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Abstract

We study the problem of computing Nash equilibria of zero-
sum games. Many natural zero-sum games have exponen-
tially many strategies, but highly structured payoffs. For ex-
ample, in the well-studied Colonel Blotto game (introduced
by Borel in 1921), players must divide a pool of troops among
a set of battlefields with the goal of winning (i.e., having more
troops in) a majority. The Colonel Blotto game is commonly
used for analyzing a wide range of applications from the U.S
presidential election, to innovative technology competitions,
to advertisement, to sports. However, because of the size of
the strategy space, standard methods for computing equilib-
ria of zero-sum games fail to be computationally feasible. In-
deed, despite its importance, only few solutions for special
variants of the problem are known.
In this paper we show how to compute equilibria of Colonel
Blotto games. Moreover, our approach takes the form of a
general reduction: to find a Nash equilibrium of a zero-sum
game, it suffices to design a separation oracle for the strat-
egy polytope of any bilinear game that is payoff-equivalent.
We then apply this technique to obtain the first polytime algo-
rithms for a variety of games. In addition to Colonel Blotto,
we also show how to compute equilibria in an infinite-strategy
variant called the General Lotto game; this involves showing
how to prune the strategy space to a finite subset before ap-
plying our reduction. We also consider the class of dueling
games, first introduced by Immorlica et al. (2011). We show
that our approach provably extends the class of dueling games
for which equilibria can be computed: we introduce a new du-
eling game, the matching duel, on which prior methods fail to
be computationally feasible but upon which our reduction can
be applied.

Introduction

Computing a Nash equilibrium of a given game is a cen-
tral problem in algorithmic game theory. It is known that
every finite game admits a Nash equilibrium (that is, a pro-
file of strategies from which no player can benefit from a
unilateral deviation) (Nash 1951). But it is not necessar-
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ily obvious how to find an equilibrium. Indeed, the conclu-
sions to date have been largely negative: computing a Nash
equilibrium of a normal-form game is known to be PPAD-
complete (Daskalakis, Goldberg, and Papadimitriou 2009;
Goldberg and Papadimitriou 2006), even for two-player
games (Chen and Deng 2006). In fact, it is PPAD-complete
to find an 1

nO(1) approximation to a Nash equilibrium (Chen,
Deng, and Teng 2006). These results call into question the
predictiveness of Nash equilibrium as a solution concept.

This motivates the study of classes of games for which
equilibria can be computed efficiently. It has been found that
many natural and important classes of games have struc-
ture that can be exploited to admit computational results
(Dantzig 1963; Garg, Jiang, and Mehta 2011; Kontogian-
nis and Spirakis 2010; Lipton, Markakis, and Mehta 2003;
Alon et al. 2013; Demaine et al. 2007; 2009; Ahmadinejad et
al. 2015). Perhaps the most well-known example is the class
of zero-sum two-player games1, where player 2’s payoff is
the negation of player 1’s payoff. The normal-form repre-
sentation of a zero-sum game is a matrix A, which specifies
the game payoffs for player 1. This is a very natural class
of games, as it models perfect competition between two par-
ties. Given the payoff matrix for a zero-sum game as input,
a Nash equilibrium can be computed in polynomial time,
and hence time polynomial in the number of pure strategies
available to each player (Dantzig 1963). Yet even for zero-
sum games, this algorithmic result is often unsatisfactory.
The issue is that for many games the most natural represen-
tation is more succinct than simply listing a payoff matrix,
so that the number of strategies is actually exponential in the
most natural input size. In this case the algorithm described
above fails to guarantee efficient computation of equilibria,
and alternative approaches are required.

