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Abstract

A single-elimination (SE) tournament is a popular way to se-
lect a winner in both sports competitions and in elections.
A natural and well-studied question is the tournament fixing
problem (TFP): given the set of all pairwise match outcomes,
can a tournament organizer rig an SE tournament by adjust-
ing the initial seeding so that their favorite player wins? We
prove new sufficient conditions on the pairwise match out-
come information and the favorite player, under which there
is guaranteed to be a seeding where the player wins the tour-
nament. Our results greatly generalize previous results. We
also investigate the relationship between the set of players
that can win an SE tournament under some seeding (so called
SE winners) and other traditional tournament solutions. In ad-
dition, we generalize and strengthen prior work on probabilis-
tic models for generating tournaments. For instance, we show
that every player in an n player tournament generated by the
Condorcet Random Model will be an SE winner even when
the noise is as small as possible, p = Θ(lnn/n); prior work
only had such results for p ≥ Ω(

√
lnn/n). We also establish

new results for significantly more general generative models.

1 Introduction

A single-elimination (SE) tournament, also known as a
binary-cup election, is a popular way to select a winner
among multiple candidates/players. In an SE tournament,
pairs of players are matched according to an initial seeding,
the winners of these pairs advance to the next round, and
the losers are eliminated after a single loss. Play continues
according to the seeding until a single player, the winner,
remains. SE tournaments are popular in sports competitions,
both among fans due to their exciting “do-or-die” nature, and
among tournament organizers due to their efficiency. In con-
trast with a round-robin tournament, which requires Θ(n2)
matches to be played between n players, the winner of an
SE tournament is decided after a total of n − 1 matches.
In tournaments like the NCAA March Madness or the US
Open Tennis Championships, involving more than 64 teams
each, the difference between a linear and quadratic number
of matches is quite pronounced.

While the efficiency of SE tournaments is desirable, the
winner of a given SE tournament can depend significantly
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on the initial seeding. A series of works (Lang et al. 2007;
Hazon, Dunne, and Wooldridge 2007; Hazon et al. 2008;
Vu, Altman, and Shoham 2009; Vassilevska Williams 2010;
Stanton and Vassilevska Williams 2011a; 2011b; Mattei,
Goldsmith, and Klapper 2012; Aziz et al. 2014; Kim and
Vassilevska Williams 2015) have investigated how easily the
winner of SE tournaments can be manipulated simply by ad-
justing the seeding of the tournament. Formally, the problem
is called the tournament fixing problem (TFP), or the agenda
control problem for balanced knockout tournaments. In TFP,
we are given a set of players V , information for each pair of
players (u,w) about whether u or w would win in a head-
to-head matchup, and a player of interest v; then, we are
asked the following question: is there a seeding to a bal-
anced SE tournament where v wins? TFP is known to be
NP-Hard (Aziz et al. 2014) with the best-known algorithm
running in 2npoly(n) time (Kim and Vassilevska Williams
2015). Thus, unless P = NP, in general, it is intractable to
determine which players can win an SE tournament. Never-
theless, a number of works on TFP have produced “struc-
tural results,” which argue that for certain classes of in-
stances, one can find a winning seeding for v in polyno-
mial (and often linear) time (Vassilevska Williams 2010;
Stanton and Vassilevska Williams 2011b; Kim and Vas-
silevska Williams 2015). These structural results suggest
that in many practical settings, the winner of an SE tour-
nament is susceptible to manipulation, because many play-
ers have winning seedings that can be found efficiently. Fur-
thermore, under reasonable probabilistic models for gener-
ating tournaments, these structural results have been shown
to occur with high probability (Vassilevska Williams 2010;
Stanton and Vassilevska Williams 2011a), further suggesting
that the worst-case hardness results may not apply to real-
world instances. In other words, in many actual tournaments,
it is completely feasible for SE tournament organizers to rig
the outcome of the competition. Experimental results (Rus-
sell 2010) investigate this finding in practical settings.

