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Abstract

Kidney exchange is a type of barter market where pa-
tients exchange willing but incompatible donors. These
exchanges are conducted via cycles—where each in-
compatible patient-donor pair in the cycle both gives
and receives a kidney—and chains, which are started
by an altruist donor who does not need a kidney in re-
turn. Finding the best combination of cycles and chains
is hard. The leading algorithms for this optimization
problem use either branch and price—a combination
of branch and bound and column generation—or con-
straint generation. We show a correctness error in the
leading prior branch-and-price-based approach [Glorie
et al. 2014]. We develop a provably correct fix to it,
which also necessarily changes the algorithm’s com-
plexity, as well as other improvements to the search
algorithm. Next, we compare our solver to the leading
constraint-generation-based solver and to the best prior
correct branch-and-price-based solver. We focus on the
setting where chains have a length cap. A cap is desir-
able in practice since if even one edge in the chain fails,
the rest of the chain fails: the cap precludes very long
chains that are extremely unlikely to execute and instead
causes the solution to have more parallel chains and cy-
cles that are more likely to succeed. We work with the
UNOS nationwide kidney exchange, which uses a chain
cap. Algorithms from our group autonomously make
the transplant plans for that exchange. On that real data
and demographically-accurate generated data, our new
solver scales significantly better than the prior leading
approaches.

1 Introduction

Chronic kidney disease is a worldwide problem affecting, at
various levels of severity, tens of millions of people at great
societal burden (Neuen et al. 2013) and monetary cost (Saran
et al. 2015). For those with end-stage kidney failure—of
which there are over 100,000 in the US alone1—the pro-
curement of a new healthy kidney is a life-saving necessity.

Cadaveric kidneys fulfill only a fraction of the demand
for kidneys; indeed, the imbalance in supply and demand
is growing. Living donation, where a willing donor with two
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1http://optn.transplant.hrsa.gov

healthy kidneys gives one organ to a patient with kidney fail-
ure, is even more desirable than deceased donation; grafts
sourced in this manner generally last twice as long as cadav-
eric grafts in the recipient’s body (HHS/HRSA/HSB/DOT
2011). Finding a feasible living donor is difficult due to med-
ical compatibility and other logistical issues. Toward this
end, kidney exchange (Rapaport 1986; Roth, Sönmez, and
Ünver 2004) is a market where patients with willing but in-
compatible donors swap their paired donors, thus allowing
participants to circumvent these compatibility issues.

In this paper, we address kidney exchange from a compu-
tational point of view. Specifically, given a set of incompati-
ble pairs of patients and donors, we are interested in comput-
ing the “best” set of feasible organ trades, which take place
in cycles or unpaired donor-initiated chains. This problem is
both theoretically and empirically hard to solve (Abraham,
Blum, and Sandholm 2007). Over the last decade, integer
programming-based methods for solving different interpre-
tations of the kidney exchange problem have been developed
and then used in fielded exchanges. As kidney exchange
matures, holes in the expressiveness and scaling capabili-
ties of the current solvers are found, and improvements are
made. We are actively involved in this feedback loop with
the United Network for Organ Sharing (UNOS) US nation-
wide kidney exchange, and draw on that experience here.

The two leading kidney exchange clearing algorithms,
due to Glorie et al. (2014) and Anderson et al. (2015b), ad-
dress the optimization problem from complementary direc-
tions. We begin by identifying a bug in the correctness of
the former algorithm, and give a provably correct fix that
also necessarily changes its runtime complexity. We then in-
corporate the (corrected) idea of Glorie et al. (2014) into an
improved version of the prior best branch-and-price-based
solver, based on work by Abraham et al. (2007). On real
data from the UNOS exchange and on demographically-
accurate generated data, our new solver scales dramatically
better than both prior approaches when a finite cap on the
length of chains is imposed, as is the case in practice. Al-
ready on reasonably-sized instances, our method optimally
clears markets that the prior methods cannot solve at all.

