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Abstract

In many multiagent environments, a designer has some, but
limited control over the game being played. In this paper, we
formalize this by considering incompletely specified games,
in which some entries of the payoff matrices can be cho-
sen from a specified set. We show that it is NP-hard for the
designer to make this choices optimally, even in zero-sum
games. In fact, it is already intractable to decide whether a
given action is (potentially or necessarily) played in equi-
librium. We also consider incompletely specified symmetric
games in which all completions are required to be symmet-
ric. Here, hardness holds even in weak tournament games
(symmetric zero-sum games whose entries are all−1, 0, or 1)
and in tournament games (symmetric zero-sum games whose
non-diagonal entries are all −1 or 1). The latter result settles
the complexity of the possible and necessary winner prob-
lems for a social-choice-theoretic solution concept known as
the bipartisan set. We finally give a mixed-integer linear pro-
gramming formulation for weak tournament games and eval-
uate it experimentally.

1 Introduction

Game theory provides the natural toolkit for reasoning about
systems of multiple self-interested agents. In some cases, the
game is exogenously determined and all that is left to do
is to figure out how to play it. For example, if we are try-
ing to solve heads-up limit Texas hold’em poker (as was re-
cently effectively done by Bowling et al., 2015), there is no
question about what the game is. Out in the world, however,
the rules of the game are generally not set in stone. Often,
there is an agent, to whom we will refer as the designer or
principal, that has some control over the game played. Con-
sider, for example, applications of game theory to security
domains (Pita et al. 2009; Tsai et al. 2009; An et al. 2012;
Yin et al. 2012). In the long run, the game could be changed,
by adding or subtracting security resources (Bhattacharya,
Conitzer, and Munagala 2011) or reorganizing the targets
being defended (roads, flights, etc.).

Mechanism design constitutes the extreme case of this,
where the designer typically has complete freedom in choos-
ing the game to be played by the agents (but still faces a
challenging problem due to the agents’ private information).
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However, out in the world, we generally also do not find
this other extreme. Usually, some existing systems are in
place and place constraints on what the designer can do.
This is true to some extent even in the contexts where mech-
anism design is most fruitfully applied. For example, one
can imagine that it would be difficult and costly for a major
search engine to entirely redesign its existing auction mech-
anism for allocating advertisement space, because of exist-
ing users’ expectations, interfacing software, etc. But this
does not mean that aspects of the game played by the adver-
tisers cannot be tweaked in the designer’s favor.

In this paper, we introduce a general framework for ad-
dressing intermediate cases, where the designer has some
but not full control over the game. We focus on incompletely
specified games, where some entries of the game matrix con-
tain sets of payoffs, from among which the designer must
choose. The designer’s aim is to choose so that the result-
ing equilibrium of the game is desirable to her. This prob-
lem is conceptually related to k-implementation (Monderer
and Tennenholtz 2004) and the closely related internal im-
plementation (Anderson, Shoham, and Altman 2010), where
one of the parties is also able to modify an existing game
to achieve better equilibria for herself. However, in those
papers the game is modified by committing to payments,
whereas we focus on choosing from a fixed set of payoffs
in an entry.

We focus on two-player zero-sum games, both symmetric
and not (necessarily) symmetric, and show NP-hardness in
both cases. (Due to a technical reason explained later, hard-
ness for the symmetric case does not imply hardness for the
not-necessarily-symmetric case.) The hardness result for the
symmetric case holds even for weak tournament games, in
which the payoffs are all −1, 0, or 1, and for tournament
games, in which the off-diagonal payoffs are all −1 or 1.

These results have direct implications for related prob-
lem in computational social choice, another important re-
search area in multiagent systems. In social choice (specif-
ically, voting), we take as input a vector of rankings of
the alternatives (e.g., a � c � b) and as output return
some subset of the alternatives. Some social choice func-
tions are based on the pairwise majority graph which has a
directed edge from one alternative to another if a majority
of voters prefers the former. One attractive concept is that
of the essential set (Laffond, Laslier, and Le Breton 1993a;
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Dutta and Laslier 1999), which can be thought of as based on
the following weak tournament game. Two abstract players
simultaneously pick an alternative, and if one player’s cho-
sen alternative has an edge to the other’s, the former wins.
Then, the essential set (ES ) consists of all alternatives that
are played with positive probability in some equilibrium. In
the absence of majority ties, this game is a tournament game
and its essential set is referred to as the bipartisan set (BP ).