While TFP can be seen as a way to understand manipula-
tion in competition and elections, studying conditions under
which players can and cannot win SE tournaments can also
be seen as part of a larger study of tournament solutions:
different ways to define the winners of a round-robin tour-
nament. The input to TFP can be viewed as a tournament
T = (V,E), or a complete, oriented graph where for all
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pairs of nodes u,w ∈ V , exactly one of (u,w) and (w, u)
is an element of E; u points to w if u would win in the
match between u and w. The study of tournaments is cen-
tral to social choice theory; they provide a general frame-
work for representing the outcomes between players in a
round-robin tournament, or more generally, pairwise pref-
erences between alternatives, often generated from voter in-
formation. As such, an essential question of social choice
theory asks: given a tournament, how should we select a set
of winners? SE tournaments provide one way of answering
this question; we say that a player v ∈ V is an SE winner
if there is some seeding, under which v wins the resulting
SE tournament. The study of tournament solutions includes
many well-studied other concepts (see e.g. (Laslier 1997;
Brandt, Brill, and Harrenstein 2015)). One classical example
is the Copeland set, consisting of the players with the maxi-
mum number of wins in the tournament. A natural question
to investigate is how these traditional notions of strength in
round-robin tournaments relate to the notion of strength in
an SE tournament.

Results In this work, we improve our understanding of
conditions on the input tournament and player of interest
that are sufficient for the player to be an SE winner. Many
previous structural results involve the notion of a king, or a
player v where for every other player u ∈ V \ {u}, v either
beats u directly, or v beats some w who beats u. We present
a vast generalization of many of the known structural results
involving kings, showing that essentially any “combination”
of the known sufficient conditions for a king to be an SE
winner is also sufficient for the king to be a winner.

In particular, recall the following structural results from
(Vassilevska Williams 2010), where given a tournament T
and a player v, we can find a winning seeding for v in
polynomial time. One class of tractable instances are those
where every player w, who beats v, wins against at most
as many players as v beats. It is also known that if v is
a king and wins against more than half the players or is
a “superking” and every w whom v beats indirectly loses
to at least log n players whom v beats directly, then v
will be able to win an SE tournament. While these results
have been useful on their own for showing that tourna-
ments generated by certain random models are likely to have
many players who can win (Vassilevska Williams 2010;
Stanton and Vassilevska Williams 2011a), it is natural to
wonder how robust these results are to changes in the ex-
act sufficient conditions. Recent results of (Kim and Vas-
silevska Williams 2015) seem to suggest that the parameters
for these structural results are brittle; namely, when the exact
parameters of the conditions are relaxed, finding a winning
seeding for v (if it exists) becomes NP-Hard. In Theorem 1,
we provide a broad generalization of the three structural re-
sults stated above. We show that these conditions are actu-
ally flexible in the sense that if the players who beat some
king v, can be partitioned into groups that satisfy these suf-
ficient conditions, then v can win an SE tournament. Ad-
ditionally, we extend the work on 3-kings (or players who
have win-distance ≤ 3 to every other player), introduced in

(Kim and Vassilevska Williams 2015), and give a new set of
sufficient conditions for a 3-king win an SE tournament.

In Section 3, we are able to apply these and other known
structural results to understand the relationship between SE
winners and the winners according to other tournament so-
lutions. In particular, Theorem 3 shows that the players se-
lected by a number of well-studied tournament solutions
are also SE winners, including the Copeland set described
above. Another class of tournament solutions of interest was
introduced in (Laslier 1997) as a natural extension of the
Copeland set. In these “iterative matrix solutions,” we con-
sider the tournament matrix A (corresponding to the adja-
cency matrix of the underlying tournament graph); a player
is included in the kth iterative matrix solution, if they have
the maximum number of “wins” in Ak. We give a new in-
terpretation of this solution and use it to show that for suffi-
ciently large tournaments, the players in the iterative matrix
solutions will also be SE winners.

Finally, in Section 4, we investigate probabilistic models
for generating random tournaments, and the resulting struc-
ture of such tournaments. In particular, we start by giving an
improved result for tournaments generated by the Condorcet
Random (CR) Model. The CR Model assumes an underly-
ing order to players, where stronger players generally win
against weaker players and are only upset with some small
probability p. We demonstrate that in tournaments generated
by the CR Model, even when the probability of upsets p is
Θ(lnn/n), with high probability every player in the tour-
nament will have a winning seeding that can be discovered
efficiently. This upset rate p is optimal (up to constant fac-
tors) because a player needs to win log n matches in order
to win an SE tournament. Our result greatly improves on
the previous best result from (Vassilevska Williams 2010),
which proves an analogous claim for p ≥ Ω(

√
lnn/n). In

light of this optimal result for the CR Model, we propose a
new generative model for tournaments that aims to remove
the structure that arises from assuming an underlying order
of players and a consistent noise parameter. Despite the fact
that the model may produce tournaments with largely arbi-
trary structure, we are able to prove a nontrivial result similar
to the previous results on the CR Model. The details of the
model and our theorem statement are given in Section 4.