2 Preliminaries

Any barter exchange can be represented as a directed graph
G = (V,E), such that each participating agent is a ver-
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tex and directed edges between vertices represent potential
trades from one agent to another. In the kidney exchange
case, such a compatibility graph can be formed by construct-
ing one vertex for each patient-donor pair in the pool (Roth,
Sönmez, and Ünver 2004; 2005a; 2005b). Then, each di-
rected edge e from vertex u to vertex v represents a potential
medically-compatible transplant from the donor at u to the
patient at v. The donor in u is willing to give her kidney if
and only if her paired patient receives a kidney. Also, some
potential transplants are more valuable than others. With this
in mind, each edge e = (u, v) is assigned a real-valued
weight w(e); we will also use the notation w(u, v).

A cycle c of vertices in the compatibility graph G repre-
sents a possible kidney swap, with each vertex in the cycle
obtaining the kidney of the previous vertex. In kidney ex-
change, cycles of length at most some small constant L are
allowed—all transplants in a cycle must be performed si-
multaneously so that no donor backs out after his patient has
received a kidney but before he has donated his kidney. In
most fielded kidney exchanges—including at UNOS—only
2- and 3-cycles are allowed (i.e., L = 3).

Some donors in kidney exchange enter the pool without
a paired patient. These non-directed donors (aka “altruist
donors”) trigger chains that start with that donor donating
her kidney to a patient, whose paired donor donates his kid-
ney to another patient, and so on (Montgomery et al. 2006;
Roth et al. 2006; Rees et al. 2009). In recent years, chains
have surpassed cycles as the primary matching mode in
many fielded exchanges. The set of patient-donor pairs P
and the set of altruist donors A partition the vertex set V .

Chains can be longer than cycles in practice because it
is not necessary to carry out all the transplants in a chain
simultaneously. Unlike in cycles, if a donor backs out of
a chain after his paired patient receives a kidney, no pair
in the remainder of the planned chain is strictly worse off;
that is, no donor was “used up” before his or her paired pa-
tient receiving a kidney. Yet, within a single planning period,
longer chains are generally less likely to execute than shorter
chains,2 and are less desirable in practice. Fielded kidney ex-
changes typically impose a single-period chain-length cap
K to avoid very long chains that are extremely unlikely to
execute in practice and instead causes the solution to have
more parallel chains and cycles that are more likely to suc-
ceed. We define chain-length cap to be the maximum num-
ber of vertices allowed in a chain, including the altruist. At
UNOS, K = 4. Planned chains longer than 4 are very un-
likely to execute because the success rate of every individual
edge tends to be less than a third (Dickerson, Procaccia, and
Sandholm 2013).3

Finally, a matching M is any collection of disjoint cy-

2For an overview based on real UNOS data of edge, cycle, and
chain failure rates and reasons, see §7 of Dickerson et al. (2013).

3At the end of a chain is a donor that has not donated yet, and
that donor can be used as an altruist in the next batch match (Rees
et al. 2009) (e.g., at UNOS, there are two batches per week). This
way chains can be continued from batch to batch, and the chains
become long that way. In the US, kidney exchange chains have
sometimes grown to be 60 long. Note that this in no way contradicts
the motivation for the within-batch chain-length cap.

cles and chains in the graph G. The cycles and chains must
be disjoint because no donor can give more than one of her
kidneys. Given the set of all legal matchings M, the clear-
ing problem is to find a matching M∗ that maximizes some
utility function u : M → R. Common fielded utility func-
tions are cardinality- or weight-based, while ongoing work
explores incorporating other dimensions (Chen et al. 2012;
Dickerson, Procaccia, and Sandholm 2013; Anderson 2014;
Manlove and O’Malley 2014; Dickerson and Sandholm
2015; Glorie et al. 2015). For finite cycle cap L > 2 (even
without chains), even the maximum cardinality problem is
NP-hard (Abraham, Blum, and Sandholm 2007).

