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Abstract

The Condorcet Jury Theorem justifies the wisdom of crowds
and lays the foundations of the ideology of the democratic
regime. However, the Jury Theorem and most of its exten-
sions focus on two alternatives and none of them quantita-
tively evaluate the effect of agents’ strategic behavior on the
mechanism’s truth-revealing power.
We initiate a research agenda of quantitatively extending the
Jury Theorem with strategic agents by characterizing the
price of anarchy (PoA) and the price of stability (PoS) of the
common interest Bayesian voting games for three classes of
mechanisms: plurality, MAPs, and the mechanisms that sat-
isfy anonymity, neutrality, and strategy-proofness (w.r.t. a set
of natural probability models). We show that while plurality
and MAPs have better best-case truth-revealing power (lower
PoS), the third class of mechanisms are more robust against
agents’ strategic behavior (lower PoA).

Introduction

Social choice theory studies how to aggregate agents’ pref-
erences to make a join decision. In many new applications
of social choice, especially in multi-agent systems and elec-
tronic commerce, the main goal is to reveal the ground
truth or to make an objectively optimal decision. Examples
of such applications include meta-search engines (Dwork
et al. 2001), recommender systems (Ghosh et al. 1999),
crowdsourcing (Mao, Procaccia, and Chen 2013), seman-
tic webs (Porello and Endriss 2013), and peer grading for
MOOC (Raman and Joachims 2014). These are not purely
statistical problems, as agents are often strategic and may
have incentive to misreport their preferences to obtain a
more preferable outcome.

The (Condorcet) Jury Theorem (Condorcet 1785) has
been widely recognized as the first approach towards truth-
revealing social choice. It states that when there are two al-
ternatives, agents’ signals are generated i.i.d. from a simple
statistical model, and the agents report sincerely, then the
probability for the majority rule to reveal the ground truth
goes to 1 as the number of agents goes to infinity. The Jury
Theorem has been very influential in economics and politi-
cal science as it “lays, among other things, the foundations
of the ideology of the democratic regime” (Paroush 1998),
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but it only received due attention in the 20th century af-
ter Condorcet’s manuscript was discovered by Black (1958).
Since then, many extensions have been obtained to relax the
i.i.d. assumption, initiated by Nitzan and Paroush (1984),
Shapley and Grofman (1984), and Grofman, Owen, and
Feld (1983); and to consider strategic agents, initiated
by Austen-Smith and Banks (1996) and Feddersen and Pe-
sendorfer (1997).

However, most previous extensions of the Jury Theorem
focused on two alternatives (more details below). In modern
applications of social choice, the number of alternatives is
often much larger. Moreover, we are not aware of an ex-
tension that quantitatively measures the effect of agents’
strategic behavior on a mechanism’s truth-revealing power.
Such measures are important for us to choose an “optimal”
truth-revealing mechanism when agents are strategic. There-
fore, the following important question is still largely open:
“Quantitatively to what extent does the Condorcet Jury The-
orem hold for strategic agents with more than two alterna-
tives?”
Our contributions. To answer the question we initiate a re-
search agenda of quantitatively extending the Jury Theorem
by studying the Bayesian price of anarchy (PoA) (Koutsou-
pias and Papadimitriou 1999), which evaluates the worst-
case social welfare loss caused by agents’ strategic behav-
ior, and the Bayesian price of stability (PoS) (Anshelevich
et al. 2004), which evaluates the social welfare loss in the
best equilibrium, of the common interest Bayesian voting
games (Austen-Smith and Banks 1996) under a wide range
of statistical models including Mallows’ model (Mallows
1957). We study three classes of mechanisms: the plurality
rule, maximum a posteriori estimators (MAPs), and proba-
bility mixtures of random dictatorship rRD and the uniform
rule rUni. Our results are summarized in Table 1.

These PoA and PoS results help us understand and mea-
sure the effect of agents’ strategic behavior on mechanisms’s
truth-revealing power and thus provide a new angle of quan-
titatively comparing mechanisms. It follows that in the best
case plurality and MAPs are better because they have lower
PoS’s, but the third class is more robust against agents’
strategic behavior because it has a lower PoA. MAPs might
be the best from the information aggregation perspective,
but the other two classes of mechanisms may satisfy more
desirable axiomatic properties and may be easier to use in
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practice.