All of our results are constructive. In particular, we
demonstrate that certain conditions are sufficient for a player
v to be an SE winner by giving algorithms, running in poly-
nomial time, that outputs a seeding where v will win.

Preliminaries and Notation We will assume throughout
that all SE tournaments are balanced, and played amongst a
power of two, n = 2k for some k ≥ 0, players. Table 1 pro-
vides a summary of the notation that is used to refer to play-
ers and their neighborhood in the underlying tournament.
For subsets A,B ⊆ V , we say that A dominates B, denoted
A � B, if for all a ∈ A and all b ∈ B, (a, b) ∈ E. We
will abuse this notation slightly, allowing individual players,
rather than subsets, to be related to other players or subsets.

Recall that we can define the notions of king and 3-king of
a tournament in terms of the underlying tournament graph.
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Notation

Nout(v) = {u : (v, u) ∈ E},
Nin(v) = {u : (u, v) ∈ E}

out(v) = |Nout(v)| , outS(v) = |Nout(v) ∩ S|
in(v) = |Nin(v)| , inS(v) = |Nin(v) ∩ S|

Table 1: Summary of the notation used in this paper.

A king is a player v who has distance at most 2 to every other
player u ∈ V \ {v}. A 3-king is the generalization of kings
to players who have distance at most 3 to every other player.

In Section 3, we consider some tournament solutions. We
provide brief descriptions of these solutions; for more detail,
we refer the interested reader to (Brandt, Brill, and Harren-
stein 2015). The uncovered set refers to the set of kings in
the tournament. The Copeland set is the set of players of
maximum out-degree in the tournament.

A tournament is transitive if we can label the players with
labels from {1, . . . , n} such that ∀i, j i < j implies i �
j. Given a tournament T , consider flipping edges in T to
produce a transitive tournament T ′, while minimizing the
number of edges flipped. The Slater set of T is the set of
players who can be labeled 1 in such a T ′.

The Markov set can be thought of as the set of players who
win the most matches, in expectation, in a “winner-stays”
tournament, where play proceeds by repeatedly selecting a
random player to play the previous winner. This is equivalent
to finding the players of maximum probability on a random
walk on the tournament, where the graph Laplacian defines
the transition matrix.

The bipartisan set is the support of the maximal lottery
(i.e., the Nash equilibrium of the symmetric zero-sum game
formed by the tournament matrix) for the tournament.

2 Structural Results

Various results are known about conditions under which
a player is guaranteed to be an SE winner (Vassilevska
Williams 2010; Stanton and Vassilevska Williams 2011b;
Kim and Vassilevska Williams 2015). Many of these results
concern players who are kings. In particular, (Vassilevska
Williams 2010) showed that a “superking” – a king v where
every player in Nin(v) loses to at least log n players from
Nout(v) – is always an SE winner. (Stanton and Vassilevska
Williams 2011a) showed a generalization they call a “king
of high out-degree” – that is, a king with out-degree k, who
loses to fewer than k players that have out-degree greater
than k – is always an SE winner. This result was the first to
generalize the conditions on players who can win SE tourna-
ments. In this section, we further generalize these results by
combining their respective conditions. Moreover, we further
explore the notion of 3-kings that was considered by (Kim
and Vassilevska Williams 2015) and present an alternative
condition under which a 3-king can win an SE tournament.

Theorem 1. Consider a tournament T = (V,E) whereK ∈
V is a king. Let A = Nout(K) and B = V \(A ∪ {K}) =
Nin(K). Suppose that B is a disjoint union of three (possibly
empty) sets H, I, J such that

1. |H| < |A|
2. inA(i) ≥ log |V | for all i ∈ I (i.e., outA(i) ≤ |A| −

log |V | for all i ∈ I)
3. out(j) ≤ |A| for all j ∈ J .
Then K is an SE winner, and we can compute a winning
seeding for K in polynomial time.

Note that the superking result (Vassilevska Williams
2010) corresponds to the special case where H = J = ∅,
while the “king of high out-degree” result (Stanton and Vas-
silevska Williams 2011a) corresponds to the special case
where I = ∅.