In this paper, we build a fast clearing engine to optimally
solve the maximum-cardinality and maximum-weighted
clearing problems on realistic kidney exchange graphs. The
first serious computational approach to solving the kid-
ney exchange problem built a specialized branch-and-price-
based (Barnhart et al. 1998) integer program solver (Abra-
ham, Blum, and Sandholm 2007); we discuss that method
in Section 3, and build on it. Section 3 also discusses the
leading non-branch-and-price-based solver, due to Anderson
et al. (2015b); that uses a sophisticated recursive traveling-
salesman-inspired constraint generation process. The cur-
rent fastest branch-and-price-based technique is due to Glo-
rie et al. (2014); we discuss that method, identify a bug in its
correctness, and propose and prove the correctness of a fix
in Section 4. Finally, in Section 5, we provide extensive ex-
perimental results comparing the original branch-and-price-
based solver (Abraham, Blum, and Sandholm 2007), our
new solver that incorporates the (now correct) ideas of Glo-
rie et al. (2014) and other improvements, and the leading
constraint-generation-based solver (Anderson et al. 2015b).
We show on both real data from the UNOS kidney exchange
and on demographically-accurate data that our solver scales
dramatically better than the prior best solvers for realistic
values of K and L; indeed, already on moderately-sized
compatibility graphs, our solver provides optimal clearing
results while the other solvers provide no solution due to ex-
cessive run time.

3 Optimally Clearing Large Barter Markets

In this section, we briefly overview the two leading ap-
proaches to solving integer program (IP) models of the kid-
ney exchange clearing problem.4 Models solved by branch
and price use one binary decision variable for each legal cy-
cle and chain, while those solved by constraint generation
use a combination of binary decision variables representing
edges and cycles—but not chains. In Section 5, we com-
pare two branch-and-price-based solvers and one constraint-
generation-based solver; we define their basic structure here.

Branch and price

Given a set of vertices V = P ∪ A, the number of cycles
of length at most L is O(|P |L), the number of uncapped
chains is exponential in |P | if A �= ∅, and the number of
capped chains of length at most K is O(|A||P |K−1). Let

4For an in-depth survey of integer programming approaches to
the kidney exchange problem, see Mak-Hau (2015).
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C(L,K) represent the set of cycles of length at most L
and chains of length at most K. With one decision vari-
able per cycle and chain c ∈ C(L,K), an integer program
model cannot even be written to main memory—much less
solved—for even moderately-sized graphs. Indeed, Abra-
ham et al. (2007) could not write down the full model for
instances as small as 1000 patient-donor pairs for C(3, 0),
while Dickerson et al. (2012b) could not write down the full
model for instances as small as 256 pairs with just 10 al-
truists for C(3, 4). Thus, any solver must maintain at most a
reduced model (i.e., subset of columns and rows in the con-
straint matrix) in memory.

Branch and price is a combination of standard branch and
bound with column generation that searches for and proves
the optimality of a solution to an IP while maintaining only
a reduced model in memory (Barnhart et al. 1998). For
kidney exchange, the idea is as follows (Abraham, Blum,
and Sandholm 2007). (We will loosely use “cycles” to re-
fer to both cycles and chains, except when explicitly dis-
tinguished. This is consistent because both are represented
as decision variables in the model, and because a chain
is equivalent to a cycle with an additional “dummy” zero-
weight back-edge to an altruist donor.) First, start with some
relatively small number of, or no, “seed” cycle variables in
the model, and solve the linear program (LP) relaxation of
this reduced model. Next, generate positive price cycles—
variables that might improve the solution when brought into
the model. For the maximum-weight clearing problem, the
price of a cycle c is given by

∑
(u,v)∈c(w(u,v) − δu), where

δu is the dual value of vertex u in the LP.
The pricing problem is to generate one or more positive

price cycles to bring into the model, or prove that none ex-
ist. While any positive price cycles exist at the current node
in the branch and bound search tree, optimality has not been
proven for the LP. Solving the pricing problem can be ex-
pensive in its own right, as we discuss in Section 4. Once
there are no more positive price cycles, if the LP solution is
integral, optimality is proved at that node in the search tree.
However, if the LP is fractional, branching occurs. Abra-
ham et al. (2007) branched on individual cycles c, creating
one subtree that includes c in the final solution and a second
subtree that explicitly does not, and recursing in this way.
Our solver necessarily uses more complex branching. These
branches are then explored in depth-first order until a prov-
ably optimal solution is found.

