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Abstract

We characterize the class of committee scoring rules that sat-
isfy the fixed-majority criterion. In some sense, the commit-
tee scoring rules in this class are multiwinner analogues of
the single-winner Plurality rule, which is uniquely character-
ized as the only single-winner scoring rule that satisfies the
simple majority criterion. We find that, for most of the rules
in our new class, the complexity of winner determination is
high (i.e., the problem of computing the winners is NP-hard),
but we also show some examples of polynomial-time winner
determination procedures, exact and approximate.

Introduction

The scoring rules in general, and the Plurality rule specifi-
cally, are among the most basic and the best studied single-
winner voting rules. However, our understanding of their
recently-introduced multiwinner analogues, committee scor-
ing rules (Elkind et al. 2014), is very limited. In this paper,
we attempt to rectify this situation by asking a seemingly
very innocuous question: what is the committee scoring rule
analogue of the Plurality rule? Using an axiomatic approach,
we find a rather surprising answer. Not only is there a whole
class of committee scoring rules that correspond to the Plu-
rality rule, but also one of the most natural candidates to be
the multiwinner Plurality, the single non-transferable vote
rule (the SNTV rule), falls short on our criterion. On the
other hand, the Bloc rule turns out to be quite a satisfy-
ing candidate, but certainly not the only one. In addition to
our axiomatic study, we provide an algorithmic analysis of
this new class of committee scoring rules. In particular, we
show that it can be seen as a subfamily of the OWA-based
rules of Skowron, Faliszewski, and Lang (2015) (also stud-
ied by Aziz et al. (2015b; 2015a); see also the work of Kil-
gour (2010) for a more general overview of approval-based
multiwinner rules). However, the hardness results for gen-
eral OWA rules do not translate directly to our case (and
some indeed do not even hold). On the side, we provide an
axiomatic characterization of the Bloc rule (among the com-
mittee scoring rules).

Let us now describe our setting more precisely. In a mul-
tiwinner election, each voter ranks the candidates from the
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most desired one to the least desired one, and the goal is to
pick a committee of a given size k that, in some sense, best
matches the voters’ preferences. Naturally, the exact mean-
ing of the phrase “best matches” depends strongly on the ap-
plication at hand, as well as on the societal conventions and
understanding of fairness. For example, if we are to choose
a size-k parliament, then it is important to guarantee pro-
portional representation; if the goal is to pick a group of
products to offer to customers, then it might be important to
maintain diversity of the offer; if we are to shortlist a group
of candidates for a job, then it is important to focus on the
quality of the selected candidates regardless of how similar
some of them might be.

In effect, there is quite a variety of multiwinner voting
rules. For example, under the SNTV rule, the winning com-
mittee consists of k candidates who are ranked first more
frequently than others. Under the Bloc rule, each voter gives
one point to each candidate he or she ranks among his or
her top k positions, and the committee consists of k candi-
dates with the most points. Under the Chamberlin–Courant
rule, the winning committee consists of k candidates such
that each voter ranks his or her most preferred committee
member as high as possible (for the exact definition see the
original paper of Chamberlin and Courant (1983) or pa-
pers studying the rule’s features and computational com-
plexity (Procaccia, Rosenschein, and Zohar 2008; Lu and
Boutilier 2011; Elkind et al. 2014; Skowron, Faliszewski,
and Slinko 2015; Skowron and Faliszewski 2015)).

The three rules mentioned above are examples of commit-
tee scoring rules (a class of rules generalizing single-winner
scoring rules to the multiwinner setting, recently introduced
by Elkind et al. (2014); see the preliminaries for the defini-
tion).1 Of course, there are natural multiwinner rules that
cannot be expressed as committee scoring rules, such as
the single transferable vote rule (the STV rule), the Mon-
roe rule (Monroe 1995), or all the multiwinner rules based
on the Condorcet principle (see, e.g., the works of Elkind et
al. (2011), Fishburn (1981), and Gehrlein (1985)). Nonethe-
less, we believe that committee scoring rules form a very
diverse class of voting rules that deserves a further study.