Proof. We proceed by induction, arguing that we can con-
struct a seeding where, in each round, the three properties
listed above and the fact that K is a king are maintained as
invariants. We will assume that |V | ≥ 8, I 
= ∅, H∪J 
= ∅,
and 3 ≤ |A| < |V |/2. It can be shown that the theorem holds
when one or more of these conditions are not fulfilled. The
details are included in the full-version (Kim, Suksompong,
and Vassilevska Williams 2015).

We will present an algorithm to compute a winning seed-
ing for K. The algorithm will match the players for the first
round of the tournament in such a way that the leftover tour-
nament after the first round also satisfies the conditions of
the theorem. The description of the algorithm is as follows.

1. Perform a maximal matching M1 from A to H .
2. Since |H| < |A|, we have A\M1 
= ∅. Perform a max-

imal matching M2 (which might be an empty matching)
from A\M1 onto I ∪ J .

3. If A was not fully used in the two matchings, match an
arbitrary unused player in A with K. Else, choose an ar-
bitrary player a ∈ A ∩M2 and rematch it to K.

4. Perform arbitrary matchings within A,H , and I ∪ J .
5. If there are leftover players, there must be exactly two of

them; match them to each other.

We prove the correctness of the algorithm by showing
that the four invariants are maintained by the algorithm. Let
V ′, A′, B′, H ′, I ′, J ′ denote the subsets of V,A,B,H, I, J
that remain after the iteration.

1. |H ′| < |A′|. We will show that |H ′| ≤ |H|/2 and
|A′| ≥ |A|/2. The claim follows since |H| < |A|. If
H = ∅, then |H ′| < |A′| holds trivially, so we may as-
sume that H is nonempty. At least one player in H is used
in the matching M1, so we have |H ′| ≤ |H|/2. We will
show that the matching M1 ∪M2 consists of at least two
pairs. Since there can be at most two pairs in the matching
provided by the algorithm in which a player in A is beaten
by a player outside of A (i.e., the pair in which a player
in A is matched to K and the pair in which a player in A
is matched in the final step of the algorithm for leftover
nodes), it will follow that |A′| ≥ |A|/2.
If M1 consists of at least two pairs, we are done. Suppose
that M1 consists of exactly one pair. Since |V | ≥ 8, each
player in I is beaten by at least three players in A. (Recall
that I is nonempty.) One of these players is possibly used
in M1, and one is possibly used to match with K, but that
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still leaves at least one player in A that beats a player in I .
Hence M1 ∪M2 consists of at least two pairs, as desired.

2. inA′(i) ≥ log |V ′| for all i ∈ I . Let i ∈ I ′. Since M2 is
a maximal matching, every player that contributes to the
in-degree of i in A survives the iteration, except possibly
the player that is rematched to K. Hence the in-degree of
i in A′ is at least log |V | − 1 = log(|V | /2).

3. out(j) ≤ |A′| for all j ∈ J ′. The condition is equiva-
lent to outB′(j) < inA′(j). Let j ∈ J ′. We have either
inA′(j) = inA(j) or inA′(j) = inA(j) − 1, where the
latter case occurs exactly when a player in A that beats
j is rematched to K. In the former case we immediately
obtain outB′(j) < inA′(j). In the latter case, A has been
fully used in the two matchings before one player is re-
matched toK. This means that j eliminates another player
in B, and it follows that outB′(j) ≤ outB(j) − 1 <
inA(j)− 1 = inA′(j).

4. K is a king. Let b ∈ B′. If b ∈ H ′, then since M1 is a
maximal matching, b is beaten by some player in A′. If
b ∈ I ′, then since the second invariant is maintained, b
is beaten by some player in A′. Otherwise b ∈ J ′. Since
the third invariant is maintained, b beats at most |A′| − 1
players in A′, and hence b is also beaten by some player
in A′ in this case.

Hence the four invariants are maintained, and the algo-
rithm correctly computes a winning seeding for K.

Thus, we’ve shown a significantly general result about
kings, that holds in tournaments on n players, for any power
of two, answering an open research problem posed in (Stan-
ton and Vassilevska Williams 2011b) to provide more gen-
eral structural results that hold independent of the size of the
tournament. (Some earlier results only hold for large n.)

Next, we consider the weaker notion of a 3-king. (Kim
and Vassilevska Williams 2015) presented a set of condi-
tions under which a 3-king is an SE winner. One of their
conditions is that there exists a perfect matching from the
set of nodes that are reachable in exactly two steps from the
3-king K onto the set of nodes that are reachable in exactly
three steps from K. Here, we present a different set of con-
ditions that does not include the requirement of a perfect
matching.