The Colonel Blotto Game A classical and important ex-
ample illustrating these issues is the Colonel Blotto game,
first introduced by Borel in 1921 (Borel 1921; 1953; Fréchet
1953a; 1953b; von Neumann 1953). In the Colonel Blotto
game, two colonels each have a pool of troops and must fight
against each other over a set of battlefields. The colonels
simultaneously divide their troops between the battlefields.
A colonel wins a battlefield if the number of his troops

1Or, equivalently, constant-sum games.
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dominates the number of troops of his opponent. The final
payoff of each colonel is the (weighted) number of battle-
fields won. An equilibrium of the game is a pair of colonels’
strategies, which is a (potentially randomized) distribution
of troops across battlefields, such that no colonel has in-
centive to change his strategy. Although the Colonel Blotto
game was initially proposed to study a war situation, it has
found applications in the analysis of different forms of com-
petition: from sports, to advertisement, to politics (Myer-
son 1993; Kovenock and Roberson 2010; 2012; Roberson
and Kvasov 2012; Bachrach, Syrgkanis, and Vojnovic 2011;
Polevoy, Trajanovski, and de Weerdt 2014), and has thus be-
come one of the most well-known games in classic game
theory.

Colonel Blotto is a zero-sum game. However, the num-
ber of strategies in the Colonel Blotto game is exponential
in its natural representation. There are

(
n+k−1
k−1

)
ways to par-

tition n troops among k battlefields. The classical methods
for computing the equilibra of a zero-sum game therefore
do not yield computationally efficient results. Moreover, sig-
nificant effort has been made in the economics literature to
understand the structure of equilibria of the Colonel Blotto
game, i.e., by solving for equilibrium explicitly (Tukey
1949; Kvasov 2007; Hart 2007; Golman and Page 2009;
Kovenock and Roberson 2012). Despite this effort, progress
remains sparse. Much of the existing work considers a con-
tinuous relaxation of the problem where troops are divisible,
and for this relaxation a significant breakthrough came only
quite recently in the seminal work of Roberson (Roberson
2006), 85 years after the introduction of the game. Rober-
son finds an equilibrium solution for the continuous version
of the game, in the special case that all battlefields have
the same weight. The more general weighted version of the
problem remains open, as does the original non-relaxed ver-
sion with discrete strategies. Given the apparent difficulty of
solving for equilibrium explicitly, it is natural to revisit the
equilibrium computation problem for Colonel Blotto games.

An Approach: Bilinear Games How should one ap-
proach equilibrium computation in such a game? The ex-
ponential size of the strategy set is not an impassable bar-
rier; in certain cases, games with exponentially many strate-
gies have an underlying structure that can be used to ap-
proach the equilibrium computation problem. For exam-
ple, Koller, Megiddo and von Stengel (Koller, Megiddo,
and Von Stengel 1994) show how to compute equilibria
for zero-sum extensive-form games with perfect recall. Im-
morlica et al. (Immorlica et al. 2011) give an approach for
solving algorithmically-motivated “dueling games” with un-
certainty. Letchford and Conitzer (Letchford and Conitzer
2013) compute equilibria for a variety of graphical secu-
rity games. Each of these cases involve games with expo-
nentially many strategies. In each case, a similar approach
is employed: reformulating the original game as a payoff-
equivalent bilinear game. In a bilinear game, the space of
strategies forms a polytope in Rn, and payoffs are speci-
fied by a matrix M : if the players play strategies x and y
respectively, then the payoff to player 1 is xTMy. It has

been observed that such bilinear games can be solved effi-
ciently when the strategy polytope has polynomially many
constraints (Charnes 1953; Koller, Megiddo, and Von Sten-
gel 1994). In each of the examples described above, it is
shown how to map strategies from the original games to ap-
propriate payoff-equivalent bilinear games, in which strate-
gies are choices of marginal probabilities from the original
game. If one can also map a strategy in the bilinear game
back to the original game, then one has a polytime reduction
to the (solved) problem of finding equilibria of the bilinear
game. In each of these prior works it is this latter step – map-
ping back to the original game – that is the most demanding;
this generally requires a problem-specific way to convert a
profile of marginals into a corresponding mixed strategy in
the original game.

Our Contribution

We first show how to compute equilibria of the Colonel
Blotto game. Like the works described above, our method is
to consider a payoff-equivalent bilinear game defined over
a space of appropriately-selected marginals (in this case,
the distribution of soldiers to a given battlefield). However,
unlike those works, we do not explicitly construct a game-
specific mapping to and from a polynomially-sized bilinear
game. We instead use a more general reduction, based on
the idea that it suffices to solve linear optimization queries
over strategy profiles in a (potentially exponentially-sized)
bilinear game. In other words, equilibrium computation re-
duces to the problem of finding a strategy that optimizes a
given linear function over its marginal components. We ap-
ply our reduction to the Colonel Blotto game by showing
how to solve these requisite optimization queries, which can
be done via dynamic programming.