We ask for a committee scoring rule that can be seen as

1Naturally, these rules were known much earlier than Elkind et
al. (2014) introduced the unifying framework for them.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

482



a “multiwinner analogue” of the Plurality rule. Intuitively, it
might seem as if the SNTV rule were such a rule and the
question were trivial. However, instead of following this in-
tuition we take an axiomatic approach. We note that Plural-
ity is the only single-winner scoring rule that has the simple
majority property, i.e., that guarantees that if a candidate is
ranked first by a simple majority of the voters, then he or she
is the unique winner of the election. We ask for a committee
scoring rule that has the fixed-majority criterion (a multi-
winner analogue of the simple majority property, introduced
by Debord (1993)), which requires that if there is a majority
of voters each of whom ranks the same k candidates in the
top k positions (perhaps in a different order), then these k
candidates should form a unique winning committee.

The Bloc rule obviously satisfies the fixed-majority crite-
rion. However, it turns out that Bloc is by far not the only
such committee scoring rule and there is a whole family of
them. We provide an (almost) full characterization of this
family2 and analyze the computational complexity of win-
ner determination for rules in this family. Initially, we iden-
tify a slightly larger class of top-k-counting rules for which
the score that a committee receives from a given voter is a
function of the number of committee members that this voter
ranks in the top k positions of its vote; we refer to this func-
tion as the counting function. We obtain the following main
results:

1. For a large class of counting functions, top-k-counting
rules are NP-hard to compute. There are, however, some
polynomial-time computable ones (e.g., the Bloc rule and
the Perfectionist rule that we introduce).

2. If the counting function is convex, then the top-k-counting
rule that it defines satisfies the fixed-majority criterion
(for a fairly intuitive relaxation of the convexity notion
we get an “if and only if” result).

3. If the counting function is concave, then the rule it de-
fines fails the fixed-majority criterion, but the rule seems
to be easier computationally than in the convex case. We
show an exact FPT algorithm for the parameterization
by the number of voters and a polynomial-time (1 − 1

e )-
approximation algorithm.

4. Using the fixed-majority criterion and a certain mono-
tonicity notion, we characterize the Bloc rule among the
committee scoring rules.

All in all, we find that there is no single multiwinner ana-
logue of the Plurality rule, even if we restrict ourselves to
polynomial-time computable committee scoring rules. On
the intuitive level SNTV is such a rule, and through our ax-
iomatic consideration we show that Bloc and Perfectionist
are also good candidates. We omit some proofs due to space
constraints.

Preliminaries

An election is a pair E = (C, V ), where C = {c1, . . . , cm}
is a set of candidates and V = (v1, . . . , vn) is a collection

2For technical reasons, we consider the case where there are at
least twice as many candidates as the size of the committee.

of voters. The number m = |C| will be fixed throughout the
paper. Each voter vi is associated with a preference order�i

in which vi ranks the candidates from its most desirable one
to its least desirable one. If X and Y are two (disjoint) sub-
sets of C, then by X �i Y we mean that for each x ∈ X
and each y ∈ Y it holds that x �i y. For a positive integer t,
we denote the set {1, . . . , t} by [t].

Single-Winner Voting Rules. A single-winner voting
rule R is a function that, given an election E = (C, V ),
outputs a subset of those candidates that tie as winners.
There is quite a variety of single-winner voting rules, but
in this paper it suffices to consider the scoring rules. Given
a voter v and a candidate c, we write posv(c) to denote the
position of c in v’s preference order (e.g., if v ranks c first
then posv(c) = 1). A scoring function for m candidates is
a function γ : [m] → N such that for each i ∈ [m − 1] we
have γ(i) ≥ γ(i + 1). Each scoring function γ defines a
voting rule Rγ as follows. Let E = (C, V ) be an election
with m candidates.3 Under Rγ , each candidate c ∈ C re-
ceives score(c) :=

∑
v∈V γ(posv(c)) points and the candi-

date with the highest number of points wins. (If there are
several such candidates, then they all tie as winners; this
view is known as the nonunique-winner model.) We often
refer to the value score(c) as the γ-score of c.

The following scoring functions are particularly interest-
ing. The t-approval scoring function is defined as αt(i) = 1
for i ≤ t and αt(i) = 0 otherwise. For example, the
Plurality rule is Rα1

, the t-Approval rule is Rαt
, and the

Veto rule is Rαm−1
(where m is the number of candidates).

The Borda scoring function for m candidates is defined as
βm(i) := m− i, andRβ is the Borda rule.