Constraint generation

Constraint-generation-based approaches to kidney exchange
have all variables of the appropriate model in memory from
the start, but bring in the constraints of the model incre-
mentally. A basic constraint generation form of the kidney
exchange problem uses a decision variable for each edge
(i.e., only O(|V |2) variables) in the compatibility graph and
solves a flow problem such that unit flow into a vertex exists
if and only if unit flow out of that vertex also exists (Abra-
ham, Blum, and Sandholm 2007). This relaxed form of the
full problem with only a polynomial number of constraints
will not obey cycle or chain caps, so constraints of that form

are added until an optimal solution to the relaxed problem is
also feasible with respect to cycle and chain caps.

Anderson et al. (2015b) built the leading constraint-
generation-based IP solver for the kidney exchange problem.
Their solver builds on the prize-collecting traveling salesper-
son problem (Balas 1989), where the problem is to visit each
city (patient-donor pair) exactly once, but with the additional
option to pay some penalty to skip a city. They maintain de-
cision variables for all cycles of length at most L, but build
chains in the final solution from decision variables associ-
ated with individual edges. Then, an exponential number of
constraints is required to prevent the solver from including
chains of length greater than K; these are generated incre-
mentally until optimality is proved.

In this paper, we focus on three instantiations of kidney
exchange clearing engines: BNP-DFS, the initial branch-
and-price-based solver due to Abraham et al. (2007); CG-
TSP, the leading constraint-generation-based approach due
to Anderson et al. (2015b); and BNP-POLY, a new solver we
built that combines the (now corrected by us) methodology
of Glorie et al. (2014) with other improvements. The next
section discusses this new solver.

4 Efficiently Solving the Pricing Problem

In the branch-and-price approach, solving the pricing
problem—that is, finding a positive price cycle or set of cy-
cles, or proving that none exist—is performed at every node
in the branch-and-bound search tree. Thus speedups in pric-
ing can result in dramatic overall runtime gains. In this sec-
tion, we discuss pricing methods for the kidney exchange
problem. We show that the current leading pricing algorithm
is incorrect, and describe our fix for that problem.

Exponential-time pricing

The first branch-and-price-based IP solver for the kidney
exchange problem solved the pricing problem by exhaus-
tively considering all feasible cycles and chains, relative
to the current partial solution represented by the search
tree (Abraham, Blum, and Sandholm 2007). At each search
tree node, at each column generation iteration, a depth-first-
search (DFS) in the compatibility graph computes the price
for all cycles until up to a user-specified maximum number
of positive cycles are found, or until the DFS proves that no
positive price cycles exist. That proof of nonexistence neces-
sarily sometimes explores all cycles (of capped length) in G
which, as discussed in Section 3, is untenably slow. Indeed,
for long chains in pools with many non-directed donors, the
pricing problem cripples the BNP-DFS performance, as we
show in Section 5.

Polynomial-time pricing

We discuss a recent polynomial-time pricing algorithm due
to Glorie et al. (2014), find a problem with it, and then pro-
pose a fix and prove its correctness.

Method of Glorie et al. (2014). Glorie et al. (2014) give
an algorithm that solves the pricing problem (for many kid-
ney exchange functions) in polynomial time. We show that
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the method is incorrect, after briefly describing the idea be-
hind it. Fortunately, the idea—once corrected—is excellent,
as we show experimentally in Section 5.

Glorie et al. (2014) reduce the problem of generating pos-
itive price cycles to finding negative weight cycles in a di-
rected graph. They construct a “reduced” graph with the
same vertices and edges, but with different weights on the
edges. If e = (u, v) is an edge in the original graph with
weight we, and δu is the dual value of vertex u, its weight
re in the reduced graph is given by re = δu − we. Thus, a
cycle is positive price in the original graph if and only if it is
a negative cycle in the reduced graph.