The reduction described above follows from a repeated
application of the classic equivalence of separation and opti-
mization (Grötschel, Lovász, and Schrijver 1981). In more
detail, we formulate the equilibrium conditions as an LP
whose feasibility region is the intersection of two polytopes:
the first corresponding to the set of strategies of player 1,
and the second encoding payoff constraints for player 2. To
find a solution of the LP via Ellipsoid method, it suffices to
design a separation oracle for each polytope. However, as
we show, separation oracles for the second polytope reduce
to (and from) separation oracles for the set of strategies of
player 2. It therefore suffices to design separation oracles for
the polytope of strategies for each player, and for this it is
enough to perform linear optimization over those polytopes
(Grötschel, Lovász, and Schrijver 1981). Finally, to convert
back to an equilibrium of the original game, we make use
of a result from combinatorial optimization: the solution of
an LP with polynomially many variables can always be ex-
pressed as a mixed strategy with a polynomial-size support,
and such a mixed strategy can be computed using the sepa-
ration oracles described previously (Grötschel, Lovász, and
Schrijver 1981).

The reduction described above is not specific to the
Colonel Blotto game: it applies to any zero-sum game, and
any payoff-equivalent bilinear form thereof. To the best
of our knowledge, this general reduction from equilibrium
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computation to linear optimization has not previously been
stated explicitly, although it has been alluded to in the se-
curity games literature2 and similar ideas have been used to
compute correlated equilibria in compact games (Jiang and
Leyton-Brown 2015). In particular, it is notable that one re-
quires only a single linear optimization oracle, over the set
of pure strategies, to both find an equilibrium of the bilinear
game and convert this to a mixed equilibrium in the orig-
inal game. We demonstrate the generality of this approach
by considering notable examples of games to which it can
be applied. In each case, our approach either results in the
first known polytime algorithm for computing equilibria, or
else significantly simplifies prior analysis. Finally, we note
that our approach also extends to approximations: given the
ability to approximately answer separation oracle queries to
within any fixed error ε > 0, one can compute a correspond-
ing approximation to the equilibrium payoffs.

Dueling Games In a dueling game, introduced by Im-
morlica et al. (Immorlica et al. 2011), two competitors
each try to design an algorithm for an optimization prob-
lem with an element of uncertainty, and each player’s pay-
off is the probability of obtaining a better solution. This
framework falls within a natural class of ranking or so-
cial context games (Ashlagi, Krysta, and Tennenholtz 2008;
Brandt et al. 2009), in which players separately play a base
game and then receive ultimate payoffs determined by both
their own outcomes and the outcomes of others. Immorlica
et al. argue that this class of games models a variety of sce-
narios of competitions between algorithm designers: for ex-
ample, competition between search engines who must rank
search results, or competition between hiring managers who
must choose from a pool of candidates in the style of the
secretary problem.

Immorlica et al. (Immorlica et al. 2011) show how to com-
pute a Nash equilibrium for certain dueling games, by de-
veloping mappings to and from bilinear games with com-
pact representations. We extend their method, and show how
to expand the class of dueling games for which equilib-
ria can be efficiently computed. As one particular example,
we introduce and solve the matching duel. In this game,
two players each select a matching in a weighted graph,
and each player’s payoff is the probability that a randomly
selected node would have a higher-weight match in that
player’s matching than in the opponent’s. Notably, since the
matching polytope does not have a compact representation
(Rothvoss 2014), the original method of (Immorlica et al.
2011) is not sufficient to find equilibria of this game. We also
illustrate that our approach admits a significantly simplified
analysis for some other dueling games previously analyzed
by Immorlica et al.