Multiwinner Voting Rules. A multiwinner voting rule R
is a function that, given an election E = (C, V ) and a num-
ber k representing the size of the desired committee, outputs
a set of size-k subsets of C, the set of committees that tie as
winners (naturally, in most practical cases we would hope to
have a single winning committee).

We focus on committee scoring rules, introduced by
Elkind et al. (2014). Consider an election E = (C, V ) and
some committee S of a given size k. Let v be some voter
in V . By posv(S) we mean the sequence (i1, . . . , ik) that
results from sorting the set {posv(c) : c ∈ S} in increas-
ing order. For example, if C = {a, b, c, d, e}, the preference
order of v is a � b � c � d � e, and S = {a, c, d},
then posv(S) = (1, 3, 4). If I = (i1, . . . , ik) and J =
(j1, . . . , jk) are two increasing sequences of integers, then
we say that I (weakly) dominates J (denoted I � J) if
it ≤ jt for each t ∈ [k]. For positive integers m and k,
k ≤ m, by [m]k we mean the set of all increasing size-k
sequences of integers from [m].

Definition 1 (Elkind et al. (2014)). A committee scor-
ing function for a multiwinner election with m candi-
dates, where we seek a committee of size k, is a function

3Technically, Rγ is defined only for elections with m candi-
dates. Typically, however, we are interested in families of scoring
functions, with one function for each number of candidates.
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f : [m]k → N such that for each two sequences I, J ∈ [m]k
it holds that if I � J then f(I) ≥ f(J).

Let E = (C, V ) be an election with m candidates, let
k ≤ m be the size of the desired committee, and let f be
a committee scoring function (for m candidates and com-
mittees of size k). Under the committee scoring rule Rf ,
every committee S ⊆ C with |S| = k receives score(S) :=∑

v∈V f(posv(S)) (for this notation, the election will al-
ways be clear from the context). The committee with the
highest score wins. (If there are several such committees,
then they all tie as winners.) It turns out that many well-
known multiwinner voting rules are, in fact, committee scor-
ing rules. Consider the following examples:

1. The SNTV, Bloc, and k-Borda rules pick k candidates
with the highest Plurality, k-Approval, and Borda scores,
respectively. Thus, they are defined through the scoring
functions: fSNTV(i1, . . . , ik) :=

∑k
t=1 α1(it) =

α1(i1), fBloc(i1, . . . , ik) :=
∑k

t=1 αk(it), and
fk-Borda(i1, . . . , ik) :=

∑k
t=1 βm(it), respectively.

2. The Chamberlin–Courant rule is defined through the com-
mittee scoring function fCC(i1, . . . , ik) := βm(i1) (in-
tuitively, under the Chamberlin–Courant rule each voter
is represented by the committee member that this voter
ranks highest; the Chamberlin–Courant rule maximizes
the sum of the Borda scores that voters give to their rep-
resentatives; we can—and often do—consider variants of
this rule with other underlying scores).

Recently, Skowron, Faliszewski, and Lang (2015) intro-
duced a new class of multiwinner rules based on OWA oper-
ators4 (a variant of this class was also studied by Aziz et
al. (2015a; 2015b)). While they did not directly consider
elections based on preference orders, we can implement
their main ideas through committee scoring rules.

An OWA operator Λ of dimension k is a sequence Λ =
(λ1, . . . , λk) of nonnegative numbers.

Definition 2. Let Λ = (λ1, . . . , λk) be an OWA operator
of dimension k and let γ be a (single-winner) scoring func-
tion for elections with m candidates (k ≤ m). Together, Λ
and γ define a committee scoring function fΛ,γ such that
for each (i1, . . . , ik) ∈ [mk] we have fΛ,γ(i1, . . . , ik) =
∑k

t=1 λtγ(it).

We refer to the committee scoring rules that can be ob-
tained through Definition 2 as OWA-based. Clearly, SNTV,
Bloc, k-Borda, and Chamberlin–Courant are OWA-based.

Fixed-Majority Consistent Rules

We first describe our axiomatic criterion for what it means to
resemble the Plurality rule, then—in an intermediate step—
we provide a class of committee scoring rules such that ev-
ery committee scoring rule outside of this class fails the cri-
terion, and finally we provide a complete characterization.

