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Abstract

The leading approach to solving large imperfect information
games is to pre-calculate an approximate solution using a
simplified abstraction of the full game; that solution is then
used to play the original, full-scale game. The abstraction
step is necessitated by the size of the game tree. However,
as the original game progresses, the remaining portion of the
tree (the subgame) becomes smaller. An appealing idea is to
use the simplified abstraction to play the early parts of the
game and then, once the subgame becomes tractable, to cal-
culate a solution using a finer-grained abstraction in real time,
creating a combined final strategy. While this approach is
straightforward for perfect information games, it is a much
more complex problem for imperfect information games. If
the subgame is solved locally, the opponent can alter his play
in prior to this subgame to exploit our combined strategy. To
prevent this, we introduce the notion of subgame margin, a
simple value with appealing properties. If any best response
reaches the subgame, the improvement of exploitability of
the combined strategy is (at least) proportional to the sub-
game margin. This motivates subgame refinements resulting
in large positive margins. Unfortunately, current techniques
either neglect subgame margin (potentially leading to a large
negative subgame margin and drastically more exploitable
strategies), or guarantee only non-negative subgame margin
(possibly producing the original, unrefined strategy, even if
much stronger strategies are possible). Our technique reme-
dies this problem by maximizing the subgame margin and is
guaranteed to find the optimal solution. We evaluate our tech-
nique using one of the top participants of the AAAI-14 Com-
puter Poker Competition, the leading playground for agents
in imperfect information settings.

Introduction

Extensive form games are a powerful model capturing a
wide class of real-world problems. The games can be ei-
ther perfect information (Chess) or imperfect information
(poker). Applications of imperfect information games range
from security problems (Pita et al. 2009) to card games
(Bowling et al. 2015)

The largest imperfect information game to be (essen-
tially) solved today is the limit version of two-player Texas
Hold’em poker (Bowling et al. 2015), with approximately
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1017 nodes (Johanson 2013). Unfortunately, many games
remain that are much too large to be solved with current
techniques. For example, the more popular “No-Limit” vari-
ant of two-player Texas Hold’em poker has approximately
10165 nodes (Johanson 2013).

The leading approach to solving imperfect information
games of this magnitude is to create a simplified abstrac-
tion of the game, compute an ε-equilibrium in the abstract
game, and finally use the strategy from the abstracted game
to play the original, unabstracted game (Billings et al. 2003)
(Sandholm 2010) (Johanson et al. 2013) (Gibson 2014). The
amount of simplification needed to produce the abstracted
game is determined by the maximum size of the game tree
that we are able to learn with the computing resources avail-
able. While abstraction pathologies mean that larger abstrac-
tions are not guaranteed to produce better strategies (Waugh
et al. 2009), empirical results have shown that finer-grained
abstractions are generally better (Johanson et al. 2013)

An appealing compromise is to pre-calculate the largest
possible abstraction we can handle for the entire game and
then improve this in real-time with refinements. The origi-
nal strategy is used to play the early parts of the game (the
trunk) and once the remaining portion of the game tree (the
subgame) becomes tractable, we can refine the strategy for
the subgame in real-time using even finer-grained abstrac-
tion. Figure 1 illustrates the approach.

Figure 1: Subgame refinement framework. (i) the strategy
for the game is pre-computed using coarse-grained abstrac-
tion (ii) during the play, once we reach a node defining a
sufficiently small subgame, we refine the strategy for that
subgame (iii) this together with the original strategy for the
trunk creates a combined strategy. The point is to produce
improved combined strategy

Note that not only can we enlarge the size of the ab-
straction in the subgame, we can also reduce the “off the
tree problem”. When an opponent takes an action that is not
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found in the abstraction, it needs to be mapped onto a (sim-
ilar) one in the abstraction. This mapping can destroy rele-
vant game information. To reduce this effect, we can con-
struct the subgame so that it starts in the exact state of the
game so far (Ganzfried and Sandholm 2015).