Theorem 2. Consider a tournament T = (V,E) whereK ∈
V is a 3-king. Let A = Nout(K), B = Nout(A) ∩Nin(K),
and C = Nin(K)\B. Suppose that the following three con-
ditions hold:

1. |A| ≥ |V |
2

2. A � B

3. |B| ≥ |C|.
Then K is an SE winner, and we can compute a winning
seeding for K in polynomial time.

Proof. If |V | = 1, 2, or 4, the result is clear. For |V | ≥ 8,
first perform a maximal matching from B to C and matchK
to an arbitrary player in A, and then pair off players within
A. If |A| is odd, then A ∪ {K} matches evenly. Else, match

the remaining a ∈ A to some b ∈ B. We pair off play-
ers within each of B,C arbitrarily, and match the remaining
pair between B and C if needed. After the round, |A| ≥ |V |

4 .
Since the matching from B to C is nonempty, we still have
that |B| ≥ |C| after the iteration. Moreover, since we ap-
plied a maximal matching, each player in C is still beaten
by some player in B. Thus, the required conditions are main-
tained as invariant, and we can efficiently compute a winning
seeding for K.

It would be interesting to investigate the extent to which
we can weaken the (very strong) second condition that all
players in A beat all players in B. It should be noted
that if any of the three conditions is removed, the theo-
rem no longer holds. In particular, if the second condition
is dropped, a counterexample from (Kim and Vassilevska
Williams 2015) shows that for any constant ε > 0, there is
a tournament on n players where K is a 3-king, who win
against (1− ε)n players, but cannot win an SE tournament.
Given that the notion of a 3-king is significantly weaker than
that of a king (recall, kings who beat ≥ |V | /2 players are
SE winners), it seems reasonable to conjecture that a strong
assumption such as the second condition (or the conditions
seen in (Kim and Vassilevska Williams 2015)) may be re-
quired to prove structural results for 3-kings.

3 SE Winners and Tournament Solutions

Tournament solutions are functions that map each tourna-
ment graph to a subset of players, usually called the choice
set. The choice set is often thought of as containing the
stronger players, or “winners,” within the tournament. Many
tournament solutions have been considered, including the
Copeland set, the Slater set, the Markov set, and the bi-
partisan set (Laslier 1997; Brandt, Brill, and Harrenstein
2015). The ability to win an SE tournament provides us with
another criterion with which we can distinguish between
stronger and weaker players in a tournament. In this sec-
tion, we investigate the relationship between the set of SE
winners and some traditional tournament solutions.

Theorem 3. A player chosen by the Copeland set, the Slater
set, or the Markov set is an SE winner. A player in the bi-
partisan set with the highest Copeland score is also an SE
winner.

Proof. All four tournament solutions are contained in the
uncovered set. Thus, a player from these sets will be a king,
so as a special case of Theorem 1 (or an earlier result of
(Vassilevska Williams 2010)), it suffices to show that the rel-
evant players win against at least half of the remaining play-
ers. For the Copeland set, this is trivial (Laslier 1997) and
(Laffond, Laslier, and Le Breton 1993) show that players
from the Slater set and the player in the bipartisan set with
the highest Copeland score, respectively, beat at least half
the players. Next, we show that players from the Markov set
win against at least half the players.

Recall that the Markov set is defined to be the set of play-
ers of maximum probability in the stationary distribution
of the Markov chain defined by the normalized Laplacian
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matrix Q = (qij)n×n of the Markov chain of the tourna-
ment, where qij = 1/n if vi beats vj (0 otherwise) and
qii = out(vi)/n. Assume that the first player is in the
Markov set. It follows that the probability associated with
the first player in the eigenvector p = (pi)n×1 correspond-
ing to the eigenvalue 1 is maximal. Assume for contradiction
that q11 < 1

2 . We then have

p1 = q11p1 + q12p2 + . . .+ q1npn

≤ q11p1 + q12p1 + . . .+ q1np1

= 2q11p1

< p1,

a contradiction.

It is not true that any player in bipartisan set is always
an SE winner. Indeed, consider a transitive tournament with
the slight modification that the weakest player beats the
strongest player. Then the weaker player is included in the
bipartisan set even though it only beats one player and can-
not be an SE winner.

Another family of tournament solutions is introduced in
(Laslier 1997) as “iterative matrix solutions”. Consider the
tournament adjacency matrix A = (aij), in which aij = 1
if i beats j, and 0 otherwise. The Copeland score is given by
A1. For any positive integer k, we consider Ak1 and include
the player(s) with the maximum resulting score in our kth
iterative tournament solution.