4OWA stands for “ordered weighted average.” OWA operators
were introduced by Yager (1988) in the context of multicriteria de-
cision making. Kacprzyk et al. (2011) describe their applications in
the context of collective choice.

Initial Remarks. One of the features that distinguishes the
Plurality rule among all the scoring rules is the fact that it
satisfies the simple majority criterion.

Definition 3. A single-winner voting rule R satisfies the
simple majority criterion if, for every election E = (C, V )
where more than half of the voters rank some candidate c on
top, it holds thatR(E) = {c}.
Proposition 1. Let γ be a scoring function such that Rγ

satisfies the simple majority criterion. Then γ(1) > γ(2) =
· · · = γ(m), that is,Rγ is the Plurality rule.

There are at least two ways of generalizing the simple
majority criterion to the multiwinner setting. We choose
perhaps the simplest one, the fixed-majority criterion intro-
duced by Debord (1993).

Definition 4. A multiwinner voting ruleR satisfies the fixed-
majority criterion if for every election E = (C, V ) and ev-
ery positive integer k, 1 ≤ k ≤ m, if there is a commit-
tee W of size k such that more than half of the voters rank
all the members of W above the non-members of W , then
R(E, k) = {W}.

Another way of extending the simple majority criterion to
the multiwinner case would be to say that if a committee W
is such that for each c ∈ W a majority of voters ranks c
among top k positions (possibly a different majority for each
c), then W is a winning committee. However, consider the
following votes over candidate set {a, b, c}:

v1 : a > b > c, v2 : a > c > b, v3 : b > c > a.

For k = 2, all three committees, {a, b}, {a, c}, and {b, c},
have majority support in the just-described sense. We feel
that this is against the spirit of the single-winner simple ma-
jority criterion.

It is easy to verify that Bloc satisfies the fixed-majority
criterion and that SNTV does not (it will also follow for-
mally from our further discussion). This means that in a cer-
tain axiomatic sense, Bloc is closer to the Plurality rule than
SNTV. This is quite interesting since one’s first idea of gen-
eralizing Plurality would likely be to think of SNTV. Yet,
Bloc is certainly not the only committee scoring rule that
satisfies our criterion. Let us consider the following rule.

Definition 5. Let k be the size of the committee to be elected.
The Perfectionist rule is defined through the scoring func-
tion fPerf such that fPerf(i1, . . . , ik) = 1 if (i1, . . . , ik) =
(1, . . . , k) and fPerf(i1, . . . , ik) = 0 otherwise. In other
words, a voter gives score of 1 to a committee only if its
members occupy the top k positions of his or her vote.

It is easy to see that the Perfectionist rule satisfies the
fixed-majority property and that it closely resembles the
Plurality rule. On the other hand, neither k-Borda nor
Chamberlin–Courant satisfy it (for k = 1 they are equivalent
to the Borda rule, which fails the simple majority criterion).

Top-k-Counting Rules. To characterize the committee
scoring rules that satisfy the fixed-majority criterion, we in-
troduce a class of scoring functions that depend only on the
number of committee members ranked in the top k positions.

484



Definition 6. Let f : [m]k → N be a committee scor-
ing function. We say that f is a top-k-counting function if
there is a function g : {0, . . . , k} → N such that for each
(i1, . . . , ik) ∈ [m]k we have f(i1, . . . , ik) = g(|{t ∈
[k] : it ≤ k}|). (We refer to g as the counting function for
f .) We say that a committee scoring rule is top-k-counting
if it is defined through a top-k-counting scoring function.

Both Bloc and Perfectionist are top-k-counting rules.
The former is defined through the linear counting function
g(x) = x, while the latter is defined through the counting
function g which is a step-function: g(x) = 1 for x = k and
g(x) = 0 otherwise.

Another example of a top-k-counting rule is the k-
Approval Chamberlin–Courant rule5, defined through the
scoring function αk−CC(i1, . . . , ik) = αk(i1) (we also re-
fer to it as the αk-CC rule). It is a top-k-counting rule, de-
fined through the counting function g such that g(0) = 0 and
g(x) = 1 for all x > 0.