Subgame refinement has been successfully used in per-
fect information games to improve the strategies (Müller
and Gasser 1996) (Müller 2002). Unfortunately, the nature
of imperfect information games means that it is difficult to
isolate subgames. Current attempts to apply subgame refine-
ment to imperfect information games have lead to marginal
gains or potentially result in a more exploitable final solu-
tion. The reason for this is that if we change our strategy
in the subgame then this gives our opponent the opportunity
to exploit our combined strategy by altering their behavior
in the trunk of the game. See (Burch, Johanson, and Bowl-
ing 2013) or (Ganzfried and Sandholm 2015) for details and
several nice examples of this flaw.

The first approach, “endgame solving”, does not guar-
antee a decrease in exploitability, and can instead produce
a strategy that is drastically more exploitable. (Ganzfried
and Sandholm 2015). The second approach, re-solving, was
originally designed for subgame strategy re-solving. In other
words, it aims to reproduce the original strategy from a com-
pact representation. The resulting strategy is guaranteed to
be no more exploitable than the original one. Although this
technique can be used to refine the subgame strategy, there is
no explicit construction that forces the refined strategy to be
any better than the original, even if much stronger strategies
exist. (Burch, Johanson, and Bowling 2013)

In this paper, we present a new technique, max-margin
subgame refinement, that is tailor-made to reduce ex-
ploitability in imperfect information games. We introduce
the notion of subgame margin, a simple value with appealing
properties, which motivates subgame refinements that result
in large positive margins.

We regard the problem of safe subgame refinement as a
linear optimization problem. This perspective demonstrates
the drawbacks and connections between the two previous
approaches, and ultimately introduce linear optimization to
maximize the subgame margin. Subsequently, we describe
an imperfect information game construction that can be used
to find such a strategy (rather than solving the resulting lin-
ear optimization problem). This allows us to solve larger
subgames using recently introduced techniques, namely the
CFR+ (Tammelin et al. 2015) and domain-specific speedup
tricks (Johanson et al. 2012).

Finally, we experimentally evaluate all the approaches -
endgame solving, re-solving and max-margin subgame re-
finement. For the first time, we evaluate these techniques on
the safe-refinement task as part of a large-scale game by us-
ing one of the top participating agents in AAAI-14 Com-
puter Poker Competition as the baseline strategy to be re-
fined in subgames.

Previous Work
Despite the lack of theoretical guarantees, variants of sub-
game refinement have been used in imperfect information
games for some time. The poker agent GS1-G4 (Gilpin and

Sandholm 2006) (Gilpin, Sandholm, and Sørensen 2007)
and its successor Tartanian (Ganzfried and Sandholm 2013)
(Ganzfried and Sandholm 2015) used various techniques to
either refine or solve the endgame. The authors call their
newest version of their approach “endgame solving”, and
report both positive practical performance results as well
as potentially negative impacts on the exploitability of the
combined strategy (Ganzfried and Sandholm 2015). This is
a property shared by all of these variants - the resulting strat-
egy can be substantially more exploitable than the original
strategy started with.

We are aware of only one prior subgame refinement tech-
nique that is guaranteed to produce a combined strategy that
is no-more exploitable than the original strategy, re-solving
(Burch, Johanson, and Bowling 2013) The technique works
by computing the best response values for the opponent
and using these values to construct a gadget game. Unfor-
tunately, there is no explicit mechanism to cause the refined
strategy to be any better than the original one, even if much
stronger strategies are possible. By formulating this tech-
nique as an optimization problem, we can easily see this
property.

Background and Notation

An extensive form game (Osborne and Rubinstein 1994, p.
200) consists of (i) A finite set of players P . (ii) A finite set
H of all possible game states. Each member of H is a his-
tory, each component of history is an action. (iii) The empty
sequence is in H , and every prefix of a history is also history
((h, a) ∈ H =⇒ (h ∈ H)). h � h′ denotes that h is a
prefix of h′. Z ⊆ H are the terminal histories (they are not a
prefix of any other history). (iv) The set of actions available
after every non-terminal history A(h) = {a : (h, a) ∈ H}.
(v) A function p that assigns to each non-terminal history
an acting player (member of P ∪ c, where c stands for
chance). (vi) A function fc that associates with every his-
tory for which p(h) = c a probability measure on A(h).
Each such probability measure is independent of every other
such measure. (vii) For each player i ∈ P , a partition Ii of
h ∈ H : p(h) = i. Ii is the information partition of player
i, with property that A(h) = A(h′) whenever h and h′ are in
the same member of the partition. A set Ii ∈ Ii is an infor-
mation set of player i and we denote by A(Ii) the set A(h)
and by P (Ii) the player P (h) for any h ∈ Ii (viii) For each
player i ∈ P an utility function ui : Z → R.