Mechanism PoA PoS
Plurality ≥ m (weak BNE)

≥ m/2 (strict BNE, even m) 1MAP
rRD + rUni [Z,m]

Table 1: PoA and PoS of the common interest Bayesian vot-
ing games for three mechanisms. m is the number of al-
ternatives, n is the number of agents. All results hold for
n → ∞. Z < m is the normalization factor in the Mallows-
like model.

To study the PoA and PoS we prove that sincere vot-
ing is a BNE in the common interest Bayesian voting
games with plurality and MAPs. We also prove a novel ax-
iomatic characterization, which states that a mechanism sat-
isfies anonymity, neutrality, and strategy-proofness w.r.t. all
distance-based models if and only if it is a probability mix-
ture of the random dictatorship and the uniform mechanism.
Combined with the PoA and PoS in Table 1, this charac-
terization illustrates a tradeoff between desirable axiomatic
properties, especially strategy-proofness, and the best-case
truth-revealing power.
Related work and discussions. While PoA and PoS have
been widely studied for various games, it is hard to apply
them in social choice settings because the notion of social
welfare is often not well-defined. Taking a truth-revealing
viewpoint, we use the mechanisms’ truth-revealing power
as the social welfare function. This is in sharp contrast to a
recent paper by Brânzei et al. (2013), who studied the PoA
of social choice mechanisms by using some natural scores
computed from agents’ subjective preferences as the social
welfare function. Therefore, we believe that our definitions
of PoA and PoS provide a new angle towards truth-revealing
social choice. These are our main conceptual contributions.

There is a large literature in economics and political sci-
ence about extending the Jury Theorem to strategic agents,
see the survey by Gerlinga et al. (2005). A few recent work
studied strategic agents for more than 2 (and 3 in most
cases) alternatives (Nunez 2010; Goertz and Maniquet 2011;
Bouton and Castanheira 2012; Goertz and Maniquet 2014;
Goertz 2014). However, it is often further assumed that the
number of agents is unknown and is generated from a Pois-
son distribution (Myerson 1998). This is mainly due to the
technical hardness of obtaining an analytical solution to
the probability for an agent to be pivotal, noted by Myer-
son (2002): “Unfortunately, it can be very difficult to calcu-
late the probabilities of these close-race events, where two
candidates’ scores are within one vote of each other and are
ahead of all the other candidates.”

We tackle the aforementioned technical difficulty by fo-
cusing on weakly neutral statistical models and the uniform
prior, so that terms in the calculation can be grouped and ef-
ficiently bounded in a non-trivial way. We note that our PoA
and PoS results are obtained for any fixed number of agents,
and we analyze their asymptotic values as the number of
agents goes to infinity. The theorems and techniques we used
to analyze agents’ strategic behavior for plurality, and our

characterization of mechanisms that satisfy anonymity, neu-
trality, and stragety-proofness, are our main technical con-
tributions.

Our game-theoretic setting is quite different from Gib-
bard’s setting for randomized voting (Gibbard 1977). First,
in Gibbard’s setting, agents’ preferences are given exoge-
nously while in our setting the preferences are generated
endogenously from correlated signals. Second, strategy-
proofness is defined differently. In Gibbard’s setting, agents
should not have incentive to misreport in order to increase
their expected utility w.r.t. all utility functions compatible
with their ordinal preferences. In our setting, agents’ utili-
ties are the posterior probabilities for the mechanism to re-
veal the ground truth w.r.t. all distance-based models. Third,
the strategy-proof mechanisms are different. We character-
ize strategy-proof mechanisms as certain probability mix-
tures of two unilateral mechanisms (Theorem 4) while in
Gibbard’s characterization the strategy-proof mechanisms
are probabilistic mixtures of unilaterals and duples.