An important computational problem in social choice
is the possible (necessary) winner problem (Conitzer and
Sandholm 2002; Konczak and Lang 2005; Lang et al. 2012;
Xia and Conitzer 2011; Aziz et al. 2012): given only partial
information about the voters’ preferences—for example, be-
cause we have yet to elicit the preferences of some of the
voters—is a given alternative potentially (necessarily) one
of the chosen ones? It can thus be seen that our hardness re-
sults for incompletely specified (weak) tournament games
directly imply hardness for the possible/necessary winner
problems for ES and BP .

We conclude the paper by formulating and evaluating the
efficacy of a mixed-integer linear programming formulation
for the possible equilibrium action problem in weak tourna-
ment games. Due to the space constraint, most (details of)
proofs have been omitted and can be found in the full ver-
sion of this paper.

2 Examples

The following is an incompletely specified two-player sym-
metric zero-sum game with actions a, b, c, d.

a b c d

a 0 1 0 {−1, 0, 1}
b −1 0 1 0

c 0 −1 0 1

d {−1, 0, 1} 0 −1 0

Here, each entry specifies the payoff to the row player (since
the game is zero-sum, the column player’s payoff is im-
plicit), and the set notation indicates that the payoff in an
entry is not yet fully specified. E.g., {−1, 0, 1} indicates that
the designer may choose either −1, 0, or 1 for this entry. In
the case of symmetric games, we require that the designer
keep the game symmetric, so that if she sets1 ur(d, a) = 1
then she must also set ur(a, d) = −1. Thus, our example
game has three possible completions. The goal for the de-
signer, then, is to choose a completion in such a way that
the equilibrium of the resulting game is desirable to her.
For example, the designer may aim to have only actions a
and c played with positive probability in equilibrium. Can
she set the payoffs so that this happens? The answer is yes,
because the completion with ur(a, d) = 1 has this property.
Indeed, for any p ≥ 1

2 , the mixed strategy pa+(1−p)c is an
equilibrium strategy for this completion (and no other equi-
librium strategies exist). On the other hand, the completion
with ur(a, d) = −1 does have Nash equilibria in which b

1Let ur(x, y) denote the payoff to the row player in row x and
column y.

and d are played with positive probability (for example, both
players mixing uniformly is an equilibrium of this game).

Next, consider the following incompletely specified
asymmetric zero-sum game:

� r

t −2 1
b {−1, 1} 0

Suppose the designer’s goal is to avoid row t being played
in equilibrium. One might think that the best way to achieve
this is to make row b (the only other row) look as good
as possible, and thus set ur(b, �) = 1. This results in a
fully mixed equilibrium where t is played with probability 1

4

(and � with 1
4 ). On the other hand, setting ur(b, �) = −1 re-

sults in � being a strictly dominant strategy for the column
player, and thus the row player would actually play b with
probability 1.

3 Preliminaries

In this section, we formally introduce the concepts and com-
putational problems studied in the paper. For a natural num-
ber n, let [n] denote the set {1, . . . , n}.

3.1 Games

A matrix M ∈ Qm×n defines a two-player zero-sum game
(or matrix game) as follows. Let the rows of M be indexed
by I = [m] and the columns of M be indexed by J = [n],
so that M = (m(i, j))i∈I,j∈J . Player 1, the row player,
has action set I and player 2, the column player, has action
set J . If the row player plays action i ∈ I and the column
player plays action j ∈ J , the payoff to the row player is
given by m(i, j) and the payoff to the column player is given
by −m(i, j). A (mixed) strategy of the row (resp., column)
player is a probability distribution over I (resp., J). Payoffs
are extended to mixed strategy profiles in the usual way.