In the rest of the paper, we assume that the game is per-
fect recall, two-player zero sum. This means P = {1, 2},
u1(z) = −u2(z) and no player forgets any information re-
vealed to him (nor the order it was revealed in).

A strategy for player i, σi, is a function that maps I ∈ Ii
to a probability distribution over A(I) and πσ(I, a) is the
probability of action a. Σi denotes the set of all strategies
of player i. A strategy profile is a vector of strategies of
all players, σ = (σ1, σ2, . . . , σ|P |). Σ denotes the set of all
strategy profiles.

We denote πσ(h) as the probability of history h occur-
ring given the strategy profile σ. Let πσ

i (h) be the contribu-
tion of player i to that probability. We can then decompose
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πσ(h) as πσ(h) =
∏

i∈P∪c

πσ
i (h). Let πσ

−i(h) be the product

of all players contribution (including chance), except that of
player i. For I ∈ I, πσ(I) =

∑
h∈I π

σ(h) is the probabil-
ity of reaching particular information set given σ and πσ

p (I),
πσ
−p(I) again denote the player’s contribution to this prob-

ability. We use πσ(h′|h) to refer to the probability of going
from history h to the history h′.

Define σ|I→a to be the same strategy profile as σ, ex-
cept that a player always plays the action a in the infor-
mation set I . Define ui(σ) to be the expected utility for
player i, given the strategic profile σ, in other words ui(σ) =∑

h∈Z ui(h)π
σ(h).

A Nash equilibrium is a strategy profile σ such that for
every player i ∈ P : ui(σ) ≥ maxσ∗

i ∈Σi
ui((σ

∗
i , σ−i))

The Counterfactual value vσp (I) is the expected utility
given that information set I is reached and all players play
using strategy σ, except that player p plays to reach I

vσp (I) =

∑
h∈I,h′∈Z πσ

−p(h)π
σ(h′|h)ui(h

′)
πσ−p(I)

A best response BRp(σ) is a strategy of the player p that
maximizes his expected utility given σ−p.

In a two-player zero-sum game, the exploitability refers
to strategy’s additional loss to a best response compared to
player’s utility in a Nash equilibrium.

A counterfactual best response CBRp(σ) is a strategy
where σp(I, a) > 0 iff v

σ|I→a
p (I) = maxa′v

σ|I→a′
p (I).

It maximizes counterfactual value at every information set.
CBRp is a always a best response but best response may not
be contractual best response since it can choose an arbitrary
action in information sets where πp(I) = 0.

The well-known recursive tree walk algorithm for best
response computation produces a counterfactual best re-
sponse.

To simplify the notation we define a counterfactual best
response value CBV σ

p (I). It is very similar to standard def-
inition of counterfactual value, with exception that player
p plays according to CBRp(σ) instead of σ. Formally
CBV σ

p (I) = v
(σ−p,CRBp(σ))
p (I)

Subgame

In a perfect information game, a subgame is a subtree of
the original game tree rooted at any node. This definition
is problematic for imperfect information games, since such
subtree could include one part of an information set and
exclude another. To define a subgame for an imperfect in-
formation game, a generalized concept of information set
is used. Information set I(h) groups histories that the act-
ing player p = P (h) cannot distinguish. Augmented infor-
mation set set adds also histories that any of the remaining
players cannot distinguish (Burch, Johanson, and Bowling
2013). Using this notion, one can define subgame.
Definition 1. An imperfect information subgame (Burch, Jo-
hanson, and Bowling 2013) is a forest of trees, closed under
both the descendant relation and membership within aug-
mented information sets for any player.