Top-k-counting rules have a number of interesting fea-
tures. Firstly, their counting functions have to be nonde-
creasing. Secondly, they are OWA-based. Thirdly, every
committee scoring rule that satisfies the fixed-majority cri-
terion is top-k-counting. We express these facts in the fol-
lowing three propositions. For technical reasons, in the rest
of the paper we make the assumption that m ≥ 2k.

Proposition 2. Let f : [m]k → N be a top-k-counting scor-
ing function defined through a counting function g (m ≥
2k). Then, g is nondecreasing.

Proof. Consider the sequences It = (1, . . . , t, k+1, . . . , k+
(k− t)) and It+1 = (1, . . . , t+1, k+1, . . . , k+(k− t−1))
from [m]k. Since It+1 � It, we have that f(It+1) ≥ f(It).
By definition, however, we have that f(It+1) = g(t+1) and
that f(It) = g(t). Hence, g(t+ 1) ≥ g(t).

Without the assumption that m ≥ 2k, Proposition 2
would have to be phrased more cautiously, and would speak
only of existence of nondecreasing counting functions. (For
example, for m = k, the function g could be arbitrary.)

Proposition 3. Let f : [m]k → N be a top-k-counting scor-
ing function defined through a counting function g. Let Λ =
(g(1)−g(0), g(2)−g(1), . . . , g(k)−g(k−1)). The commit-
tee scoring rule defined through the scoring function f and
the OWA-based rule defined through the k-Approval scor-
ing function and OWA operator Λ are equivalent (i.e., they
always elect the same committee of size k).

Proof. Let h be the committee scoring function defined
through the k-Approval scoring function and the OWA oper-
ator Λ. Consider an arbitrary sequence (i1, . . . , ik) ∈ [m]k.
By definition, we know that f(i1, . . . , ik) = g(s), where
s = |{t ∈ [k] : it ≤ k}|. We also have that:

h(i1, . . . ik) =
∑k

t=1 αk(it) · (g(t)− g(t− 1))

=
∑s

t=1(g(t)− g(t− 1)) = g(s)− g(0).

5The name of the rule comes from the fact that it is defined in
the same way as the Chamberlin–Courant rule, but using the k-
Approval scoring function instead of the Borda scoring function.

(The second equality follows by the definition of s and αk.)
So, f(i1, . . . , ik)− h(i1, . . . , ik) = g(0) is a fixed constant,
thusRf andRh always elect the same committee.

Proposition 4. Let m ≥ 2k and let f : [m]k → N be a com-
mittee scoring function. IfRf satisfies the fixed-majority cri-
terion then f is a top-k-counting function.

Proof. For each positive integer t such that 0 ≤ t ≤ k we
define the two following sequences from [m]k:

1. It = (1, . . . , t, k + 1, . . . , k + k − t) is a sequence of po-
sitions of the candidates where the first t candidates are
ranked in the top t positions and the remaining k− t can-
didates are ranked just below the kth position.

2. Jt = (k − t+ 1, . . . , k,m− (k − t) + 1, . . . ,m) is a se-
quence of positions where the first t candidates are ranked
just above and including the kth position, whereas the re-
maining k − t candidates are ranked at the bottom.

Among these, Ik = (1, . . . , k) is the highest-scoring se-
quence of positions and Jk = (m − k + 1, . . . ,m) is
the lowest-scoring sequence. Further, for every t we have
It � Jt. Thus, f(It) ≥ f(Jt).

We claim that if there exists some t ∈ {0, . . . , k} such
that f(It) > f(Jt) thenRf does not have the fixed-majority
property. For the sake of contradiction, assume that there is
some t such that f(It) > f(Jt). Let E = (C, V ) be an
election with m candidates and 2n + 1 voters. The set of
candidates is C = X∪Y ∪Z∪D, where X = {x1, . . . , xt},
Y = {yt+1, . . . , yk}, Z = {zt+1, . . . , zk}, and D is a set of
sufficiently many dummy candidates so that |C| = m. We
focus on two committees, M = X ∪ Y and N = X ∪ Z.

The first n + 1 voters have preference order X � Y �
Z � D, and the following n voters have preference order
Z � X � D � Y . Note that the fixed-majority criterion
requires that M is the unique winning committee.