A matrix game M = (m(i, j))i∈I,j∈J is symmetric if
I = J and m(i, j) = −m(j, i) for all (i, j) ∈ I×J . A weak
tournament game is a symmetric matrix game in which all
payoffs are from the set {−1, 0, 1}. Weak tournament games
naturally correspond to directed graphs W = (A,�) as fol-
lows: vertices correspond to actions and there is a directed
edge from action a to action b (denoted a � b) if and only
if the payoff to the row player in action profile (a, b) is 1.
A tournament game is a weak tournament game with the
additional property that the payoff is 0 only if both players
choose the same action. The corresponding graph thus has a
directed edge for every pair of (distinct) vertices.

3.2 Incomplete Games

An incompletely specified matrix game (short: incomplete
matrix game) is given by a matrix M ∈ (2Q)m×n. That is,
every entry of the matrix M = (m(i, j))i∈I,j∈J is a sub-
set m(i, j) ⊆ Q. If m(i, j) consists of a single element,
we say that the payoff for action profile (i, j) is specified,
and write m(i, j) = m instead of the more cumbersome
m(i, j) = {m}. For an incomplete matrix game, the set of
completions is given by the set of all matrix games that arise
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from selecting a number from the corresponding set for ev-
ery action profile for which the payoff is unspecified.

An incomplete symmetric game is an incomplete matrix
game with m(j, i) = {−m : m ∈ m(i, j)} for all i ∈ I
and j ∈ J . The set of symmetric completions of an incom-
plete symmetric game is given by the set of all completions
that are symmetric. When considering incomplete symmet-
ric games, we will restrict attention to symmetric comple-
tions, which is the reason hardness results do not transfer
from the symmetric case to the general case. An incom-
plete weak tournament game is an incomplete symmetric
game for which (1) every unspecified payoff has the form
m(i, j) = {−1, 0, 1} with i �= j, and (2) every symmetric
completion is a weak tournament game. An incomplete tour-
nament game is an incomplete symmetric game for which
(1) every unspecified payoff has the form m(i, j) = {−1, 1}
with i �= j, and (2) every symmetric completion is a tourna-
ment game. Every incomplete (weak) tournament game cor-
responds to a directed graph in which the relation for certain
pairs (i, j) of distinct vertices is unspecified. Whereas ev-
ery completion of an incomplete tournament game satisfies
either m(i, j) = 1 or m(i, j) = −1 for any such pair, a com-
pletion of an incomplete weak tournament game also allows
“ties,” i.e., m(i, j) = 0.

3.3 Equilibrium Concepts

The standard solution concept for normal-form games is
Nash equilibrium. A strategy profile (σ, τ) is a Nash equi-
librium of a matrix game M if the strategies σ and τ are best
responses to each other, i.e., m(σ, j) ≥ m(σ, τ) ≥ m(i, τ)
for all i ∈ I and j ∈ J . The payoff to the row player is iden-
tical in all Nash equilibria, and is known as the value of the
game.

We are interested in the question whether an action is
played with positive probability in at least one Nash equilib-
rium. For improved readability, the following definitions are
only formulated for the row player; definitions for the col-
umn player are analogous. The support supp(σ) of a strategy
σ is the set of actions that are played with positive probabil-
ity in σ. An action i ∈ I is called essential if there exists
a Nash equilibrium (σ, t) with i ∈ supp(σ). By ES row(M)
we denote the set of all actions i ∈ I that are essential.

Definition 1. The essential set ES (M) of a matrix game M
contains all actions that are essential, i.e., ES (M) =
ES row(M) ∪ ES column(M).