Note that root of the subgame, denoted R(S), will not typ-
ically be a single (augmented) information set because dif-
ferent players typically have different information available
to them, thus grouping of histories to augmented informa-
tion sets will be different. We denote the set of all informa-
tion sets of the player p at the root of the subgame as IR(S)

p .

Formulating Subgame Refinement using
Optimization

In this section, we briefly describe the two current tech-
niques - (i) endgame solving (Ganzfried and Sandholm
2015) and (ii) re-solving (Burch, Johanson, and Bowling
2013) We also reformulate both of them as equivalent opti-
mization problems. Regarding these techniques as optimiza-
tions helps us to see the underlying properties of these two
techniques. Subsequently, we use these insights to motivate
our new, max-margin technique. We will assume, without
loss of generality, that we are refining the strategy for player
1 (p1) for the rest of this paper.

Endgame Solving

We start by constructing a fine-grained subgame abstraction.
The original strategies for the subgame are discarded and
only the strategies prior to the subgame (trunk) are needed.
The strategies in the trunk are used to compute the joint dis-
tribution (belief) over the states at the beginning of the sub-
game. Finally, we add a chance node just before the fine-
grained subgame. The node leads to the states at the root of
the subgame. The chance node plays according to the com-
puted belief. Adding the chance node roots the subgame,
thus making it well-defined game. See Figure 2.

Figure 2: Endgame solving construction - Gadget 1. The
(c)hance plays according to the belief computed using the
trunk’s strategy. The finer-grained (S)ubgame follows.

The following is a formulation of the linear optimization
problem corresponding to the game construction. LP1 is the
standard sequence form LP for the Gadget 1.

max
v,x

f�v

Ex = e

F�v −A�
1 x ≤ 0

x ≥ 0

LP1 - optimization problem corresponding to endgame
solving. A1 is the sequence form payoff matrix, x is the vec-
tor of p1 strategies, v is the vector of (negative) counterfac-
tual best response values for p2, E and F are sequence con-
straint matrices and e is sequence constraint vector (Nisan
et al. 2007) (Čermák, Bošanskÿ, and Lisy 2014)
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The flaw in this technique stems from the fact that even if
the trunk strategy (and thus the starting distribution) is op-
timal, the combined strategy can become drastically more
exploitable. (Ganzfried and Sandholm 2015) (Burch, Johan-
son, and Bowling 2013)

Re-solving

Again, we start by creating a fine-grained abstraction for the
subgame. The original strategy for the subgame (from the
coarse abstraction) is then translated into the fine-grained
abstraction as σS

1 . The translated strategy is now used to

compute CBV
σS
1

2 (I) for every information set I at the root
of the subgame. These values will be useful for the gadget
construction to guarantee the safety of the resulting strategy.

To construct the gadget, we add one chance node at the
root of the game, followed by additional nodes for p2 - one
for every state at the root of the subgame. At each of these
nodes, p2 may either accept the corresponding counterfac-
tual best response value calculated earlier or play the sub-
game (to get to the corresponding state at the root of the
subgame). The chance player distributes the p2 into these
states using the (normalized) πσ

−2 (how likely is the state
given that p2 plays to reach it). Since the game is zero sum,
this forces p1 to play the subgame well enough that the op-
ponent’s value is no greater than the original CBV . See Fig-
ure 3 for a sketch of the construction. For more details see
(Burch, Johanson, and Bowling 2013).

Figure 3: re-solving gadget construction - Gadget 2. The op-
ponent chooses in every state prior to the endgame to either
(F)ollow the action into the endgame or to (T)erminate. His
utility after the (T)erminal action is set to his counterfactual
best response in that state.