There is a natural interpretation of iterative matrix solu-
tions as the number of paths of length k starting from each
player. Any player in an iterative matrix solution belongs to
the uncovered set. If the player v is covered by some w (i.e.,
w � {v}∪Nout(v)), then v cannot be in the iterative matrix
solution. Indeed, if v is covered by w, then the first steps of
the paths starting from w form a superset of the first steps
of the paths starting from v. On the other hand, it is not the
case that any player in an iterative matrix solution always
beats at least half of the remaining players, as shown by the
following example.

Consider k = 2 and the tournament with player set
V = A ∪ B ∪ {x}, where A ≈ rn and B ≈ (1 − r)n with
1
2 < r < 1√

3
. Suppose that A � x � B � A, and A and B

are close to regular. The Copeland scores of a ∈ A, b ∈ B, x

are rn
2 , (1+r)n

2 , (1 − r)n, respectively. It follows that the it-

erative matrix scores of a, b, x are r2n2

4 , (1+r2)n2

4 , (1−r2)n2

2 .
This implies that x has the maximum iterative matrix score
but beats fewer than half of the remaining players.

Nevertheless, we will show that for large enough tourna-
ments, players in an iterative matrix solution are always SE
winners. First we need the following lemma and the subse-
quent corollary.
Lemma 1. In a tournament with n players, the minimum
possible number of k-paths is

(
n

k+1

)
.

Proof. In a transitive tournament, each subset of size k + 1
gives rise to exactly one k-path. On the other hand, by a
simple inductive argument, each subset of size k + 1 gives
rise to at least one k-path that goes through all k+1 players.
The result follows immediately.

Corollary 1. In a tournament with n players, a player with
the maximum number of k-paths originating from it is the
origin of at least 1

n

(
n

k+1

)
k-paths.

We are now ready to prove the theorem.
Theorem 4. For any fixed k, there exists a constant Nk such
that for any tournament of size at least Nk, a player with the
maximum number of k-paths originating from it is an SE
winner.

Proof. Let v be a player with the maximum number of k-
paths originating from it, and let A and B be the sets of
players who lose to v and who beat v, respectively. From
Corollary 1, v is the origin of at least 1

n

(
n

k+1

) ≥ nk

2(k+1)! k-
paths for large enough n. Hence it must have out-degree at
least n

2(k+1)! . In other words, |A| ≥ n
2(k+1)! .

If the number of players in B with in-degree from A less
than log n is less than |A|, we can apply Theorem 1. Other-
wise, there are at least |A| ≥ n

2(k+1)! players in B with in-
degree from A less than log n. Call this set H , and consider
a player h ∈ H . Since h beats all but at most log n players in
A, we can compare the number of k-paths originating from
v with the number of k-paths originating from h by remov-
ing the common k-paths. The remaining number of k-paths
originating from v is at most log n·nk−1, while by Corollary
1 again, a player in H with the maximum number of k-paths
within H is the origin of at least O(nk) k-paths, since |H|
is linear in n. This contradicts the assumption that v has the
maximum number of k-paths originating from it.

The strength of kings

Since results concerning SE winners often involve the as-
sumption that a player is a king in the given tournament, one
might hope that there is a strong relation between SE win-
ners and the uncovered set. For example, it could always be
that a constant fraction of players in the uncovered set are
SE winners, or vice versa. This is not the case, however, as
the following theorem shows.
Theorem 5. Let r ∈ (0, 1). There exists a tournament such
that the proportion of players in the uncovered set that are
SE winners is less than r and the proportion of SE winners
that are contained in the uncovered set is also less than r.

Proof. Consider a tournament with player set V = A∪B ∪
{x, y} such that

• x � y,B

• y � B,A

• B � A

• A � x.

The uncovered set is A ∪ {x, y}.
Let |A| = k and |B| = n. If k < log n, then players in A

do not win enough matches to become an SE winner. Hence
the proportion of players in the uncovered set that are SE
winners is at most 2

k+2 .
On the other hand, suppose that B is a regular tournament

with all players isomorphic. By symmetry, if one player in
B is an SE winner, then all of them are. In order for a player
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in B to be an SE winner, players x and y need to be elim-
inated. But this can easily be done in two rounds, with x
beating y in the first round and a player in A beating x in the
second round. Hence the proportion of SE winners that are
contained in the uncovered set is at most 2

n+2 .
Taking k and n large enough with k < log n, we obtain

the desired result.