Our PoA and PoS of strategy-proof mechanisms are also
related to mechanism design without money (Procaccia and
Tennenholtz 2009; Meir, Procaccia, and Rosenschein 2010),
where the question is about the efficiency loss for using
strategy-proof mechanisms. There has been some recent
work in the AI community on equilibrium analysis in vot-
ing games (Meir et al. 2010; Obraztsova, Markakis, and
Thompson 2013; Thompson et al. 2013; Meir, Lev, and
Rosenschein 2014; Meir 2015). These approaches often fo-
cused on different dynamics, and agents’ strategic behav-
ior is analyzed based on their subjective preferences (of-
ten a ranking over alternatives). In our setting, agents’ het-
erogeneity comes from the signals they receive. Lastly, our
work is remotely related to Bayesian vote manipulation (Lu
et al. 2012), and recent progress in statistical approaches
to social choice, see e.g. (Lu and Boutilier 2011; Cara-
giannis, Procaccia, and Shah 2013; Elkind and Shah 2014;
Azari Soufiani, Parkes, and Xia 2014; Hughes, Hwang, and
Xia 2015) and references therein.

Preliminaries

Let A denote a set of m alternatives. Each agent receives
a signal s ∈ A about the ground truth, and cast a vote
v ∈ A∪{φ} to represent her preferences, where φ means ab-
stention. The collection of agents’ (reported) votes is called
a profile, denoted by P . A (randomized) social choice mech-
anism is a mapping r that takes a profile (where some agents
may absent) as input, and outputs a probability distribution
over A. For any profile P and any alternative a ∈ A, we
let PluP (a) denote the plurality score of a in P , which is
the number of occurrences of a in P . The plurality mech-
anism rPlu chooses an alternative with the highest plurality
score uniformly at random. The random dictatorship mech-
anism rRD chooses an alternative with probability that is
proportional to its plurality score, that is, for any alterna-
tive a, rRD(P )(a) = PluP (a)∑

b∈A PluP (b) . The uniform mechanism
rUni outputs an alternative uniformly at random. If all agents
choose abstention, then all mechanisms degenerate to rUni.
A mechanism satisfies anonymity if it is insensitive to per-
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mutations over agents’ votes; it satisfies neutrality if it is in-
sensitive to permutations over A. rPlu, rRD, and rUni satisfy
both anonymity and neutrality.

A statistical model M = (Θ,S, �π) has three parts: a pa-
rameter space Θ, a sample space S, and a set of probabil-
ity distributions over S, one for each parameter, denoted by
�π = {πθ(·) : θ ∈ Θ}. The maximum a posteriori estimator
(MAP) of a model outputs a parameter with maximum pos-
terior probability, namely rMAP(P ) ∈ argmaxa Pr(a|P ).

In this paper, we focus on Mallows-like models where the
parameter space is A and the sample space is composed of
i.i.d. samples in A (the signals), and the probability of a sig-
nal is determined by its similarity to the parameter as fol-
lows.

Definition 1 (Mallows-like model with fixed dispersion).
Given A, a dispersion 0 < ϕ < 1, a similarity func-
tion d : A × A → R≥0, and the number of agents n,
the model is Md = (A,An, �π), where for each θ ∈ A
and S ∈ An we have πθ(S) =

∏
V ∈S

(
1
Zϕd(V,θ)

)
, where

Z =
∑

U∈A ϕd(U,W ) is the normalization factor that does
not depend on θ.

In this paper we require the similarity function d be sym-
metric, namely d(a, b) = d(b, a), and satisfy the coincidence
axiom, namely d(a, b) = 0 if and only if a = b. If d further
satisfies the triangle inequality then it becomes a distance
function. We say that a similarity function d is weakly neu-
tral, if for all a ∈ A, the multiset Da = {d(c, a) : c ∈ A}
are the same.

Example 1. Let C denote a set of k candidates (which are
not the alternatives) and let A = L(C) denote the set of all
linear orders over C as the alternatives. The Kendall-tau dis-
tance between V,W ∈ L(C) is the number of different pair-
wise comparisons in V and W . The Kendall-tau distance is
weakly neutral. Mallows’ model (Mallows 1957) is based on
the Kendall-tau distance.