Next, we formulate a linear optimization problem corre-
sponding to the gadget construction. This time, the presented
LP is not a straightforward sequential-form representation of
the construction. Although such a representation would be
possible, it would not help provide the insight we are seek-
ing. Instead, we formulate a LP that solves the same game
(for the p1) while demonstrating the underlying properties of
the re-solving approach. The formulation uses the fact that
any strategy for which the opponent’s current counterfactual
best response is no greater than the original one, is a solution
to the game (this follows form the construction of Gadget 2).

max
v,x

0

vI ≥ CBV σ
2 (I), I ∈ IR(S)

2

Ex = e

F�v −A�
2 x ≤ 0

x ≥ 0

LP2 - IR(S)
2 denotes the root information sets, CBV σ

2 (I)
is the original counterfactual best response value of p2 in the
information set I . The sequence payoff matrices A1 and A2

are slightly different to reflect different strategy of the chance
player in Gadget 1 and Gadget 2.

It is worth noting three critical points here.
1. LP2 is not maximizing any value, but rather finding a

feasible solution (though theoretically equivalent, it is se-
mantically different for the strategy in this case).

2. The original, unrefined strategy is a solution to LP2

3. Although 1) and 2) suggest that the strategy might not
improve, empirical evaluations show that if one uses a
CFR algorithm to solve the corresponding game (Gadget
2), the refined strategy’s performance improves upon the
original(Burch, Johanson, and Bowling 2013). Our exper-
iments further confirm this.

Discussion

Looking at the LP1 and LP2, it’s easy to see the prop-
erties of existing approaches. The LP1 (endgame solving)
lacks the constraints (vI ≥ CBV σ

2 (I)) that bound the ex-
ploitability, possibly producing strategy drastically more ex-
ploitable than the original one. LP2 (re-solving) bounds the
exploitability, but lacks maximization factor, possibly pro-
ducing strategies no better than the original one. As we will
see, our approach both bounds the exploitability while max-
imizing some well-motivated function.

Our Technique

The outline of this section is following: 1. we list the steps
used by our technique 2. we use the problem of refining im-
perfect information subgames to motivate a value to maxi-
mized 3. we formalize this value as the subgame margin 4.
we discuss and formalize its properties 5. we formulate an
LP optimizing the subgame margin 6. we describe a corre-
sponding extensive form game construction - Gadget 3

Our technique follows the steps of the subgame refine-
ment framework: (i) Create an abstraction for the game. (ii)
Compute an equilibrium approximation within the abstrac-
tion. (iii) Play according to this strategy. (iv) When the play
reaches final stage of the game, create a fine-grained abstrac-
tion for the endgame. (v) Refine the strategy in the fine-
grained abstraction. (vi) Use the resulting strategy in that
subgame (creating a combined strategy).

Since all the steps except of the step five are identical to
already described techniques, we describe only this steps in
details.
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Subgame Margin

To address the potential increase in exploitability caused by
an opponent altering his behavior in the trunk, we ensure
that there is no distribution of starting states that would al-
low him to increase his CBV when confronted by subgame
refinement. The simplest way to ensure this is to decrease
his CBV in all possible starting states. We can put a lower
bound on this improvement by measuring the state with the
smallest decrease in CBV . Our goal is to maximize this
lower bound. We refer to this values as the subgame mar-
gin.

Definition 2. Subgame Margin

Let σ1, σ
′
1 be a pair of p1 strategies for subgame S. Then

a subgame margin

SM1(σ1, σ
′
1, S) = min

I2∈IR(S)
2

CBV σ1
2 (I2)− CBV

σ′
1

2 (I2)

Subgame margin has several useful properties. The ex-
ploitability is strongly related to the value of the margin.
If it is non-negative, the new combined strategy is guaran-
teed to be no more exploitable than original one. Further-
more, given that the opponent’s best response reaches the
subgame with non-zero probability, the exploitability of our
combined strategy is reduced. This improvement is at least
proportional to the subgame margin (and may be greater).

Theorem 1. Given a strategy σ1, a subgame S and a re-
fined subgame strategy σS

1 , let σ′
1 = σ1[S ← σS

1 ] be a
combined strategy of σ1 and σS

1 . Let the subgame margin
SM1(σ1, σ

′
1, S) be non-negative. Then u1(σ

′
1, CBR(σ′

1))−
u1(σ1, CBR(σ1)) ≥ 0. Furthermore, if there is a best re-
sponse strategy σ∗

2 = BR(σ′
1) such that π(σ′

1,σ
∗
2 )(I2) >

0 for some I2 ∈ IR(S)
2 , then u1(σ

′
1, CBR(σ′

1)) −
u1(σ1, CBR(σ1)) ≥ π

σ′
1

−2(I2)SM1(σ1, σ
′
1, S).