Committee M receives the total score of (n+ 1)f(Ik) +
nf(Jt), whereas committee N receives the total score of
(n+1)f(It)+nf(Ik). The difference between these values
is:

(n+ 1)f(Ik) + nf(Jt)− (n+ 1)f(It)− nf(Ik)

= f(Ik) + nf(Jt)− (n+ 1)f(It)

= f(Ik)− f(It) + n(f(Jt)− f(It)),

which, for a large enough value of n, is negative (by assump-
tion, we know that f(Jt) < f(It) and so f(Jt) − f(It) is
negative). That is, for large enough n, committee M does not
win the election andRf fails the fixed-majority criterion.

In other words, if Rf satisfies the fixed-majority crite-
rion, then for every t ∈ {0, . . . , k} we have that f(It) =
f(Jt). This means, however, that f is a top-k-counting
rule. To see this, consider some sequence of positions L =
(�1, . . . , �k) ∈ [m]k where exactly the first t entries are
smaller than or equal to k. Clearly, we have that It �
L � Jt and so f(It) = f(L) = f(Jt). This means
that f(i1, . . . , ik) depends only on the cardinality of the set
{t ∈ [k] : it ≤ k}. This completes the proof.
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Unfortunately, the converse does not hold: αk-CC is a top-
k-counting rule that fails the fixed-majority criterion.

Criterion for Fixed-Majority Consistent Rules. We now
provide a formal characterization of those top-k-counting
rules that satisfy the fixed-majority criterion. Together with
Proposition 4, this gives a full characterization of committee
scoring rules with this property (the proof follows by apply-
ing techniques similar to those used for Proposition 4).

Theorem 5. Let m ≥ 2k and let f : [m]k → N be a top-k-
counting function with g as its counting function. Then Rf

satisfies the fixed-majority criterion if and only if g is not
constant and for each pair of nonnegative integers k1, k2
with k1 + k2 ≤ k it holds that g(k) − g(k − k2) ≥ g(k1 +
k2)− g(k1).

Condition (ii) in this theorem is a relaxation of the con-
vexity property for g and is illustrated in Figure 1.

Definition 7. Let g be a counting function for some top-
k-counting scoring function f : [m]k → N. We say that g
is convex if for each k′ such that 2 ≤ k′ ≤ k, it holds that
g(k′)−g(k′−1) ≥ g(k′−1)−g(k′−2). On the other hand, if
for each k′ with 2 ≤ k′ ≤ k it holds that g(k′)−g(k′−1) ≤
g(k′ − 1)− g(k′ − 2), then we say that g is concave.

The notions of convex and concave functions are standard,
but allow us to express many features of top-k-counting
rules in a very intuitive way. For example, the following
corollary is an immediate consequence of Theorem 5.

Corollary 6. Let m ≥ 2k. Let f be a top-k-counting rule for
m candidates and committee size k, and let g be its count-
ing function. (1) If g is convex, then Rf satisfies the fixed-
majority criterion. (2) If g is concave but not linear (that is,
Rf is not Bloc) thenRf fails the fixed-majority criterion.

The counting function for Bloc is linear (and, thus, both
convex and concave), and the counting function for Perfec-
tionist is convex, so these two rules satisfy the fixed-majority
condition. On the other hand, the counting function for αk-
CC is concave and, so, this rule fails the criterion.

k

g(k)− g(k2)

g(k1 + k2)− g(k1)

k1 k1 + k2 k − k2

Figure 1: Illustration of the
condition from Theorem 5.

By Proposition 3,
a concave counting
function g corresponds
to a nonincreasing
OWA operator, and a
convex counting func-
tion corresponds to
a nondecreasing one.
Skowron et al. (2015)
provided evidence
that rules based on
nondecreasing OWA
operators are easier
computationally than
those based on gen-
eral OWA operators
(though, still tend to be NP-hard to compute). Below we
show that this seems to be the case for top-k-counting rules
as well, but we also provide a striking counterexample to
their results.

Complexity of Top-k-Counting Rules

In this section, we consider the computational complexity of
winner determination for top-k-counting rules based on con-
vex or concave counting functions. We start by considering
several examples.

It is well-known that Bloc winners can be computed in
polynomial time. The same holds for the Perfectionist rule.

Proposition 7. Both the Bloc rule and the Perfectionist rule
are computable in polynomial time.