The next step is to find negative cycles of length at most
L for cycles, or K for chains. We will use parentheses to
denote a path, and angular brackets to denote a cycle. For
example, (v1, v2...vn) is a path from vertex v1 to vn, while
〈v1, v2...vn〉 is a cycle containing the above path, plus the
(possibly dummy) edge (vn, v1). Glorie et al. note the fol-
lowing: suppose there is a path (v1, v2, . . . , vn) of reduced
weight r1, and an edge e = (vn, v1) with reduced weight r2.
Then if r1 + r2 < 0, 〈v1, v2, . . . , vn〉 is a negative cycle.

Thus, efficiently finding short paths of length at most L or
K in the reduced graph also finds positive price cycles in the
compatibility graph. Hereafter, we use “short” and “long” to
refer to the weight of path, not its edge count. In general,
the shortest path in a graph with negative edge weights is
undefined due to the ability to repeat a negative weight cycle
multiple times in a single path. Since a path in our context
is not valid if it reuses edges, the problem is well-defined.
Yet, finding the shortest path is NP-hard via reduction from
the Hamiltonian cycle problem: set all edge weights to −1
and ask if the shortest path from a source u to any neighbor
v such that (v, u) ∈ E is of weight 1 − |V |. However, the
pricing procedure need only find some—not necessarily the
shortest—negative weight cycle or prove nonexistence.

The Bellman-Ford algorithm5 is well suited for this. As
Glorie et al. (2014) note, the ith step of Bellman-Ford com-
putes shortest paths using at most i edges; however, some
edges in those paths may be reused by way of reusing neg-
ative sub-cycles in the path. To prevent confusion between
the kidney exchange cycles and these sub-cycles in the re-
duced graph, we refer to sub-cycles as “loops.” In Glorie et
al., nothing is done to prevent the creation of loops. Internal
loops can be removed to recover a valid path, but this may
make the weight of the path nonnegative. While pursuing
that path, the Bellman-Ford algorithm might have ignored a
different path that was less promising at the time, but had
no internal loops, and would have ended up being a valid
negative chain or cycle. This leads to cases where the algo-
rithm returns no negative cycles even though they exist, as
demonstrated in Counterexample 1. This causes the overall
branch-and-price algorithm to sometimes fail to find an opti-
mal solution, and instead report a suboptimal one as optimal.

Counterexample 1. Consider the graph with reduced
weights in Figure 1, and let the cycle cap L = 3 and
chain cap K = 6. Vertex a is the only altruist, while
vertices p1, . . . , p8 are patient-donor pairs. The only valid

5Cormen et al. (2009) overview the Bellman-Ford algorithm.

negative cycle or chain in the above graph is the chain
〈a, p5, p6, p7, p8, p1〉. Since there are no cycles of length at
most L = 3, no negative cycles will be found on any run
of Bellman-Ford where vertex a is not the source. Thus, we
only consider the case where a is the source.

a p1 p2

p3p4

p5

p7p6 p8

00 0

0

0

-2
0

0 0

-1

Figure 1: Counterexample to Glorie et al. pricing method.

Let d(u) be the distance from vertex a to vertex u. Af-
ter four steps, d(p4) = 0 via the path (a, p1, p2, p3), and
d(p8) = 0 via (a, p5, p6, p7). On the fifth and final (because
K = 6) step, d(p1) updates via p4 through an internal loop,
as d(p4) + w(p4, p1) = −2 < −1 = d(p8) + w(p8, p1).
Thus, the path (a, p5, p6, p7, p8, p1) is ignored.

At the termination of Bellman-Ford, d(p1) = −2, with
path (a, p1, p2, p3, p4, p1) stored as its list of predecessors.
Because this is negative, Bellman-Ford tries to generate the
corresponding negative chain (equivalent to a positive price
chain in the compatibility graph) by following its prede-
cessors. After removal of the internal loop at vertex p1,
the chain weight is no longer negative. However, the path
(a, p5, p6, p7, p8, p1) was ignored in favor of the path to ver-
tex p1 by way of p4. That path corresponds to a positive price
chain in the compatibility graph but is not returned.