General Lotto Game Hart (Hart 2007) considers a vari-
ant of the Colonel Blotto game, namely the General Lotto
game. In this game, each player chooses a distribution over

2Independently and in parallel with an earlier version of this
work, (Xu et al. 2014) implicitly used a similar idea to solve a class
of Stackleberg security games.

non-negative real numbers, subject to the constraint that its
expectation must equal a certain fixed value. A value is
then drawn from each player’s chosen distribution; the play-
ers’ payoffs are then functions of these values. What is in-
teresting about this game is that there are infinitely many
pure strategies, which complicates equilibrium computation.
Nevertheless, we show that our techniques can be applied
to this class of games as well, yielding a polynomial-time
algorithm for computing Nash equilibria. It is worth men-
tioning that the General Lotto game is an important problem
by itself, and its continuous variant has been well studied
in the literature (see, for example, (Bell and Cover 1980;
Sahuguet and Persico 2006; Hart 2007; Dziubiński 2011)).

Results and Techniques

We present a general method for computing Nash equilibria
of a broad class of zero-sum games. Our approach is to re-
duce the problem of computing equilibria of a given game
to the problem of optimizing linear functions over the space
of strategies in a payoff-equivalent bilinear game.

Before presenting our general reduction, we will first il-
lustrate our techniques by considering the Colonel Blotto
game as a specific example. In the following section we de-
scribe our approach in detail for the Colonel Blotto game,
explaining the process by which equilibria can be computed.
Then we will present the general reduction. Further applica-
tions of this technique are provided in the full version of the
paper (for the General Lotto game).

Colonel Blotto

Here, we propose a polynomial-time algorithm for finding
an equilibrium of discrete Colonel Blotto in its general form.
We allow the game to be asymmetric across both the battle-
fields and the players. A game is asymmetric across the bat-
tlefields when different battlefields have different contribu-
tions to the outcome of the game, and a game is asymmetric
across the players when two players have different number
of troops.

In the Colonel Blotto game, two players A and B si-
multaneously distribute a and b troops, respectively, over
k battlefields. A pure strategy of player A is a k-partition
x = 〈x1, x2, . . . , xk〉 where

∑k
i=1 xi = a, and a pure strat-

egy of player B is a k-partition y = 〈y1, y2, . . . , yk〉 where∑k
i=1 yi = b. Let uA

i (xi, yi) and uB
i (xi, yi) be the pay-

off of player A and player B from the i-th battlefield, re-
spectively. Note that the payoff functions of the i-th bat-
tlefield, uA

i and uB
i , have (a + 1) × (b + 1) entries. This

means the size of input is Θ(kab). Since Colonel Blotto
is a zero-sum game, we have uA

i (xi, yi) = −uB
i (xi, yi)

3.
Note that we do not need to put any constraint on the payoff
functions, and our result works for all payoff functions. We
also represent the total payoff of player A and player B by
hA
B (x, y) =

∑
i u

A
i (xi, yi) and hB

B (x, y) =
∑

i u
B
i (xi, yi),

3Note that in the Colonel Blotto game if uA
i (xi, yi) is not nec-

essarily equal to −uB
i (xi, yi) then a special case of this game with

two battlefields can model an arbitrary 2-person normal-form game
and thus finding a Nash Equilibrium would be PPAD-complete.
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respectively. A mixed strategy of each player would be a
probability distribution over his pure strategies.

Theorem 1 One can compute an equilibrium of any
Colonel Blotto game in polynomial time.

Proof: Let X and Y be the set of all pure strategies of play-
ers A and B respectively, i.e., each member of X is a k-
partition of a troops and each member of Y is a k-partition
of b troops. We represent a mixed strategy of player A with
function p : X → [0, 1] such that

∑
x∈X p(x) = 1. Sim-

ilarly, let function q : Y → [0, 1] be a mixed strategy of
player B. We may also use x and y, instead of p and q, for
referring to a mixed strategy of player A and B respectively.
Since Colonel Blotto is a zero-sum game, we leverage the
MinMax theorem for finding an NE of the game. This the-
orem says that pair (p∗, q∗) is an NE of the Colonel Blotto
game if and only if strategies p∗ and q∗ maximize the guar-
anteed payoff of players A and B respectively (Sion 1957).
Now, we are going to find strategy p∗ of player A which
maximizes his guaranteed payoff. The same technique can
be used for finding q∗. For each mixed strategy p, at least
one of the best-response strategies of p is a pure strategy.
Therefore, a solution to the following program characterizes
strategy p∗.

max U (1)
s.t.