Other popular weakly neutral distances over L(C) include
Spearman’s footrule distance and its variations (Diaconis
and Graham 1977) and the Cayley distance. Results in this
paper can be applied to all of them.

We study the common interest Bayesian voting game for-
mulated by (Austen-Smith and Banks 1996), where there
are n homogeneous agents whose utility functions are the
same before receiving signals I : A × A → {0, 1}. I takes
the winning alternative and the ground truth as inputs, and
I(a, b) = 1 if and only if a = b, meaning that the win-
ner correctly reveals the ground truth. I can be naturally ex-
tended to evaluate a distribution π over A and a ground truth
θ, so that I(π, θ) =

∑
a∈A π(a)I(a, θ). An agent is sincere,

if she reports a ∈ A with the maximum posterior probability
given her signal. An agent is informative, if she reports her
signal.

Given a model M and a mechanism r, the game proceeds
as follows. Initially each agent holds a common prior over
A, which is the uniform distribution in this paper. Each agent
then receives a signal s ∈ A about the ground truth as her
type, and her action is to cast a vote in A∪{φ}. We recall that
φ means abstention. Therefore, an agent’s (pure) strategy μ

is a mapping from the signal space to vote space. That is,
μ : A → (A ∪ {φ}). Let �μ = (μ1, . . . , μn) denote the col-
lection of all agents’ strategies, called a strategy profile. Af-
ter agent j receives a signal sj , she updates her belief about
the ground truth to Pr(·|sj). Her expected utility for report-
ing v ∈ A∪{φ} is the expected probability for the outcome
of voting to reveal the ground truth distributed as Pr(·|sj),
where other agents’ signals S−j are generated given the
ground truth, and their reported preferences are thus P−j =
�μ−j(S−j), where �μ−j = (μ1, . . . , μj−1, μj+1, . . . , μn).
Formally, the expected utility EUsj (v) is defined as follows.

EUsj (v) = Eθ∼Pr(·|sj)ES−j∼πθ
I(r(μ−j(S−j) ∪ {v}, θ)

Formally, we define the game as follows.

Definition 2. Given n agents, a model M and a mecha-
nism r, we let Gn(M, r) denote the Bayesian game where
the state space is A, agents’ type space is A, agents’ ac-
tion space is A ∪ {φ}, r is used to choose the winner, and
all agents have the same utility function I . In this paper all
agents have uniform prior.

A strategy profile �μ is a Bayesian Nash Equilibrium
(BNE), if no agent has incentive to deviate from her current
strategy, given that other agents play �μ. More precisely, �μ is
a BNE if and only if for any agent j, any signal sj , and any
v ∈ A ∪ {φ}, we have EUsj (μj(sj)) ≥ EUsj (v). If the in-
equality is strict then we say that the BNE is strict. A BNE
is symmetric if all agents use the same strategy. In this pa-
per, BNE means strict symmetric pure BNE unless stated
otherwise.

It is easy to see that when the model M is based on a
weakly neutral similarity function, sincere voting is the same
as informative voting and truthful voting in Gn(M, r). The
next example shows that sometimes an insincere BNE exists.

Example 2 (Insincere BNE). Let A = {a1, a2, a3, a4}.
Consider a Mallows-like model based on the weakly neu-
tral distance dt(·, ·) illustrated in Figure 1, where t = 1.

a1� a3�

a2� a4�
t� t�

3�3�
2�

2�
Figure 1: A similarly function dt where t > 0.

Let n = 4. The following strategy μ is an insincere BNE in
G4(Md1

, rPlu): if an agent receives signal a1 or a2 then she
reports a1; if she receives a3 or a4 then she reports a4. To
see this, we first note that no agent has incentive to vote for
a2 or a3 because conditioned on other agents playing μ, a2
or a3 never wins. When an agent receives a1, the difference
in expected utility between voting for a1 and voting for a4 is
composed of two parts:
1. The difference when the ground truth is a1. This happens
with the posterior probability of a1, which is 1/Z.
2. The difference when the ground truth is a4. This happens
with the posterior probability of a4, which is ϕ3/Z.
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By weak neutrality of d1 we have that the first difference is
positive, the second is negative, and they sum up to zero. Be-
cause 1 > ϕ3, the agent prefers reporting a1 to a4. Follow-
ing similar calculations we can verify that μ is an insincere
BNE.