There is a useful connection between the essential set and
quasi-strict (Nash) equilibria. Quasi-strictness is a refine-
ment of Nash equilibrium that requires that every best re-
sponse is played with positive probability (Harsanyi 1973).
Formally, a Nash equilibrium (σ, t) of a matrix game M is
quasi-strict if m(σ, j) > m(σ, τ) > m(i, τ) for all i ∈
I \supp(σ) and j ∈ J \supp(τ). Since the set of Nash equi-
libria of a matrix game M is convex, there always exists a
Nash equilibrium (σ, τ) with supp(σ)∪supp(τ) = ES (M).
Moreover, it has been shown that all quasi-strict equilibria
of a matrix game have the same support (Brandt and Fischer
2008b). Thus, an action is contained in the essential set of a
matrix game if and only if it is played with positive prob-

ability in some quasi-strict Nash equilibrium. Brandt and
Fischer (2008b) have shown that quasi-strict equilibria, and
thus the essential set, can be computed in polynomial time.

3.4 Computational Problems

We are interested in the computational complexity of the fol-
lowing decision problems.

• Possible Equilibrium Action: Given an incomplete ma-
trix game M and an action a, is there a completion M ′ of
M such that a ∈ ES (M ′)?

• Necessary Equilibrium Action: Given an incomplete
matrix game M and an action a, is it the case that a ∈
ES (M ′) for all completions M ′ of M?

One may wonder why these are the right problems to solve.
Most generally, the designer could have a utility for each
possible outcome (i.e., action profile) of the game. The next
proposition shows that hardness of the possible equilibrium
action problem immediately implies hardness of the problem
of maximizing the designer’s utility.

Proposition 1. Suppose the possible equilibrium action
problem is NP-hard. Then, if the designer’s payoffs are non-
negative, no positive approximation guarantee for the de-
signer’s utility (in the optimistic model where the best equi-
librium for the designer is chosen) can be given in polyno-
mial time unless P=NP.

Proof. Suppose, for the sake of contradiction, that there is
a polynomial time algorithm with a positive approximation
guarantee for the problem of maximizing the designer’s op-
timistic utility. Then we can use this algorithm for deter-
mining whether there is a completion where a strategy re-
ceives positive probability in some equilibrium: simply give
the designer utility 1 for all outcomes in which that strategy
is played, and 0 everywhere else. The designer can get the
strategy to be played with positive probability if and only if
she can obtain positive utility from this game, and she can
obtain positive utility from this game if and only if the ap-
proximation algorithm returns a positive utility.

A similar connection can be given between the necessary
equilibrium action problem and the case where designer util-
ities are nonpositive and a pessimistic model is used (assign-
ing a payoff of −1 to the action in question and 0 otherwise).

In the context of weak tournament games, the essential
set (ES ) is often interpreted as a (social) choice function
identifying desirable alternatives (Dutta and Laslier 1999).
In the special case of tournament games, the essential set is
referred to as the bipartisan set (BP ) (Laffond, Laslier, and
Le Breton 1993a). The possible and necessary equilibrium
action problems defined above thus correspond to possible
and necessary winner queries for the social choice functions
ES (for weak tournament games) and BP (for tournament
games). The computational complexity of possible and nec-
essary winners has been studied for many common social
choice functions (e.g., Xia and Conitzer 2011; Aziz et al.
2012). To the best of our knowledge, we are the first to pro-
vide complexity results for ES and BP .
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c1 c2 c3 c4 c5 s1 s2 s3 s4 s5

S1,1 0 H −H H −H y y 0 0 0

S1,2 {−1, 1} H −H H −H x x 0 0 0

S2,1 −H 0 H −H H 0 0 y y 0

S2,2 −H {−1, 1} H −H H 0 0 x x 0

S3,1 H −H 0 H −H 0 0 y 0 y

S3,2 H −H {−1, 1} H −H 0 0 x 0 x

S4,1 −H H −H 0 H 0 y 0 y 0

S4,2 −H H −H {−1, 1} H 0 x 0 x 0

x1 H −H H H −1 0 0 0 0 0

r∗ −v −v −v −v −v G G G G G

Figure 1: The incomplete matrix game M used in the proof
of Theorem 1 for the SETCOVER instance given by |U | = 5,
n = 4, k = 3, S1 = {s1, s2}, S2 = {s3, s4}, S3 = {s3, s5},
and S4 = {s2, s4}. L lies in the top left, indicated by double
lines.