∑
x∈X px = 1,

∑
x∈X pxh

A
B (x, y) ≥ U, ∀y ∈ Y,

Unfortunately, LP 1 has |X | variables and |Y|+1 constraints
where |X | and |Y|+ 1 are exponential. We therefore cannot
solve LP 1 directly.
Step 1: Transferring to a new space. We address this is-
sue by transforming the solution space to a new space in
which an LP equivalent to LP 1 becomes tractable (See, e.g.,
(Azar et al. 2003), for similar technique). This new space
will project mixed strategies onto the marginal probabilities
for each (battlefield, troop count) pair. For each pure strategy
x ∈ X of player A, we map it to a point in {0, 1}n(A) where
n(A) = k× (a+1). For convenience, we may abuse the no-
tation, and index each point x̂ ∈ {0, 1}n(A) by two indices
i and j such that x̂i,j represents x̂(i−1)(a+1)+j+1. Now we
map a pure strategy x to GA(x) = x̂ ∈ {0, 1}n(A) such that
x̂i,j = 1 if and only if xi = j. In other words, if player A
puts j troops in the i-th battlefield then x̂i,j = 1. Let IA =

{x̂ ∈ {0, 1}n(A)|∃x ∈ X ,GA(x) = x̂} be the set of points
in {0, 1}n(A) which represent pure strategies of player A.
Let M(X ) and M(Y) be the set of mixed strategies of play-
ers A and B, respectively. Similarly, we map mixed strategy
x to point GA(x) = x̂ ∈ [0, 1]n(A) such that x̂i,j represents
the probability that mixed strategy x puts j troops in the i-th
battlefield. Note that mapping GA is not necessarily one-to-
one nor onto, i.e., each point in [0, 1]n(A) may be mapped
to zero, one, or more than one strategies. Let SA = {x̂ ∈
[0, 1]n(A)|∃x ∈ M(X ),GA(x) = x̂} be the set of points
in [0, 1]n(A) which represent at least one mixed strategy of
player A. Similarly, we use function GB to map each strategy
of player B to a point in [0, 1]n(B) where n(B) = k×(b+1),

and define IB = {ŷ ∈ {0, 1}n(B)|∃y ∈ Y,GB(y) = ŷ} and
SB = {ŷ ∈ [0, 1]n(B)|∃y ∈ M(Y),GB(y) = ŷ}.
Lemma 0.1 The set SA forms a convex polyhedron with an
exponential number of vertices and facets.

Now, we are ready to rewrite linear program 1 in the new
space as follows.

max U (2)
s.t. x̂ ∈ SA (Membership constraint)

hA
B (x̂, ŷ) ≥ U, ∀ŷ ∈ IB (Payoff constraints)

where

hA
B (x̂, ŷ) =

k∑

i=1

a∑

ta=0

b∑

tb=0

x̂i,ta ŷi,tbu
A
i (ta, tb)

is the expected payoff of player A.
Step 2: Solving LP 2. The modified LP above, LP 2, has ex-
ponentially many constraints, but only polynomially many
variables. One can therefore apply the Ellipsoid method
to solve the LP, given a separation oracle that runs in
polynomial time (Grötschel, Lovász, and Schrijver 1988;
Papadimitriou and Steiglitz 1998). By the equivalence of
separation and optimization (Grötschel, Lovász, and Schri-
jver 1981), one can implement such a separation oracle
given the ability to optimize linear functions over the poly-
topes SA (for the membership constraints) and SB (for the
payoff constraints).

Stated more explicitly, given a sequence of real numbers
c0, c1, . . . , ck(m+1), where k is the number of battlefields
and m is the number of troops for a player, the required ora-
cle must find a pure strategy x = (x1, x2, . . . , xk) ∈ X such
that

∑k
i=1 xi = m, and x̂ = G(x) minimizes the following

equation:

c0 +

k(m+1)∑

i=1

cix̂i, (3)

and similarly for polytope Y . The following lemma shows
that one can indeed find a minimizer of Equation (3) in poly-
nomial time.

Lemma 0.2 Given two integers m and k and a sequence
c0, c1, . . . , ck(m+1), one can find (in polynomial time) an op-
timal pure strategy x = (x1, x2, . . . , xk) where

∑k
i=1 xi =

m, x̂ = G(x) and x̂ minimizes c0 +
∑k(m+1)

i=1 cix̂i.