Corrected polynomial-time pricing. Counterexample 1
breaks the correctness of the solver presented in Glorie et
al. (2014), but is amenable to a simple fix: prevent looping
during the Bellman-Ford iterations, not as a post-process af-
terwards. To prevent looping, before updating the distance to
some vertex v via the edge (u, v), we perform an additional
check through the predecessors of u. If v already occurs in
the path to u, this would create a loop; if this occurs, we do
not update the distance to v.

Assuming K > L, the complexity of the algorithm given
by Glorie et al. is O(|V ||E|K): Bellman-Ford runs from
each vertex for K or L steps and examines O(|E|) edges at
each step. Our modification adds an extra factor of K, since
on each update, we now have to examine up to O(K) prede-
cessors. This yields an overall complexity of O(|V ||E|K2).

Theorem 1. If there is a negative cycle in the graph, the
algorithm will return at least one negative cycle.

Proof. We will show that if there is a negative cycle c that
we do not find, there must exist a negative cycle with strictly
fewer vertices. Thus, for any negative cycle c that we do
not return, there must exist a negative cycle p∗q∗ with fewer
vertices. So, there exists a negative cycle with no negative
cycles smaller than it, which our algorithm finds and returns.

Say c = 〈v1, v2, . . . , vn〉 is that negative cycle that we do
not return. Without loss of generality, assume that c contains
the shortest path from v1 to vn; if it does not, then that cycle
containing the shortest path is also a negative cycle.
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Consider running the modified Bellman-Ford method
with v1 as the source. Since by assumption the algorithm
does not find c, it must compute a different path from v1 to
vn than the one in c. We know that the computed path is not
shorter, since c contains the shortest path to vn. Without loss
of generality, assume it is strictly longer; were it equal in
length, we would be done (as this is a negative cycle that is
found by the algorithm as well).

The only way our modified Bellman-Ford method does
not compute the shortest path to vn is if there exists some
vertex vsplit, where vsplit ∈ c, but the shortest path to vsplit
is not in c. This can occur due to the modification that pre-
vents loops in shortest paths. Let p be the shorter path from
v1 to vsplit, and let pc be the path from v1 to vsplit in c. Let
q be the path from vsplit to vn in c, plus the edge (vn, v1).
This is shown in Figure 2.

v1 vsplit vn

pc

p

q \ (vn, v1)

(vn, v1) This edge is part of q.

Figure 2: Widget with a negative cycle and existence of a
shorter negative cycle. Dotted arrows are paths that contain
zero or more vertices (and thus one or more edges).

Then c = pcvsplitq. Also, since the weights on the paths are
w(p) < w(pc), we have w(pq) < w(pcq) = w(c) < 0.

For any path ρ, let |ρ| represent the number of vertices in
that path. We know that c = pcq satisfies the cycle size cap,
since it is valid by assumption.

Claim 1.1. |p| ≤ |pc|.
Proof: By way of contradiction, assume |pc| < |p|. Then,
the sequence of updates along pc will reach vsplit before p
does—which means we will have computed pc. Even though
we may compute p later, we will still be able to build off of
path pc: this is because we maintain the full 2D predecessor
array, which is necessary for other reasons. Therefore we
will go on to compute the full pcq, which is a contradiction.

This issue may arise again when computing a path to vn
with pc as the base; in the process of computing q with pc as
the base, there may exist some vertex v′split that causes the
same issue as vsplit. In that case, our logic can be applied
recursively until no such vertex like v′split exists. �

Using Claim 1.1, we can ignore the cycle cap for the rest
of the proof, since all cycles discussed will have size |pq| ≤
|pcq| = |c|, which is legal by assumption.

At this point, we have p and q such that pq is a circuit (i.e.,
a path that starts and ends at the same vertex but which might
not be a cycle because it might visit some vertices more than
once), and w(pq) < 0. Claim 1.2 gives a tool that we will
use to finish the proof of the theorem through repeated use.

Claim 1.2. In a directed graph, if there exists a circuit �
that is not a cycle and w(�) < 0, then there exists a circuit
�′ where w(�′) < 0 and |�′| < |�|.