BNE for Plurality and MAPs

Let MGn(b|θ) denote an agent’s marginal gain of re-
porting b over abstention when the ground truth is
θ and the other n − 1 agents are sincere. Formally,

MGn(b|θ) =
∑

P∈An−1

Pr(P |θ)[I(r(P∪{b}), θ)−I(r(P ), θ)]

We next define the expected marginal gain of an agent
when she receives signal a and reports b.

EMGn(b|a) =
∑

θ∈A Pr(θ|a)MGn(b|θ)
Theorem 1. For any neutral r and any Mallows-like model
Md based on a weakly neutral distance function d with uni-
form prior, sincere voting is a BNE in Gn(Md, r) if the fol-
lowing conditions hold:

(i) For any a ∈ A, EMGn(a|a) > 0.
(ii) For any a ∈ A and b �= a, MGn(b|a) ≤ 0

Condition (i) states that all agents strictly prefer sincere
voting to abstention. Condition (ii) states that suppose the
ground truth is a, then reporting anything different from a is
not better than abstention.

Proof. It suffices to prove that for any b �=
a, EMGn(a|a) > EMGn(b|a). We have:

EMGn(a|a) = Pr(a|a)MGn(a|a)︸ ︷︷ ︸
>0, by (i) and (ii)

+
∑
θ �=a

Pr(θ|a)MGn(a|θ)︸ ︷︷ ︸
≤0, by (ii)

Because d is weakly neutral, there exists a permutation M
over A such that (i) M(a) = b and M(b) = a, and (ii) for
any c ∈ A, d(c, a) = d(M(c), b).

EMGn(b|a)
=Pr(b|a)MGn(b|b)︸ ︷︷ ︸

>0

+
∑
θ �=b

Pr(θ|a)MGn(b|θ)︸ ︷︷ ︸
≤0

=Pr(b|a)MGn(M(b)|M(b))

+
∑

M(θ)�=M(b)

Pr(M(θ)|M(a))MGn(M(b)|M(θ))

=Pr(b|a)MGn(a|a) +
∑
θ �=a

Pr(θ|b)MGn(a|θ)

where MGn(a|a) = MGn(b|b) is because d
is weakly neutral and r is neutral. Therefore,

Z(EMGn(a|a)−EMGn(b|a)) = (1− ϕd(a,b))MGn(a|a)
+

∑
θ �=a

(ϕd(a,θ) − ϕd(b,θ))MGn(a|θ)

We recall that Z is the normalization factor. Because
d(b, θ) ≤ d(a, θ) + d(a, b) (triangle inequality), 0 < ϕ < 1,

and for all a �= θ, MGn(a|θ) ≤ 0, we have
∑
θ �=a

(ϕd(a,θ) − ϕd(b,θ))MGn(a|θ)

≥
∑
θ �=a

(ϕd(a,θ) − ϕd(a,θ)+d(a,b))MGn(a|θ)

=(1− ϕd(a,b))
∑
θ �=a

ϕd(a,θ)MGn(a|θ)

Therefore,

Z(EMGn(a|a)− EMGn(b|a))
≥(1− ϕd(a,b))(MGn(a|a) +

∑
θ �=a

ϕd(a,θ)MGn(a|θ))

∝ EMGn(a|a) > 0

Theorem 1 can be applied to any neutral mechanism in-
cluding plurality. One may wonder whether the theorem is
obvious and the proof can be simplified using only weak
neutrality of the model and the neutrality of the mechanism.
The next proposition states that triangle inequality is neces-
sary even for the game with plurality.
Proposition 1. There exists a Mallows-like model Md

based on a weakly neutral similarity function d such that
both conditions in Theorem 1 hold but sincere voting is not
a BNE in Gn(Md, rPlu).
Proof sketch: We prove the proposition by contradiction us-
ing the similarity function dt in Figure 1 with a sufficiently
small t > 0 in the 3-agent game G3(M, rPlu). It can be ver-
ified that both conditions in Theorem 1 hold following the
proof of Theorem 2, which does not use triangle inequality.