Proof: We employ a dynamic programming approach.
Define d[i, t] as the minimum possible value of c0 +∑i(t+1)

i′=1 ci′ x̂i′ where
∑i

i′=1 xi′ = t. Hence, d[k,m] denotes
the minimum possible value of c0+

∑k(m+1)
i=1 cix̂i. We have

that d[0, j] is equal to c0 for all j. For an arbitrary i > 0 and
t, the optimal strategy x puts 0 ≤ t′ ≤ t units in the i-th
battlefield and the applied cost in the equation 3 is equal to
c(i−1)(m+1)+t′+1. Thus, we can express d[i, t] as

d[i, t] = min
0≤t′≤t

{d[i− 1, t− t′] + c(i−1)(m+1)+t′+1}.

Solving this dynamic program, we can find the allocation
that minimizes

∑
αix̂i in polynomial time, as required.
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Step 3: Transferring to the original space. At last we should
transfer the solution of LP 2 to the original space. In partic-
ular, we are given a point x̂ ∈ SA and our goal is to find
a strategy x ∈ M(X ) such that GA(x) = x̂. To achieve
this, we invoke a classic result of (Grötschel, Lovász, and
Schrijver 1981) which states that an interior point of an n-
dimensional polytope P can be decomposed as a convex
combination of at most n + 1 extreme points of P , in poly-
nomial time, given an oracle that optimizes linear functions
over P . Note that this is precisely the oracle required for
Step 2, above. Applying this result to the solution of LP 2
in polytope SA, we obtain a convex decomposition of x̂ into
extreme points of SA, say x̂ =

∑
i αix̂i. Since each x̂i cor-

responds to a pure strategy in X , it is trivial to find point
xi with GA(xi) = x̂i, since the marginals of each x̂i lie
in {0, 1}. We then have that x =

∑
i αixi is the required

mixed strategy profile.
Combining these three steps, we find a Nash Equilibrium

of the Colonel Blotto game in polynomial time.

A general framework for bilinear games

In our method for finding a Nash Equilibrium of the Colonel
Blotto game, the main steps were to express the game as a
bilinear game of polynomial dimension, solve for an equi-
librium of the bilinear game, then express that point as an
equilibrium of the original game. To implement the final
two steps, it sufficed to show how to optimize linear func-
tions over the polytope of strategies in the bilinear game.
This suggests a general reduction, where the equilibrium
computation problem is reduced to finding the appropriate
bilinear game and implementing the required optimization
algorithm. In other words, the method for computing Nash
equilibria applies to a zero-sum game when:

1. One can transfer each strategy x of player A to GA(x) =
x̂ ∈ Rn(A), and each strategy y of player B to GB(y) =
ŷ ∈ Rn(B) such that the payoff of strategies x̂ and ŷ can
be represented in a bilinear form based on x̂ and ŷ.

2. For any given vector α and real number α0 we can find,
in polynomial time, whether there is a pure strategy x̂ in
the transferred space such that α0 +

∑
i αix̂i ≥ 0.

We refer to such a game as polynomially separable. A di-
rect extension of the proof of Theorem 1 implies that Nash
equilibria can be found for polynomially separable games.

Theorem 2 There is a polytime algorithm which finds a
Nash Equilibrium of a given polynomially separable game.

This general methodology can be used for finding a NE
in many zero-sum games. In subsequent sections, we show
how our framework can be used to find Nash equilibria for
a generalization of Blotto games, known as General Lotto
games, and for a class of dueling games introduced by Im-
morlica et al. (Immorlica et al. 2011).

We also show one can use similar techniques to com-
pute the approximate equilibrium payoffs of a dueling game
when we are not able to answer the separation problem in
polynomial time but instead we can polynomially solve the
ε-separation problem for any ε > 0.

Theorem 3 Given an oracle function for the ε-separation
problem, one can find an ε-approximation to the equilib-
rium payoffs of a polynomially separable game in polyno-
mial time.