4 Zero-Sum Games

In this section, we show that computing possible and neces-
sary equilibrium actions is intractable for (not-necessarily-
symmetric) matrix games. In the proofs, we will make use
of a class of games that we call alternating games. In-
tuitively, an alternating game is a generalized version of
Rock-Paper-Scissors that additionally allows “tiebreaking
payoffs” which are small payoffs in cases where both play-
ers play the same action. A formal definition and proofs of
some required properties are given in the full version of this
paper.

We first consider the necessary equilibrium action prob-
lem. Due to the space constraint, and for ease of readability,
we only give an informal proof sketch here. Much of the
work in the complete proof (to be found in the full version
of this paper) is to correctly set values for constants so that
the desired equilibrium properties hold.

Theorem 1. The necessary equilibrium action problem (in
matrix games that are not necessarily symmetric) is coNP-
complete.

Proof sketch. For NP-hardness, we give a reduction from
SETCOVER. An instance of SETCOVER is given by a col-
lection {S1, . . . , Sn} of subsets of a universe U , and an in-
teger k; the question is whether we can cover U using only
k of the subsets. We may assume that k is odd (it is always
possible to add a singleton subset with an element not cov-
ered by anything else and increase k by 1). Define an incom-
plete matrix game M where the row player has 3n − k + 1
actions, and the column player has 2n − k + |U | actions.
The row player’s actions are given by {Si,j : i ∈ [n], j ∈
[2]} ∪ {xi : i ∈ [n− k]} ∪ {r∗}.

Let L denote the restriction of the game to the first 2n−k
columns and 3n − k rows. We denote the column player’s
actions in this part of the game by c1, . . . , c2n−k. We set
m(Si,1, ci) = 0 and m(Si,2, ci) = {−1, 1} for all i ∈ [n]
and m(xi, cn+i) = −1 for all i ∈ [n − k]. We fill in the
remaining entries with H and −H , where H is a large pos-
itive number, so that if we consider only one of each pair
of rows {Si,1, Si,2}, L acts as an alternating game. Setting
m(Si,2, ci) = −1 will correspond to choosing Si for the set
cover, and setting m(Si,2, ci) = 1 will correspond to not
choosing Si. Note that, considering only L, the row player
will put positive probability on exactly one of Si,1 and Si,2

(as well as all rows xi) and, as long as H is sufficiently large,
each row that is played with positive probability receives ap-
proximately 1

N probability. Si,1 is played if Si is chosen for
the set cover, Si,2 is played otherwise. Also note that the
value of L is close to zero, depending on the exact setting of
the undetermined entries.

We have additional columns s1, . . . , s|U | corresponding
to elements of U . For every set Sj containing si, column si
has a positive entry y in row Sj,1 and a negative entry x in
row Sj,2. If si is not covered by any chosen set, then the
equilibrium can not be contained in L: If it were, then the
column player could best respond by playing si, where all
entries (on rows played with positive probability by the row
player) are either 0 or x < 0. However, if si is covered by
some set, then we can make y large enough (relative to x)
that the column player will not play si. Thus, if every si is
covered, the column player plays only columns from L.

Finally, we have a single extra row labeled r∗. This row
has a small negative payoff −v for all columns in L, and a
very large positive payoff G for all columns not in L. As
long as the equilibrium is contained in L (i.e., all elements
are covered), it is not a best response for the row player to
play r∗. However, if the column player puts positive proba-
bility on some si (that is, si is uncovered), then G is large
enough that the row player can best respond by playing r∗
with positive probability.

By modifying the construction in the proof of Theorem 1,
we also get a hardness result for the problem of deciding
whether an action is a possible equilibrium action.

Theorem 2. The possible equilibrium action problem (in
matrix games that are not necessarily symmetric) is NP-
complete.

5 Weak Tournament Games

We now turn to weak tournament games and analyze the
computational complexity of possible and necessary ES
winners.

Theorem 3. The possible ES winner problem (in weak tour-
nament games) is NP-complete.