Suppose for the sake of contradiction that sincere vot-
ing is a BNE. When an agent receives signal a1, we will
show that reporting a2 has a higher expected payoff, namely
EMGn(a2|a1) > EMGn(a1|a1).

Let Zt = 1+ϕt +ϕ2 +ϕ3 denote the normalization fac-
tor. When the ground truth is a3, there are two cases where
reporting a1 and reporting a2 have different expected utili-
ties:

1. The other two votes are {a3, a1}. This happens with
probability 2ϕ2/Z2

t . In this case voting for a1 reduces the
marginal gain by 0.5 and voting for a2 reduces the marginal
gain by 1/6, which means that the difference in marginal
gain is −1

3 .
2. The other two votes are {a3, a2}. This happens with

probability 2ϕ3/Z2
t . The difference in the marginal gain is

1
3 .

Therefore, MGn(a1|a3) − MGn(a2|a3) = 2
3Z2

t
[ϕ3 −

ϕ2]. Similarly MGn(a1|a4) − MGn(a2|a4) = 2
3Z2

t
[ϕ2 −

ϕ3]. Therefore, Pr(a3|a1)(MGn(a1|a3) − MGn(a2|a3)) +
Pr(a4|a1)(MGn(a1|a4)−MGn(a2|a4)) = 2

3Z3
t
[2ϕ5−ϕ4−

ϕ6]. Let Dt(ϕ) denote this term. It is easy to verify that
limt→0 Dt(ϕ) < 0 for all 0 < ϕ < 1.

It is easy to verify that MGn(a1|a1) − MGn(a2|a1)
is bounded so that limt→0 Pr(a1|a1)(MGn(a1|a1) −
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MGn(a2|a1)) + Pr(a2|a1)(MGn(a1|a2)− MGn(a2|a2)) ∝
limt→0(1 − ϕt)(MGn(a1|a1) − MGn(a2|a1)) = 0. There-
fore, there exists t > 0 such that EMGn(a1|a1) −
EMGn(a2|a1) < 0, which means that the agent prefers re-
porting a2 to a1 upon receiving a1, which contradicts the
assumption. �

Theorem 2 (Plurality). For any Mallows-like model Md

based on a weakly neutral distance d with uniform prior,
sincere voting is a BNE in Gn(Md, rPlu).

Proof. We prove the theorem by applying Theorem 1. Con-
dition (ii) obviously holds. To verify Condition (i), we take
a closer look at MGn(b|θ) in Gn(Md, rPlu). For any l ≤ n
and any C ⊆ A, let P l

C denote the set of all (n− 1)-profiles
Pn−1 such that C is the set of alternatives with the maximum
plurality score in Pn−1.

For any l ≤ n, any alternative c ∈ A, and any C ⊆
A − {c}, we let Ql

C,c denote the set of all (n − 1)-profiles
Pn−1 that satisfy the following conditions: (1) C is the set
of alternatives with the maximum plurality score (which is
l) in Pn−1, and (2) the plurality score of c is l − 1.

For any profile P and any θ ∈ A, I(rPlu(P ∪ {θ}), θ) −
I(rPlu(P ), θ) �= 0 if and only if one of the following two
cases hold.

1. P ∈ P l
C for some l ≤ n and θ ∈ C. In this case

I(rPlu(P ∪ {θ}), θ)− I(rPlu(P ), θ) = 1− 1
|C| .

2. P ∈ Ql
C,θ for some l ≤ n and C ⊆ A with θ �∈ C. In

this case I(rPlu(P ∪ {θ}), θ)− I(rPlu(P ), θ) = 1
|C|+1 .

Therefore, we can rewrite MGn(θ|θ) using P l
C and Ql

C,θ

as follows.