4 Generative Models for Tournaments

Recall the Condorcet Random (CR) Model, studied in
(Braverman and Mossel 2008; Vassilevska Williams 2010;
Stanton and Vassilevska Williams 2011a). In the CR Model,
we assume there is an underlying ordering to the players, and
that, in general, stronger players win against weaker players;
however, with some small probability p < 1/2, the weaker
player will upset the stronger player. In the corresponding
tournament graph, we say that for two players i, j such that
i occurs before j in the ordering, (i, j) ∈ E with proba-
bility 1 − p and (j, i) ∈ E otherwise. A number of results
are known about which players are SE winners in tourna-
ments drawn from a CR Model. (Vassilevska Williams 2010)
first showed that when p ≥ Ω(

√
lnn/n), then with high

probability, every player in the tournament will be a superk-
ing, and therefore an SE winner. (Stanton and Vassilevska
Williams 2011a) shows that even when p ≥ C lnn/n,
roughly the first half of players will be SE winners, and
more generally if p = C · 2i lnn/n, then roughly the first
1− 1/2i+1 fraction of players are SE winners. (Stanton and
Vassilevska Williams 2011a; Kim and Vassilevska Williams
2015) also study various generalizations of the CR Model.

In this section, we present improved results about tour-
naments generated by the standard CR Model, showing that
with high probability, every player in a CR tournament will
be an SE winner, even with the noise p = Θ(lnn/n) (with
no dependence on the player’s rank).
Theorem 6. Let C ≥ 64 be a constant and p ≥ C lnn/n.
Let T be a tournament generated by the CR Model with
noise parameter p on n > nC players (for some constant
nC). With probability ≥ 1 − 1/Ω(n2), every player has an
efficiently-computable winning seeding over T .

Note that this result is asymptotically optimal, as a player
must have at least log n wins to be able to win an SE tour-
nament. If p = o(lnn/n), then with high probability, the
weakest player will not be able to win an SE tournament,
regardless of the seeding. The case where p ≥ C

√
lnn/n is

covered in (Vassilevska Williams 2010), which shows that
every player in such a tournament is an SE winner. Here,
we give a sketch of the proof of Theorem 6; the detailed
proof appears in the full-version (Kim, Suksompong, and
Vassilevska Williams 2015).

The proof proceeds as follows. First, we argue that the
weakest player w will win against more than k log n players
in the first half, for some constant k. We will think of “swap-
ping” k log n of these losers, which we call S, from the first
half with some arbitrary set of players from the bottom half
(so that these losers become some of the strongest players
over the second half). Then, we argue that at least one player
v that w beats will be in the first n/6 players. This player,

with high probability, will be a king over the first half of
players, who wins against more than half the players; thus,
by (Vassilevska Williams 2010), this player will be an SE
winner over the first half of players. Next, we argue that for
some arbitrary player u in the weaker half of players, at least
log n players from the k log n that were swapped to the sec-
ond half will beat u. We then take a union bound over the
players in the second half, and argue that w will be a superk-
ing over the second half, and again by (Vassilevska Williams
2010), an SE winner over the second half. Thus, w will be
an SE winner over the entire tournament by winning over
the weaker half, while v wins against the stronger half, and
w wins against v in the final round. We take a union bound
over all players to arrive at the desired result.

Generalizing the CR Model for Tournaments

As the prior claims demonstrate, in the standard CR Model,
every player is an SE winner with high probability, even
when upsets occur at an asymptotically minimal rate. While
this result indicates the depth of our understanding of con-
ditions under which a player is an SE winner, it also sug-
gests that the assumption that tournaments are drawn from
a CR Model – where the noise parameter p is fixed for all
matchups – may be too rigid, incidentally providing struc-
ture that may not exist in practical settings. Prior work of
(Stanton and Vassilevska Williams 2011a) proposes a Gen-
eralized CR Model, where for two players i < j, j upsets i
with probability p ≤ p(i, j) ≤ 1/2, for some globally speci-
fied p. But even this model asserts that the probability of up-
sets for every edge must occur within the range of [p, 1/2].
We aim to relax our restrictions even further in order to dis-
rupt this structure inherent in the CR Model.