Proof sketch. For NP-hardness, we provide a reduction
from SAT. Let ϕ = C1 ∧ . . . ∧ Cm be a Boolean for-
mula in conjunctive normal form over a finite set V =
{v1, . . . , vn} of variables. We define an incomplete weak
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tournament2 Wϕ = (A,�) as follows. The set A of ver-
tices is given by A = ∪n

i=1Xi ∪ {c1, . . . , cm} ∪ {d}, where
Xi = {x1

i , . . . , x
6
i } for all i ∈ [n]. Vertex cj corresponds to

clause Cj and the set Xi corresponds to variable vi.
Within each set Xi, there is a cycle x1

i � x2
i � x3

i �
x4
i � x5

i � x6
i � x1

i and an unspecified edge between x1
i

and x4
i . If variable vi occurs as a positive literal in clause Cj ,

we have edges cj � x3
i and x5

i � cj . If variable vi occurs as
a negative literal in clause Cj , we have edges cj � x6

i and
x2
i � cj . Moreover, there is an edge from cj to d for every

j ∈ [m]. For all pairs of vertices for which neither an edge
has been defined, nor an unspecified edge declared, we have
a tie. See Figure 2 for an example.

We make two observations about Wϕ.

Observation 1. For every completion W of Wϕ, we have
d ∈ ES (W ) if and only if ES (W ) ∩ {c1, . . . , cm} = ∅.

Observation 2. For each i, there is exactly one unspecified
edge within (and thus exactly three possible completions of)
the subtournament Wϕ|Xi

. If the we set a tie between x1
i and

x4
i , then all Nash equilibria p of the subtournament Wϕ|Xi

satisfy p(x1
i ) = p(x3

i ) = p(x5
i ) and p(x2

i ) = p(x4
i ) =

p(x6
i ). If we set x1

i � x4
i , then every quasi-strict equilib-

rium p of Wϕ|Xi
satisfies p(x2

i ) = p(x4
i ) = p(x6

i ) = 0,
p(x5

i ) > p(x1
i ) > p(x3

i ) > 0, and p(x1
i ) + p(x3

i ) > p(x5
i ).

By symmetry, setting x4
i � x1

i results in quasi-strict equilib-
ria p with p(x1

i ) = p(x3
i ) = p(x5

i ) = 0, p(x4
i ) > p(x6

i ) >
p(x2

i ) > 0, and p(x2
i ) + p(x6

i ) > p(x4
i ).

We can now show hat ϕ is satisfiable if and only if there
is a completion W of Wϕ with d ∈ ES (W ). For the direc-
tion from left to right, let α be a satisfying assignment and
consider the completion W of Wϕ as follows: if vi is set to
“true” under α, add edge x1

i � x4
i ; otherwise, add edge x4

i �
x1
i . It can be shown that ES (W ) = ∪i∈[n]ES (W |Xi

)∪{d}.
For the direction from right to left, let W be a completion

of Wϕ with d ∈ ES (W ). Define the assignment α by setting
variable vi to “true” if x1

i � x4
i and to “false” if x4

i � x1
i . If

there is a tie between x1
i and x4

i , we set the truth value of vi
arbitrarily. Since d ∈ ES(W ), we know by Observation 1
that cj /∈ ES (W ) for all j ∈ [m]. It can now be shown that
every ci has an incoming edge from a vertex in ES (W ), and
that this vertex corresponds to a literal that appears in Ci and
that is set to “true” under α.

We get hardness for the necessary winner problem by
slightly modifying the construction used in the proof above.

Theorem 4. The necessary ES winner problem (in weak
tournament games) is coNP-complete.

It can actually be shown that the problems considered in
Theorems 3 and 4 remain intractable even in the case where
unspecified payoffs can be chosen from the interval [−1, 1]

2We utilize the one-to-one correspondence between weak tour-
nament games and directed graphs without cycles of length one or
two (so-called weak tournaments). For a weak tournament (A,�),
we use the notation a � b to denote a directed edge from a to b.

d c1 c2 c3

x1
1

x2
1

x3
1x4

1x5
1

x6
1

x1
2

x2
2

x3
2x4

2x5
2

x6
2

x1
3

x2
3

x3
3x4

3x5
3

x6
3

Figure 2: The weak tournament Wϕ for formula ϕ = C1 ∧
C2∧C3 with C1 = x1∨¬x2∨x3. Dashed lines indicate un-
specified edges. For improved readability, edges connecting
c2 and c3 to X have been omitted.

