ∈ q, a′ 	= a, a′ ∈ ρ(h(a))
x1(q,t)x1(q′,t)

x1(q′|a,t)
∃q′, q′|a ⊆ q

.

Vector ra is |Q1|–dimensional and has the follow-
ing property. Given a behavioral strategy σ1(t) and
its realization–equivalent sequence–form strategy x1(t),
ra(x1(t)) is the sequence–form strategy realization–
equivalent to the behavioral strategy σ′

1(t) obtained by set-
ting σ′

1(t) = σ1(t) except for the information set h in which
a ∈ ρ(h) where σ1.h(a)(a) is set equal to 1 and σ1.h(a′)(a

′)
is set equal to 0 for all the a′ 
= a with a′ ∈ ρ(h). Formally,
we have ra(x1(t)) = ea

∏
h′∈H1:h′ 	=h(a) σ1.h′(t). The defi-

nition of vector ra is: ra(q,x1(t)) is equal to x1(q, t) for all
the sequences q that do not include actions played at h(a),
it is equal to 0 for all the sequences that include an action
a′ played at the same information set of a such that a′ 
= a,
and finally it is equal to x1(q, t) scaled by x1(q

′,t)
x1(q′|a,t) with q′

such that q′|a ⊆ q forcing thus that at h(a) action a is the
only played action.

Vector dq is |Q1|–dimensional and is the average over all
the ra such that a ∈ q. Finally, it can be easily observed that
vector dq can be computed in polynomial time in the size of
the game tree.

We can state the following theoretical result.
Theorem 10. Continuous–time evolutionary dynamic (11)
is realization equivalent to the continuous–time agent–form
replicator dynamic (3).

Proof. The proof is given by the following calculations,
in which we start from the condition of realization equiva-
lence between x1(t) and σ1(t) (see Definition 5), we apply

the derivative w.r.t. time to such a condition, and we force
σ1(t) to evolve as prescribed by the agent–form replicator
dynamic. Finally, we derive Equation (11).

ẋ1(q, t) =
d

dt

⎛
⎝∏

a∈q

σ1.h(a)(a, t)

⎞
⎠

=
∑
a∈q

⎛
⎝σ̇1.h(a)(a, t)

∏
a′∈q:a′ �=a

σ1.h(a′)(a
′
, t)

⎞
⎠

=

⎛
⎝∏

a′∈q

σ1.h(a′)(a
′
, t)

⎞
⎠
⎛
⎝∑

a∈q

σ̇1.h(a)(a, t)

σ1.h(a)(a, t)

⎞
⎠

=x1(q, t)

⎛
⎝∑

a∈q

σ̇1.h(a)(a, t)

σ1.h(a)(a, t)

⎞
⎠

=x1(q, t)

(∑
a∈q

σ1.h(a)(a, t)(ea − σ1.h(a)(t))U1·
σ1.h(a)(a, t)

· ∏
h′∈H1:h′ �=h(a)

σ1.h′ (t)
∏

h′∈H2

σ2.h′ (t)

σ1.h(a)(a, t)

)

=x1(q, t)

(∑
a∈q

(
ea − σ1.h(a)(t)

)
U1·

·
∏

h′∈H1:h′ �=h(a)

σ1.h′ (t)
∏

h′∈H2

σ2.h′ (t)

)

=x1(q, t)

⎛
⎝∑

a∈q

(
ra(x1(t)) − x1(t)

)
U1x2(t)

⎞
⎠

=x1(q, t) |q|

⎛
⎜⎝
⎛
⎜⎝
∑
a∈q

ra(x1(t))

|q| − x1(t)

⎞
⎟⎠U1x2(t)

⎞
⎟⎠

=x1(q, t) |q|
((

dq(x1(t)) − x1(t)
)
U1x2(t)

)
.

This completes the proof. �
Therefore, we can state the following.

Corollary 11. The compute time and space of the
continuous–time agent–form replicator dynamic can be
exponentially compressed without loss of information by
means of the sequence form.