MGn(θ|θ) =
∑
l≤n

∑
C:θ∈C

∑

P∈Pl
C

Pr(P |θ)(1− 1

|C| )
︸ ︷︷ ︸

MGLn(θ|θ)

+
∑
l≤n

∑
C:θ �∈C

∑

P∈Ql
C,θ

Pr(P |θ)( 1

|C|+ 1
)

︸ ︷︷ ︸
MGRn(θ|θ)

Let MGn(θ|θ) = MGLn(θ|θ) + MGRn(θ|θ) as in the
previous formula. For any b �= θ, we note that I(rPlu(P ∪
{b}), θ) − I(rPlu(P ), θ) �= 0 if and only if (1) P ∈ P l

C for
some l ≤ n, and C with {θ, b} ⊆ C, or (2) P ∈ Ql

C,b for
some l ≤ n and C with θ ∈ C and b �∈ C. Therefore, we
can rewrite MGn(b|θ) using P l

C and Ql
C,θ as follows.

MGn(b|θ) =
∑
l≤n

∑

C:{θ,b}⊆C

∑

P∈Pl
C

Pr(P |θ)(− 1

|C| )
︸ ︷︷ ︸

MGLn(b|θ)

+
∑
l≤n

∑
C:θ∈C and b�∈C

∑

P∈Ql
C,θ

Pr(P |θ)(− 1

|C|(|C|+ 1)
)

︸ ︷︷ ︸
MGRn(b|θ)

Similarly, we define MGn(b|θ) = MGLn(b|θ)+MGRn(b|θ)
as above.

Suppose an agent receives a signal a ∈ A. We will show
that EMGn(a|a) =

∑
θ∈A Pr(θ|a)MGn(a|θ) > 0, which

means that the agent strictly prefers reporting a to absten-
tion. This is established by the following two lemmas, whose
proofs can be found in the full version of this paper at arXiv.

Lemma 1. For any a ∈ A, MGLn(a|a) +∑
b�=a MGLn(a|b) = 0.

Lemma 2. Pr(a|a)MGRn(a|a) +∑
b�=a Pr(b|a)MGRn(a|b) = 0.

Combining Lemma 1 and 2, we have:
EMGn(a|a) (1)

=
∑
θ∈A

Pr(θ|a)MGn(a|θ)

=
∑
θ∈A

Pr(θ|a) (MGLn(a|θ) + MGRn(a|θ))

=(Pr(a|a)MGLn(a|a) +
∑
b�=a

Pr(b|a)MGLn(a|b))

+ (Pr(a|a)MGRn(a|a) +
∑
b�=a

Pr(b|a)MGRn(a|b))

=Pr(a|a)(MGLn(a|a) +
∑
b�=a

Pr(b|a)
Pr(a|a)MGLn(a|b)) (2)

>Pr(a|a)(MGLn(a|a) +
∑
b�=a

MGLn(a|b)) (3)

=0 (Lemma 1)
(2) follows Lemma 2. (3) is because for any b �= a, we have
Pr(b|a)
Pr(a|a) = ϕd(b,a) < 1 and MGLn(a|b) < 0. This verifies
Condition (i) in Theorem 1.

Example 2 shows that sincere voting may not be the
unique BNE in Gn(Md, rPlu).
Theorem 3. For any ranking model M, sincere voting is a
BNE in Gn(M, rMAP).

Strategy-proof Mechanisms
We say a mechanism r is strategy-proof w.r.t. a model M,
if for any agent, any signal she receives, and any profile P
of the other agents, sincere voting gives her the highest ex-
pected payoff.
Theorem 4. A mechanism r satisfies anonymity, neutrality,
and is strategy-proof w.r.t. all distance-based Mallows-like
models for all n ∈ N if and only if the following two condi-
tions hold:

(1) For all n ∈ N, r is a probabilistic mixture of the uni-
form rule and the frequency rule, that is,

r = αn · rUni + (1− αn) · rRD
(2) For all n, αn+1 ≤ αn ≤ αn+1 +

m
n+1 (1− αn+1).