(while still maintaining symmetry). This is interesting inso-
far as this is our only hardness result for infinite and/or con-
tinuous payoff sets; such relaxations often make problems
computationally easier.
Proposition 2. The possible equilibrium action problem in
weak tournament games remains NP-complete (and the nec-
essary equilibrium action problem coNP-complete) when
every payoff set m(i, j) with m(i, j) = {−1, 0, 1} is re-
placed by m(i, j) = [−1, 1].

6 Tournament Games

The hardness results in Section 5 leave open the possibility
that computing ES is tractable in tournament games (where
ES is referred to as BP ). Indeed, it often turns out that
computational problems become easier to solve when re-
stricting attention to tournaments (Baumeister et al. 2013;
Brandt and Fischer 2008a; Kenyon-Mathieu and Schudy
2007).3 The reason is that certain structural properties only
hold in tournaments.4

Nevertheless, we prove that computing possible and nec-
essary ES winners is hard even in tournament games. The
technical difficulty in proving these results lies in the fact
that the hardness reduction cannot use “ties” (i.e., non-
edges) in (the specified part of) the graph.
Theorem 5. The possible BP winner problem (in tourna-
ment games) is NP-complete.
Theorem 6. The necessary BP winner problem (in tourna-
ment games) is coNP-complete.

Observe that these results neither imply the results for
weak tournament games in Section 5 (where completions
can use “ties”) nor the results for general matrix games in
Section 4 (where completions can be asymmetric).

3There are also cases in the literature where a computational
problem remains hard when restricted to tournaments, but the
hardness proof is much more complicated (Alon 2006; Charbit,
Thomassé, and Yeo 2007; Conitzer 2006).

4For example, Laffond, Laslier, and Le Breton (1993b) and
Fisher and Ryan (1992) have shown that every tournament game
T has a unique Nash equilibrium. This Nash equilibrium is quasi-
strict and has support ES(T ) = BP(T ).
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7 MIP for Weak Tournament Games

Of course, the fact that a problem is NP-hard does not make
it go away; it is still desirable to find algorithms that scale
reasonably well (or very well on natural instances). NP-hard
problems in game theory often allow such algorithms. In
particular, formulating the problem as a mixed-integer pro-
gram (MIP) and calling a general-purpose solver often pro-
vides good results. In this section, we formulate the possible
ES winner problem in weak tournament games as a MIP.

7.1 Mixed-Integer Programming Formulation

Let W = (w(i, j))i,j∈A be an incomplete weak tournament
game. For every entry w(i, j) of W , we define two binary
variables xpos

ij and xneg
ij . Setting w(i, j) to wij ∈ {−1, 0, 1}

corresponds to setting xpos
ij and xneg

ij in such a way that
(xpos

ij , xneg
ij ) �= (1, 1) and xpos

ij − xneg
ij = wij . For each ac-

tion j, there is a variable pj corresponding to the probability
that the column player assigns to j. Finally, zij is a variable
that, in every feasible solution, equals wijpj .

To determine whether an action k ∈ A is a possible ES
winner of W , we solve the following MIP. Every feasible
solution of this MIP corresponds to a completion of W and
a Nash equilibrium of this completion.