Proof. To find the winners under the Perfectionist rule, for
each voter v we compute the score that the committee con-
sisting of v’s top-k candidates has in the election. We out-
put those committees that have the highest score. Correct-
ness follows by noting that the committees that the algorithm
considers are the only ones with nonzero scores.

While the result for the Perfectionist rule is very simple,
it stands in sharp contrast to the results of Skowron, Fal-
iszewski, and Lang (2015). By Proposition 3, Perfection-
ist is defined through the OWA operator (0, . . . , 0, 1), and
Skowron et al. have shown that, in general, such rules are
NP-hard to compute and very difficult to approximate. How-
ever, their result relies on the fact that the voters can ap-
prove any number of candidates, while in our case they have
to approve exactly k of them. Yet, this shows very clearly
that even though top-k-counting rules are OWA-based, we
cannot simply carry-over the hardness results of Skowron et
al. (2015) or Aziz et al. (2015b).

Our discussion of the complexity of top-k-counting rules
relies on the following property of the counting functions.

Definition 8. Let g be a counting function for a top-k-
counting function f : [m]k → N. We define the singularity
of g, denoted s(g), to be s(g) = argmin2≤i≤k

(
g(i)−g(i−

1) 
= g(i− 1)− g(i− 2)
)
.

Loosely speaking, s(g) is the smallest integer in
{2, . . . , k} for which the differential of g changes. For the
Bloc rule (which is an exception) we define s(g) to be ∞,
since the differential is a constant function. For all other non-
constant rules it is finite. For example, for the Perfectionist
rule we have s(g) = k.

We generalize the polynomial-time algorithm for the Per-
fectionist rule to similar rules, for which the value s(g) is
close to k. (Every counting function for a given committee
of size k can be encoded as a sequence of k + 1 numbers.)

Proposition 8. Suppose a top-k-counting ruleRf is defined
by a counting function g of f such that k−s(g) ≤ q. Then for
each positive integer q, there exists a polynomial time algo-
rithm that, given an election E with m candidates, computes
a committee fromRf (E, k).

Yet, as one might expect, not all top-k-counting rules are
polynomial-time solvable and, indeed, most of them are not
(under standard complexity-theoretic assumptions). For ex-
ample, αk-CC is NP-hard (notice that this results follows
quite easily from Theorem 1 of Procaccia et al. (2008)).

Proposition 9. Deciding the existence of a committee with
at least a given score is NP-hard for αk-CC.
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We generalize this NP-hardness result to the case of con-
vex top-k-counting rules for which there is some constant
c such that k − s(g) ≥ k/c (that is, for convex counting
functions where the differential changes “early”). An analo-
gous result for concave counting functions follows from the
works of Skowron, Faliszewski, and Lang (2015) and Aziz
et al. (2015b).

Theorem 10. Let c be some constant and let Rf be a top-
k-counting rule whose counting function g satisfies the fol-
lowing conditions: (1) it does not depend on the number of
candidates in the election (but may depend on k), (2) it is
computable in polynomial time for each committee size k
and, for each committee size k, its highest value is polyno-
mially bounded in k, (3) for each committee size k (greater
than some fixed constant) the counting function g is convex,
and s(g) ≥ k/c. Then, deciding if there is a committee with
at least a given score is NP-hard forR.

Perhaps the only truly controversial assumption in this
theorem is the requirement that for a given committee size
k the highest value of the counting function is polynomially
bounded in k. The reason for having it is that if the highest
value were extremely large (say, exponentially large with re-
spect to k) then for sufficiently few voters (e.g., polynomi-
ally many) the rule might degenerate to a polynomial-time
computable rule (e.g., it might resemble the Perfectionist
rule for this case). Indeed, to avoid such problems, in our
proof we use a number of voters that depends on g(k).

While top-k-counting functions tend to be NP-hard, for
concave top-k-counting rules we can obtain constant-factor
approximation algorithms (and FPT results; see later).

Theorem 11. LetRf be a top-k-counting rule whose count-
ing function g satisfies the following conditions: (1) it is
computable in polynomial time for each number m of can-
didates and each committee size k, and (2) for each com-
mittee size k it is concave. Then, there is a polynomial-time
(1− 1

e )-approximation algorithm for computing the score of
a winning committee underRf .