General Lotto

The General Lotto game is a relaxation of the Colonel
Lotto game (See (Hart 2007) for details). In this game each
player’s strategy is a distribution of a nonnegative integer-
valued random variable with a given expectation. In partic-
ular, players A and B simultaneously determine (two distri-
butions of) two nonnegative integer-valued random variables
X and Y , respectively, such that E[X] = a and E[Y ] = b.
The payoff of player A is

hA
Γ (X,Y ) =

∞∑

i=0

∞∑

j=0

Pr(X = i) Pr(Y = j)u(i, j), (4)

and again the payoff of player B is the negative of the pay-
off of player A, i.e., hB

Γ (X,Y ) = −hA
Γ (X,Y ). Hart (Hart

2007) presents a solution for the General Lotto game when
u(i, j) = sign(i − j). Here, we generalize this result and
present a polynomial-time algorithm for finding an equi-
librium when u is a bounded distance function. Function
u is a bounded distance function, if one can write it as
u(i, j) = fu(i − j) such that fu is a monotone function
and reaches its maximum value at uM = fu(u

T ) where
uT ∈ O(poly(a, b)). Note that u(i, j) = sign(i − j) is
a bounded distance function where it reaches its maximum
value at i − j = 1. Now, we are ready to present our main
result regarding the General Lotto game.
Theorem 4 There is a polynomial-time algorithm which
finds an equilibrium of a General Lotto game where the pay-
off function is a bounded distance function.
Main challenge Note that in the General Lotto game, each
player has an infinite number of pure strategies, and thus
one cannot use either our proposed algorithm for the Colonel
Blotto game or the technique of (Immorlica et al. 2011) for
solving the problem. We should prune strategies such that
the problem becomes tractable. Therefore, we characterize
the extreme point of the polytope of all strategies, and use
this characterization for pruning possible strategies.

To the best of our knowledge, our algorithm is the first
algorithm of this kind which computes an NE of a game with
infinite number of pure strategies.

Application to Dueling Games

Immorlica et al. (Immorlica et al. 2011) introduced the class
of dueling games. In these games, an optimization problem
with an element of uncertainty is considered as a competi-
tion between two players. They also provide a technique for
finding Nash equilibria for a set of games in this class. In
this section, we formally define the dueling games and bi-
linear duels. Then, we describe our method and show that
our technique solves a more general class of dueling games.
Furthermore, we provide examples to show how our method
can be a simpler tool for solving bilinear duel games com-
pared to (Immorlica et al. 2011) method. Finally, in Section
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, we examine the matching duel game to provide an example
where the method of (Immorlica et al. 2011) does not work,
but our presented method can yet be applied.

Dueling games

Formally, dueling games are two player zero-sum games
with a set of strategies X , a set of possible situations Ω,
a probability distribution p over Ω, and a cost function
c : X×Ω → R that defines the cost measure for each player
based on her strategy and the element of uncertainty. The
payoff of each player is defined as the probability that she
beats her opponent minus the probability that she is beaten.
More precisely, the utility function is defined as

hA(x, y) = −hB(x, y) =

Pr
ω∼p

[c(x, ω) < c(y, ω)]− Pr
ω∼p

[c(x, ω) > c(y, ω)],

where x and y are strategies for player A and B. In the fol-
lowing there are two dueling games mentioned in (Immor-
lica et al. 2011).

Binary search tree duel. In the Binary search tree duel,
there is a set of elements Ω and a probability distribution p
over Ω. Each player is going to construct a binary search tree
containing the elements of Ω. Strategy x beats strategy y for
element ω ∈ Ω if and only if the path from ω to the root
in x is shorter than the path from ω to the root in y. Thus,
the set of strategies X is the set of all binary search trees
with elements of Ω, and c(x, ω) is defined to be the depth of
element ω in strategy x.

Ranking duel. In the Ranking duel, there is a set of m
pages Ω, and a probability distribution p over Ω, notify-
ing the probability that each page is going to be searched.
In the Ranking duel, two search engines compete against
each other. Each search engine has to provide a permuta-
tion of these pages, and a player beats the other if page ω
comes earlier in her permutation. Hence, set of strategies
X is all m! permutations of the pages and for permutation
x = (x1, x2, . . . , xm) and page ω, c(x, ω) = i iff ω = xi.