maximize pk

subject to

xneg
ij − xpos

ji = 0, ∀i, j xpos
ij = 1, if w(i, j) = 1

xpos
ij + xneg

ij ≤ 1, ∀i, j xneg
ij = 1, if w(i, j) = −1

xpos
ij = xneg

ij = 0, if w(i, j) = 0 xpos
ij , xneg

ij ∈ {0, 1}, ∀i, j
zij ≥ pj − 2(1− xpos

ij ), ∀i, j ∑
j∈A zij ≤ 0, ∀i

zij ≥ −pj − 2(1− xneg
ij ), ∀i, j ∑

j∈A pj = 1

zij ≥ −2xpos
ij − 2xneg

ij , ∀i, j pj ≥ 0, ∀j
Here, indices i and j range over the set A of actions. Most
interesting are the constraints on zij ; we note that exactly
one of the three will be binding depending on the values of
xpos
ij and xneg

ij . The net effect of these constraints is to en-
sure that zij ≥ wijpj . (Since we also have the constraint∑

j∈A zij ≤ 0 and because the value of every completion is
zero, zij = wijpj in every feasible solution.) All other con-
straints containing xpos

ij or xneg
ij are to impose symmetry and

consistency on the entries. The remaining constraints make
sure that p is a well-defined probability distribution and that
no row yields positive payoff for player 1.

It is possible to adapt this MIP to compute possible and
necessary BP winners in tournament games. All that is
required is to replace inequality constraints of the form
xpos
ij +xneg

ij ≤ 1 by equalities, thus eliminating the possibility
to set wij = 0. Since tournament games have a unique equi-
librium, checking whether action k is a possible or necessary
BP winner can be done by maximizing and minimizing the
objective function pk, respectively. The reason that this ap-
proach does not extend to the computation of necessary win-
ners in weak tournament games is that weak tournaments
may have multiple equilibria, some of them not quasi-strict.
Since our MIP optimizes over the set of all (not necessarily
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Figure 3: Average runtime (log scale) for n
2 unspecified en-

tries (left) and n unspecified entries (right).

quasi-strict) equilibria, we may encounter cases where the
MIP finds a completion with pk = 0, but k is still a neces-
sary winner because it is played with positive probability in
every quasi-strict equilibrium.

7.2 Experimental Results

We tested our MIP for the possible ES winner problem in
weak tournament games containing either n

2 or n unspeci-
fied entries, where n = |A| is the number of actions avail-
able to each player. For each n, we examined the average
time required to solve 100 random instances5 of size n, us-
ing CPLEX 12.6 to solve the MIP. Results are shown in Fig-
ure 3, with algorithms cut off once the average time to find
a solution exceeds 10 seconds.

We compared the performance of our MIP with a simple
brute force algorithm. The brute force algorithm performs a
depth-first search over the space of all completions, termi-
nating when it finds a certificate of a yes instance or after
it has exhausted all completions. We observe that for even
relatively small values of n, the MIP begins to significantly
outperform the brute-force algorithm.

8 Conclusion

Often, a designer has some, but limited, control over the
game being played, and wants to exert this control to her ad-
vantage. In this paper, we studied how computationally hard
it is for the designer to decide whether she can choose pay-
offs in an incompletely specified game to achieve some goal
in equilibrium, and found that this is NP-hard even in quite
restricted cases of two-player zero-sum games. Our frame-
work and our results also apply in cases where there is no
designer but we are just uncertain about the payoffs, either
because further exploration is needed to determine what they
are, or because they vary based on conditions (e.g., weather).
In such settings one might simply be interested in potential
and unavoidable equilibrium outcomes.

Future work may address the following questions. Are
there classes of games for which these problems are ef-
ficiently solvable? Can we extend the MIP approach to
broader classes of games? What results can we obtain for
general-sum games? Note that just as hardness for symmet-
ric zero-sum games does not imply hardness for zero-sum

5Random instances were generated by randomly choosing each
entry from {−1, 0, 1} and imposing symmetry, then randomly
choosing the fixed number of entries to be unspecified.
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games in general (because in the latter the game does not
need to be kept symmetric), in fact hardness for zero-sum
games does not imply hardness for general-sum games (be-
cause in the latter the game does not need to be kept zero-
sum). However, this raises the question of which solution
concept should be used—Nash equilibrium, correlated equi-
librium, Stackelberg mixed strategies, etc. (All of these co-
incide in two-player zero-sum games.) All in all, we believe
that models where a designer has limited, but not full, con-
trol over the game are a particularly natural domain of study
for AI researchers and computer scientists in general, due
to the problems’ inherent computational complexity and po-
tential to address real-world settings.
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