Proof sketch: The “only if” part. Let r denote such a
mechanism. Suppose an agent receives a signal a ∈ A. Let
P denote the reported profile of other n− 1 agents. The dif-
ference in the agent’s utility of reporting a and reporting b �=
a is

∑
θ∈A Pr(θ|a) (I(r(P ∪ {a}), θ)− I(r(P ∪ {b}), θ)).
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Claim 1. For any P , a, b, and any c �∈ {a, b}, we have
(i) I(r(P ∪ {a}), c) = I(r(P ∪ {b}), c) and (ii) I(r(P ∪
{a}), a) = I(r(P ∪ {b}), b) > 0.

Claim 1 states that the change in the winning probability
of any alternative c is the same for all additional vote that is
not c. Then, we can show that the winning probability of any
alternative c only depends on the total number of agents and
the number of votes for c.

The “if” part is easy to prove because no agent has in-
centive to report a different signal, and the inequality for αn

guarantees that no agent wants to absent. �

PoA and PoS

Given Gn(M, r), a signal profile S ∈ An, and a winner
θ ∈ A, we use the posterior probability Pr(θ|S) as the social
welfare function. Let Q denote the set of all BNE, we define
the PoA and PoS as follows.

PoA(Gn(M, r)) =
ES maxθ∈A Pr(θ|S)

min�μ∈Q ESPr(r(�μ(S))|S)
That is, the PoA is the maximum expected social welfare

for sincere agents divided by the smallest expected social
welfare in equilibrium.

PoS(Gn(M, r)) =
ES maxθ∈A Pr(θ|S)

max�μ∈Q ESPr(r(�μ(S))|S)
The next proposition states that if all agents are sincere,

then plurality reveals the ground truth with probability 1 as
n → ∞. The proof follows directly after Hoeffding’s in-
equality.

Proposition 2. For any Mallows-like model Md based on a
weakly neutral distance d and any θ ∈ A, Pr(rPlu(Sn) �=
θ) = exp(−Ω(n)), where Sn is a signal profile of n
i.i.d. signals generated from Pr(·|θ).

Meanwhile, it is easy to see that there are at least two
other equilibria in Gn(M, rPlu) and Gn(M, rMAP) for some
Mallows-like models and a sufficiently large n: (1) the BNE
that is similar to Example 2, where agents only vote for two
alternatives, and (2) the weak BNE where all agents report
the same alternative a regardless of the signals. These are
inefficient equilibria because if the ground truth does not get
any vote, then the probability to reveal the ground truth is 0.
Therefore, we obtain the following corollary on the PoA and
PoS.

Corollary 1. For any Mallows-like model Md based on
a weakly neutral distance d with uniform prior, the PoA
of Gn(Md, rPlu) (respectively, Gn(Md, rMAP)) is at least
m/2 for even m, and is m for weak BNE; the PoS of
Gn(Md, rPlu) (respectively, Gn(Md, rMAP)) goes to 1 as
the number of agents goes to infinity.

An open question is the characterization of the upper
bounds on the PoA of Gn(Md, rPlu) and Gn(Md, rMAP).
This seems to be challenging because most PoA upper
bounds proved in the literature are based on smoothness
analysis, which requires (1) the social welfare function is as
large as agents’ total utility, and (2) agents’ types are not cor-
related, or the welfare-maximizing strategies are not corre-

lated. Neither seems to hold for Gn(Md, rPlu) and (1) does
not seem to hold for Gn(Md, rMAP).

By the central limit theorem, when n → ∞, for any
ground truth a, with probability that goes to 1, the frequency
of a in the signal profile is 1

Z +O( 1√
n
). Therefore, we have

the following proposition by Theorem 4.

Corollary 2. For any mechanism that is anonymous, neu-
tral, and strategy-proof for all distance-based models, the
PoA and PoS are the same and in [Z,m]. The bounds are
tight.

Future Work

There are many open question and directions for future re-
search as the PoA and PoS provide a new angle on truth-
revealing social choice with strategic agents. For example,
we have not obtained an upper bound on the PoA for plural-
ity and MAPs. More generally, can we characterize PoA and
PoS for other types of equilibrium, for non-uniform prior,
for cases where the signal space is different from the param-
eter space, and/or for correlated and heterogeneous agents?
Do strategy-proof mechanisms exist for other classes of
models?
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