This theorem is generalization of the Theorem 1 in
(Burch, Johanson, and Bowling 2013). Intuitively, it follows
from the way one computes a best response using the bottom-
up algorithm. For the formal proof, see appendix A or the
authors’ homepage.

Though this lower bound might seem artificial at first, it
has promising properties for subgame refinement. Since we
refine the strategy once we reach the subgame, we are either
facing p2’s best response that reaches S or he has made a
mistake earlier in the game. Furthermore, the probability of
reaching a subgame is proportional to π

σ′
1

−2(I2). As this term
(and by extension, the bound) increases, the probability of
reaching that subgame grows. Thus, we are more likely to
reach a subgame with larger bound.

Optimization Formulation

To find a strategy that maximizes the subgame margin, we
can easily modify the LP2.

max
v,x

m

vI−m ≥ CBV σ
2 (I), I ∈ IR(S)

2

Ex = e

F�v −A�
2 x ≤ 0

x ≥ 0

LP3 - maximizing the subgame margin, m is scalar corre-
sponding to the subgame margin that we aim to maximize.

The similarities between LP3 and LP2 make it easier
to see that where the LP2 optimization guarantees non-
negative margin, we maximize it. While the optimization
formulation is almost identical to the re-solving, our gadget
construction is different.

Gadget Game

One way to find the refined strategy is to solve the cor-
responding linear program. However, algorithms that are
tailor-made for extensive form games often outperform the
optimization approach (Bošanskỳ 2013). These algorithms
often permit the use of domain-specific tricks to provide fur-
ther performance gains (Johanson et al. 2012). Thus, formu-
lating our optimization problem LP3 as an extensive form
game will mean that we can compute larger subgame ab-
stractions using the available computing resources. Essen-
tially, the construction of a Gadget 3 corresponding to the
LP3 will allow us to compute larger subgames than would
be possible if we simply used LP3. We now provide the
construction of such a gadget game.

Gadget Game Construction

All states in the original subgame are directly copied into
the resulting gadget game. We create the gadget game by
making two alterations to the original subgame. (i) we shift
p2’s utilities using the CBV2 (To initialize all p2 values to
zero) and (ii) we add a p2 node followed by chance nodes
at the top of the subgame (to allow the opponent to pick any
starting state, relating the game values to margin) We will
distinguish the states, strategies, utilities, etc. for the gadget
game by adding a tilde to corresponding notation. The fol-
lowing is a description of the steps (see also Figure 4 that
visualizes the constructed Gadget 3)

1. We establish a common baseline. To compare the changes
in the performance of each of p2’s root information sets,
it is necessary to give them a common baseline. We use
the original strategy σS

1 as the starting point. For every
I ∈ IR(S)

2 , we subtract the opponent’s original counter-
factual best response value, setting the utility at each ter-
minal node z ∈ Z(I) to ũ2(z) = u2(z) − CBV

σS
1

2 (I)
(we also update ũ1(z̃) = −ũ2(z̃) since we need the game
to remain zero-sum). This shifting gives all of our oppo-
nent’s starting states a value of zero if we do not deviate
from our original strategy σS

1 .

2. p2 is permitted to choose his belief at the start of the sub-
game, while p1 retains his belief from the original strategy
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at the point where the subgame begins. Since p2 is aiming
to maximize ũ2, he will always select the information set
with the lowest margin. The minimax nature of the zero-
sum game forces p1 to find a strategy that maximizes this
value. We add additional decision node d̃ for p2. Each ac-
tion corresponds to choosing an information set I to start
with, but we do not connect this action directly to this
state. Instead, each action leads to a new chance node sĨ ,
where the chance player chooses the histories h ∈ Ĩ based
on the probability πσ

−2(h).

Figure 4: Max margin gadget - Gadget 3. Notice that given
the original strategy of p1 , opponent’s best response utility
is zero (thanks to the offset of terminal utilities).