A direct comparison of Equation (11) w.r.t. the equation
of sequence–form replicator dynamic realization equivalent
to the normal–form one can be provided, studying thus the
differences between the agent–form and the normal–form
replicator dynamics. We recall that the sequence–form repli-
cator dynamics realization–equivalent to the normal–form
one is (Gatti, Panozzo, and Restelli 2013):

ẋ1(q, t) = x1(q, t)

((
gq(x1(t)) − x1(t)

)
U1x2(t)

)
,

where component q′ of vector gq(x1(t)) is 1 when q′ ⊆ q,
is 0 when there are a ∈ q and a′ ∈ q′ so that a 
= a′ and
h(a) = h(a′), and is xi(q

′,t)
xi(q∩q′,t) otherwise. The differences

between the agent–form and the normal–form replicator dy-
namics are that in the agent–form replicator dynamic:
• there is a gain of |q| ≥ 1, and therefore the longer the se-

quence the higher the gain making the dynamics of short
sequences slower than the dynamics of long sequences;
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• vector gq is replaced by vector dq =

∑
a∈q

ra(x1(t))

|q| that is
an average of the contributions ra given by all the a ∈ q.

We provide an example, showing the differences between dq

and gq in a specific game instance.
Example 12. Given x1 introduced in Example 3, we report
the values of dqR1L2

(x1) and gqR1L2
(x1):

dqR1L2
(x1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dqR1L2
(q∅,x1) = 1

dqR1L2
(qL1 ,x1) = 1

6

dqR1L2
(qR1 ,x1) = 5

6

dqR1L2
(qR1L2 ,x1) = 7

12

dqR1L2
(qR1R2 ,x1) = 1

4

dqR1L2
(qR1L3 ,x1) = 0

dqR1L2
(qR1R3 ,x1) = 5

6

gqR1L2
(x1) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

gqR1L2
(q∅,x1) = 1

gqR1L2
(qL1 ,x1) = 0

gqR1L2
(qR1 ,x1) = 1

gqR1L2
(qR1L2 ,x1) = 1

gqR1L2
(qR1R2 ,x1) = 0

gqR1L2
(qR1L3 ,x1) = 0

gqR1L2
(qR1R3 ,x1) = 1

.

It can be observed that, while gqR1L2
is not affected by

x1(qL1 , t) and x1(qR1R2 , t) that are sequences mutually ex-
clusive w.r.t. qR1L2 , dqR1L2

is. As a consequence, the two dy-
namics are different:

ẋ1(qR1L2 , t) = x1(qR1L2 , t)
∣∣qR1L2 ∣∣︸ ︷︷ ︸

2

[(
dqR1L2

(x1(t)) − x1(t)
)
U1x2(t)

]
︸ ︷︷ ︸

1
12

ẋ1(qR1L2 , t) = x1(qR1L2 , t)

[(
gqR1L2

(x1(t)) − x1(t)
)
U1x2(t)

]
︸ ︷︷ ︸

− 1
3

.

We can show that agent–form and sequence–form replica-
tor dynamics are equivalent only in the trivial case in which
each agent has only sequences of length one.
Theorem 13. Except in degenerate games, agent–form
replicator dynamics and normal–form replicator dynamics
are realization equivalent only when each agent has only se-
quences of length one.

Proof sketch. The proof easily follows from the deriva-
tion of the formulas of the two sequence-form replicator dy-
namics (the one realization equivalent to the normal–form
replicator dynamic and the one realization equivalent to the
agent–form replicator dynamic) for the game depicted in
Figure 2. The two dynamics are the same if and only if pa-
rameters B and C have the same value, but, if this holds, the
game is degenerate. �

L1 R1

L2 R2

1.1

1.2

A

CB

Figure 2: Game tree used in the proof of Theorem 13.

The sequence form, providing a unique representation for
both the normal–form and agent–form replicator dynamics,
can be used to define new hybrid replicator dynamics. More

precisely, we can state the following result, whose proof is
based on the linearity of the equation.

Theorem 14. Given any μ ∈ [0, 1], the replicator dynamics:

ẋ1(q, t) = x1(q, t)

[(
μ |q|

(
dq(x1(t)) − x1(t)

)
−

(1 − μ)
(
gq(x1(t)) − x1(t)

))
U1x2(t)

]
, (12)

obtained by the convex combination of the agent–form
realization–equivalent and the normal–form realization–
equivalent replicator dynamics, is a well–defined dynamic
equation in the space of the sequence–form strategies.