Dueling games are Polynomially Separable

Consider a dueling game in which each strategy x̂ of player
A is an n(A) dimensional point in Euclidean space. Let SA

be the convex hull of these strategy points. Thus each point
in SA is a mixed strategy of player A. Similarly define strat-
egy ŷ, n(B), and SB for player B. A dueling game is bi-
linear if utility function hA(x̂, ŷ) has the form x̂tMŷ where
M is an n(A) × n(B) matrix. Again for player B, we have
hB(x̂, ŷ) = −hA(x̂, ŷ). Immorlica et al. (Immorlica et al.
2011) provide a method for finding an equilibrium of a class
of bilinear games which is defined as follows:
Definition 1 Polynomially-representable bilinear dueling
games: A bilinear dueling game is polynomially repre-
sentable if one can present the convex hull of strate-
gies SA and SB with m polynomial linear constraints,
i.e. there are m vectors {v1, v2, . . . , vm} and m real
numbers {b1, b2, . . . , bm} such that SA = {x̂ ∈
Rn(A)|∀i ∈ {1, 2, . . . ,m}, vi.x̂ ≥ bi}. Similarly SB =
{ŷ ∈ Rn(B)|∀i ∈ {1, 2, . . . ,m′}, v′i.ŷ ≥ b′i}.

In the following theorem, we show that every polynomi-
ally representable bilinear duel is also polynomially separa-
ble. This implies we can use the general reduction to solve
polynomially representable bilinear dueling games as well.
Theorem 5 Every polynomially-representable bilinear du-
eling game is polynomially separable.

Matching duel

In a matching duel we are given a weighted graph G =
(V,E,W ) which is not necessarily bipartite. In a matching
duel each pure strategy of players is a perfect matching, set
of possible situations Ω is the same as the set of nodes in G,
and probability distribution p over Ω determines the prob-
ability of selection of each node. In this game, strategy x
beats strategy y for element ω ∈ Ω if ω is matched to a
higher weighted edge in strategy x than strategy y.

The matching duel may find its application in a compe-
tition between websites that try to match people according
to their desire. In this competition the website that suggest
a better match for each user will get that user, and the goal
of each website is to maximize the number of its users. Note
that ranking duel is a special case of the matching duel when
G is a Kn,n graph, in which one part denotes the web pages
and the other part denotes the ranks. Thus, the weight of the
edge between page i and rank j is equal to j.

First, we describe how our method can solve this game
and then we show the method of Immorlica et al. (Immorlica
et al. 2011) cannot be applied to find an NE of the matching
duel.
Theorem 6 There exists an algorithm that finds an NE of
the matching duel in polynomial time.

Note that Rothvoss (Rothvoss 2014) showed that the fea-
sible strategy polytope (the perfect matching polytope) has
exponentially many facets. Therefore, the prior approach
represented in the work of Immorlica et al. (Immorlica et
al. 2011) is not applicable to the matching duel. This exam-
ple shows that our framework nontrivially generalizes the
method of Immorlica et al. (Immorlica et al. 2011) and com-
pletes the presentation of our simpler and more powerful
tool for solving bilinear duels.

References

Ahmadinejad, A.; Dehghani, S.; Hajiaghayi, M.; Mahini, H.;
Seddighin, S.; and Yazdanbod, S. 2015. Forming external
behaviors by leveraging internal opinions. In INFOCOM,
1849–1857. IEEE.
Alon, N.; Demaine, E. D.; Hajiaghayi, M. T.; and Leighton,
T. 2013. Basic network creation games. SIAM Journal on
Discrete Mathematics 27(2):656–668.
Ashlagi, I.; Krysta, P.; and Tennenholtz, M. 2008. Social
context games. In WINE. Springer. 675–683.
Azar, Y.; Cohen, E.; Fiat, A.; Kaplan, H.; and Racke, H.
2003. Optimal oblivious routing in polynomial time. In
STOC, 383–388.
Bachrach, Y.; Syrgkanis, V.; and Vojnovic, M. 2011. Effi-
ciency and the redistribution of welfare. Technical report,
Technical report, Microsoft Research.

374



Bell, R. M., and Cover, T. M. 1980. Competitive optimality
of logarithmic investment. Math. Oper. Res. 5(2):161–166.
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