Lemma 2. Strategy for the Gadget 3 is Nash Equilibrium if
and only if it’s a solution to the LP3

Follows from the construction of the Gadget 3.

Experiments
In this section, we evaluate endgame solving, re-solving and
max-margin subgame refinement on the safe-refinement task
for a large-scale game. We use an improved version of the
Nyx agent, the second strongest participant at the 2014 An-
nual Computer Poker Competition (heads-up no-limit Texas
Hold’em Total Bankroll) as the baseline strategy to be re-
fined in subgames.

All three of the subgame refinement techniques tested
here used the same abstractions and trunk strategy. Follow-
ing (Ganzfried and Sandholm 2015), we begin the subgame
at start of the last round (the river). While we used card ab-
straction to compute the original (trunk) strategy (specif-
ically (Schmid et al. 2015) and (Johanson et al. 2013)),
the fine-grained abstraction for the endgame is calculated
without the need for card abstraction. This is an improve-
ment over the original implementation (Ganzfried and Sand-
holm 2015), where both the trunk strategy and the refined
subgame used card abstraction. This is a result of the im-
proved efficiency of the CFR+ algorithm (and the domain-
specific speedups it enables), whereas the endgame solving
in (Ganzfried and Sandholm 2015) used linear programming
to compute the strategy.

The original strategy uses action abstraction with up to
16 actions in an information set. While this number is rela-
tively large compared to other participating agents, it is still
distinctly smaller compared to the best-known upper-bound
on the size of the support of an optimal strategy (Schmid,
Moravcik, and Hladik 2014). In contrast to the action ab-
straction used for the original Nyx strategy that uses imper-
fect recall for the action abstraction, the refined subgame

uses perfect recall. We use the same actions in the refined
subgame as in the original strategy.

We refine only the subgames that (after creating the
fine-grained abstraction) are smaller than 1, 000 betting se-
quences - this is simply to speed up the experiments. The
original agent strategy is used for both p1 and p2 in the trunk
of the game. Once gameplay reaches the subgame (river),
we refine the P1 strategy using each of the three techniques.
We ran 10, 000 iterations of the CFR+ algorithm in the cor-
responding gadget games. Exponential weighting is used to
update the average strategies (Tammelin et al. 2015). Each
technique was used to refine around 2, 000 subgames. Fig-
ure 5 visualizes the average margins for the evaluated tech-
niques.

Figure 5: Subgame margins of the refined strategies. One big
blind corresponds to 100 chips. The max-margin technique
produces the optimal value. We see that the optimal value is
much greater than the one produced by either re-solving or
endgame solving (which produces even negative margins).
The 95% confidence intervals for the results (after 10, 000
iterations) are: maxmargin 101.49± 7.09, re-solving 8.79±
2.45, endgame solving −518.5± 49.19

Endgame Solving The largely negative margin values for
the endgame solving suggest that the produced strategy may
indeed be much more exploitable.

Re-solving The positive margin for re-solving shows that,
although there’s no explicit construction that forces the mar-
gin to be greater than zero, it does increase in practice. No-
tice, however, that the margin is far below the optimal level.

Max-margin Refinement This technique produces a
much larger subgame margin than the previous techniques.
The size of the margin suggests that the original strategy is
potentially quite exploitable, and our technique can substan-
tially decrease the exploitability - see Theorem 1.

Conclusion

We have introduced max-margin subgame refinement, a
new technique for subgame refinement of large imper-
fect information games. The subgame margin is a well-
motivated value with appealing properties for endgame solv-
ing, namely regarding the resulting exploitability. We for-
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malized and proved these properties in Theorem 1. As the
name of the our technique suggests, the technique aims to
maximize this well-motivated value. We also formulated
our approach using both linear optimization and extensive
form game (gadget) construction. Experimental results have
confirmed that our gadget game successfully finds refined
strategies with substantially larger margins than previous
approaches. The rather large values of the margin that the
technique provided suggest that even though we evaluated
the technique using a state-of-the-art strategy, such strate-
gies still contain tremendous space for improvement in such
large games.
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