Consider the following generative model, which is param-
eterized by a noise factor p < 1/2 and a participation fac-
tor Δ ≤ 1/2. The tournament on n players is generated as
follows: pick any set of pairs of players E′ satisfying the
condition that each player appears in at least (1/2 + Δ)n
such pairs; then, for every pair {u, v} ∈ E′, pick (u, v) with
probability pu,v ∈ [p, 1−p], and (v, u) otherwise. The prob-
abilities pu,v can be arbitrary as long as they are in [p, 1−p].
The remaining edges between players may be set arbitrarily.
In this new model, many typical arguments used in analyz-
ing CR tournaments, including those used in the proof of
Theorem 6, which hinge on the precise definition of the CR
Model, break down.

Note that unlike the CR Model, the new model does not
start with an underlying ordering of players; however, such
an ordering can easily be emulated. For instance, to emulate
the CR Model, simply choose an ordering σ, set Δ = 1/2,
and for all u, v such that σ(u) < σ(v), sample (u, v) with
probability 1−p. That said, because the model does not start
with an explicit ordering, it is much more versatile. More-
over, because only a (1/2+Δ) fraction of the edges are de-
termined randomly, known structures can be (adversarially)
hard-coded into the resulting graphs. In this sense, any re-
sults that we can say about tournaments generated from this
model are extremely general and will apply broadly. Despite
this generality, we are able to give a statement for our model
mirroring that of (Vassilevska Williams 2010) for the CR
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Model.

Theorem 7. Let p > c
√

logn
2Δn for some c > 5. Then with

probability > 1 − Ω(n(c−5)/2 ln 2), every player in a tour-
nament T sampled from the aforementioned model has an
efficiently-computable winning seeding over T .

The proof of Theorem 7 is similar to the proof of the anal-
ogous statement about the CR Model found in (Vassilevska
Williams 2010). It argues that with high probability every
player in the tournament will be a superking. The proof will
use the following concentration bound, which can easily be
derived from standard Chernoff-Hoeffding bounds.

Lemma 2. Let X1, . . . , Xn be independent random vari-
ables with X =

∑
i Xi and E[X] = μ. Suppose d ≤ μ.

Then Pr [X < (1− δ)d] ≤ exp(−δ2d/2).
Proof of Theorem 7. Let p = c

√
logn
2Δn . We will argue that

with high probability all nodes in a randomly sampled tour-
nament are superkings, so by (Vassilevska Williams 2010)
they will be SE winners. Let T = (V,E) be a randomly sam-
pled tournament. We will bound the probability that v ∈ V
is not a superking, namely, the probability that there exists
some u ∈ V \ {v} such that u loses to fewer than log n
players whom v beats.

Let u ∈ V \ {v}. Let Av be the set of players w, for
which the edge between v and w was sampled randomly
with probability in the range [p, 1 − p]. Let Au be defined
analogously. We let W = Av ∩ Au be the players whose
relation is sampled randomly for both v and u. Note that
we can lower bound the size of this intersection as |W | ≥
(1/2 + Δ)n − 1 + (1/2 + Δ)n − 1 − (n − 2) = 2Δn.
Now, note that the expected number of edges from v into W
is the sum of the probabilities that (v, w) is an edge for each
w ∈ W , and thus is at least 2Δnp. Applying Lemma 2, we
can bound the probability that this set of edges into W is
smaller than c log n/p = 2Δnp/c.

Pr

[
number of edges from v into W ≤ 2Δnp

c

]

≤ exp
(−(1− 1/c)2Δnp

)
= exp

(
−(1− 1/c)2c

√
Δn log n/2

)

= 2−Ω(
√
n logn)

Now, we’ll condition on the fact that v beats at least
c log n/p players from W . Note that each of these players
beat u with probability ≥ p, so we expect ≥ c log n of these
players to beat u. Thus, using Lemma 2 again, we can bound
the probability that u does not lose to at least log n of these
players.

Pr [number of edges from W into U ≤ log n]

≤ exp
(−(1− 1/c)2c log n/2

)
= n−(1−1/c)2c/2 ln 2

Letting C = (1−1/c)2c/2 ln 2−2, by a union bound over
v’s opponents, the probability that v is not a superking is at

most 2−Ω(
√
n logn)+n−C−1. Applying another union bound

over all players, the probability that there is any player who
is not a superking is at most 2Ω(

√
n logn)+n−C ≤ O(n−C).

Hence with probability 1 − 1/Ω(nC), all nodes are superk-
ings. The result follows from the fact that C ≥ (c−5)/2 ln 2.
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