Such a general result for convex counting functions seems
impossible. Let us consider a convex counting function
g2(x) = max(x − 1, 0) that is nearly identical to the one
used by Bloc. If we had a polynomial-time constant-factor
approximation algorithm for a rule defined by g2, we would
have a constant-factor approximation algorithm for the dens-
est at most K subgraph problem (DAMKS). By the results of
Khuller and Saha (2009), Raghavendra and Steurer (2010),
and Alon et al. (2011), this seems very unlikely.

Theorem 12. There is no polynomial-time constant-factor
approximation algorithm for the problem of computing the
score of a winning committee under the rule defined by the
counting function g2 unless such an algorithm exists for the
DAMKS problem.

On the other hand, for top-k-counting rules that are not
too far from αk-CC, we have a polynomial-time approxima-
tion scheme (PTAS), i.e., an algorithm that can achieve any
desired approximation ratio, provided the number of candi-
dates is not too large. This result holds even for rules that
are not concave (provided they satisfy the conditions of the

theorem); the result follows by noting that our voters have
non-finicky utilities (Skowron, Faliszewski, and Lang 2015).

Theorem 13. Let R be a top-k-counting rule with count-
ing function which is constant for arguments greater than �.
Further, assume that m = o(k2). Then, there is a PTAS for
computing the score of a winning committee under f .

We finish with the following fixed-parameter tractability
results (for a more detailed description of parametrized com-
plexity we point the readers to the books of Downey and
Fellows (1999) or Niedermeier (2006)).

Proposition 14. There is an algorithm that, given a count-
ing function g and an election E, computes a winning com-
mittee for E under the top-k-counting rule Rf defined by g
in FPT time with respect to the number of candidates.

Proof. The algorithm simply computes the score of every
possible committee and outputs the one with the highest
score. With m candidates and committee size k, the algo-
rithm has to check

(
m
k

)
= O(mm) committees, and check-

ing each committee takes a polynomial number of steps.

Theorem 15. There is an algorithm that, given a concave
counting function g and an election E, outputs a winning
committee for E under the top-k-counting function defined
by g, in FPT time with respect to the number n of voters.

Our proof is based on the idea of solving a mixed in-
teger linear program (MILP) in FPT time with respect
to the number of integral variables. We use Bredereck et
al’s. (2015) technique, where we enforce that non-integral
variables take integral values in the optimal solution.

Characterization of the Bloc rule

Using our observations regarding the fixed-majority crite-
rion and the notion of non-crossing monotonicity (Elkind et
al. 2014), we provide a characterization of the Bloc rule.

Definition 9 (Elkind et al. (2014)). A multiwinner ruleR is
said to be non-crossing monotone if for each election E =
(C, V ) and each k ∈ [|C|] the following holds: if c ∈ W
for some W ∈ R(E, k), then, for each E′ obtained from E
by shifting c forward by one position in some vote without
passing another member of W , we have that W ∈ R(E′, k).

For the committees that contain at most half of the candi-
dates, Bloc is the only committee scoring rule that is fixed-
majority consistent and non-crossing monotone.

Theorem 16. Let m ≥ 2k and let Rf be a committee scor-
ing rule based on the scoring function f : [m]k → N. If
Rf is fixed-majority consistent and non-crossing monotone,
thenRf is the Bloc rule.

If we had a characterization of committee scoring rules,
as we do for single-winner scoring rules (Young 1975), we
would have a full characterization of Bloc.

Outlook

We aimed at finding a multiwinner analogue of the single-
winner Plurality rule and we have shown that the answer
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is quite involved. While intuitively SNTV is a natural ana-
logue of the Plurality rule, it fails the fixed-majority criterion
(which the Plurality rule satisfies in the single-winner set-
ting). We have found that among committee scoring rules,
only the top-k-counting rules—a class of rules we have de-
fined in this paper—have a chance of satisfying our criterion,
and we have characterized exactly when this happens. Since
the research on multiwinner voting is still in an early, ex-
ploratory stage, we believe that it is important and valuable
to identify such interesting classes of multiwinner rules.

Our work leads to a number of open questions. On the
axiomatic front, we believe that it would be interesting to
provide a characterization of committee scoring rules along
the lines of Young’s (1975) characterization for their single-
winner counterparts. On the computational front, it would be
interesting to find more powerful algorithms for computing
top-k-counting rules.
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