Logit dynamic

We initially provide the sequence–form continuous–time
evolutionary dynamic for agent 1, the equation for agent 2 is
analogous:

ẋ1(q, t) = x1(q, t)

⎛
⎜⎜⎜⎜⎝
∑
a∈q

⎛
⎜⎜⎜⎜⎝

x1(q(a) \ a, t) exp
[

ra(x1(t))U1x2(t)
η

]
x1(q(a), t)

∑
b∈ρ(h(a))

exp
[

rb(x1(t))U1x2(t)

η

]
⎞
⎟⎟⎟⎟⎠− |q|

⎞
⎟⎟⎟⎟⎠ . (13)

We can state the following result, whose proof is similar
to that one of Theorem 10.

Theorem 15. Continuous–time evolutionary dynamic (13)
is realization equivalent to the continuous–time agent–form
logit dynamic (4).

From the above result and the fact that the right term of
Equation (13) can be computed in polynomial time in the
size of the game tree, we can state the following result.

Corollary 16. The compute time and space of the
continuous–time agent–form logit dynamic can be exponen-
tially compressed without loss of information by means of
the sequence form.

The comparison of the two logit dynamics is not immedi-
ate as it is instead the comparison of the two replicator dy-
namics, since their corresponding sequence–form dynamics
are extremely different mainly due to the recursive definition
of the normal–form realization–equivalent dynamic. How-
ever, we provide an example showing that the evolutions in
the two dynamics are different also in the logit case.

We can show that agent–form and normal–form logit dy-
namics are equivalent only in the trivial case in which each
agent has only sequences of length one.

Theorem 17. Except in degenerate games, agent–form logit
dynamic and normal–form logit dynamic are realization
equivalent only when each agent has only sequences of
length one.
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Proof. We provide a counterexample in which the evo-
lutions are different. The counterexample is the same used
in the proof of Theorem 13. Additionally, we set η = 1.
The normal–form realization–equivalent dynamic prescribes
ẋ1(qR1L2

, t) � −0.29, while the agent–form realization–
equivalent dynamic prescribes ẋ1(qR1L2

, t) � −0.10. �
Also in the case of logit dynamics, the hybrid dynamic

equation obtained by the convex combination of the two dy-
namics is well–defined in the space of the sequence–form
strategies.
Theorem 18. The logit dynamics obtained by the convex
combination of the agent–form realization–equivalent and
the normal–form realization–equivalent logit dynamics, (13)
and (5) respectively, is a well–defined dynamic equation in
the space of the sequence–form strategies.

The above results rise the following question:
Question 19. Does any (continuous–time and/or discrete–
time) agent–form evolutionary dynamic admit a realization–
equivalent sequence–form dynamic requiring compute time
and space that are polynomial in the size of the game tree?

As in the normal–form case, we leave the question open
here. We have no conjecture for this case, even if our prelim-
inary analysis suggests that the answer is positive, showing
that all the known agent–form dynamics admit a realization–
equivalent sequence–form dynamics whose computational
cost is polynomial in the size of the game tree.

Conclusions and future work
In this paper, we provide three sequence–form dynamics
for extensive–form games: one realization equivalent to
the normal–form logit dynamic, one realization equivalent
to the agent–form replicator dynamic, and one realization
equivalent to the agent–form logit dynamic. All our dy-
namics require polynomial compute time and space, pro-
viding an exponential compression w.r.t. the dynamics cur-
rently available in the literature and providing thus effective
tools that can be employed for the evolutionary analysis of
extensive–form games. Such an analysis is crucial for multi–
agent learning algorithms, where the dynamics of the algo-
rithms can be described by means of evolutionary game the-
ory models. Furthermore, we use our tools to compare the
agent–form and normal–form dynamics and to provide new
“hybrid” dynamics. In particular, we show that agent–form
and normal–form replicator are equivalent if and only if all
the sequences are not longer than 1.

Some questions remain open, such as whether or not all
the normal–form and all the agent–form dynamics can be
exponentially compressed without loss of information by
means of sequence form. In particular, two well–known
dynamics, BNN and Smith, have not been studied formu-
lated in terms of sequence form so far and the derivation of
polynomial formulations for these dynamics do not seem a
straightforward application of the approach we used here.
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