Proof: One can split � into two non-empty paths, α and β,
where neither path intersects itself. Because � is a circuit but
not a cycle, α and β intersect. Thus there exists v∩ ∈ α
where v∩ ∈ β. If there are multiple such vertices, let v∩ be
the one occurring earliest in α. Then α = α1v∩α2 and β =
β1v∩β2, where α1, α2, β1, and β2 are nonempty. Since v∩
is the earliest vertex in α that intersects with β, we have that
α1 and β are disjoint; in particular, α1 and β2 are disjoint.

We know that α1 is a path from some start vertex u to v∩
and that β2 is a path from v∩ back to u. Since α1 and β2 are
disjoint, α1β2 is a cycle, and |α1β2| < |�|.

Case I: w(α1β2) < 0. This trivially satisfies the claim.
Case II: w(α1β2) ≥ 0. Because w(α1β2) ≥ 0 and

w(�) < 0, we must have w(α2β1) < 0. Since α2 is a path
from v∩ to some vertex u′ �= u, and thus β1 is a path from
some vertex u′ to v∩, α2β1 is a circuit such that w(α2β1) <
0. Since neither α2 nor β1 contain u, |α2β1| < �. �

We now return to the proof of the theorem. Recall that we
have p and q such that pq is a circuit, and w(pq) < 0.

By the claim above, the presence of a negative circuit pq
implies that either p and q do not intersect, or that there ex-
ists a negative circuit p′q′ that has fewer vertices.

If p and q were not intersecting, pq would be a shorter
path than pcq, which violates the assumption that c contains
the shortest path. Thus, p and q do intersect. Therefore, there
exists a negative circuit p′q′ that has fewer vertices.

Since we can only shrink pq, p′q′, and so on in this fashion
a finite number of times, there must exist some negative cir-
cuit p∗q∗ where p∗ and q∗ do not intersect; so, the negative
circuit is a cycle.

5 Experiments

We experimentally compare our new branch-and-price-
based solver BNP-POLY (which has the modified, cor-
rected pricer of Glorie et al. (2014)) against the prior state-
of-the-art branch-and-price-based solver, BNP-DFS, due
to Abraham et al (2007), and the current state-of-the-art
constraint-generation-based solver, CG-TSP, due to Ander-
son et al. (2015b). On each problem instance, each solver
was given access to 28GB of RAM, 4 cores, and 60 minutes
of wall time. (Timeouts are counted—conservatively against
our solver as will become clear—as 60 minutes toward run-
time averages.) The cycle cap was set to 3, as is almost ubiq-
uitous in practice (also at UNOS). We varied the chain cap.

Real UNOS match runs. We first test on real data from
the United Network for Organ Sharing (UNOS) nationwide
kidney exchange, which now contains 143 transplant cen-
ters, that is, 60% of all transplant centers in the US. The
164 match runs on which we test range from October 2010
to November 2014, during which the exchange grew from
around 70 patient-donor pairs and altruists to almost 200.

Figure 3 shows mean time to completion for each of the
three solvers. All three easily solve instances for chain caps
at or below 5; however CG-TSP begins to struggle at chain
caps above 5, and even times out on one instance. BNP-
DFS remains competitive with BNP-POLY until a chain cap
of 9, at which point its exhaustive DFS to solve the pricing
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problem begins to add substantial runtime cost. BNP-POLY
solves all instances extremely quickly.
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Figure 3: Mean runtime for BNP-DFS, BNP-POLY, and
CG-TSP on the first 164 UNOS exchange match runs.

Generated UNOS data. At the time of writing, the two
largest kidney exchanges—UNOS and the National Kidney
Registry6—each contain around 300 patient-donor pairs and
altruist donors. To test on large numbers of instances with
300 vertices, we generated demographically-accurate prob-
lem instances by sampling the set of all pairs and altruists
who had entered the UNOS exchange by Nov. 2014. All gen-
erated instances are unweighted, since it is not clear how to
generate weights for edges that did not exist in reality. In
the following figures, each data point averages over 50 in-
stances. Each algorithm was run on the same instances.

Figure 4 shows run time for increasing numbers of altru-
ists |A| and chain caps. In general, higher chain caps tend to
increase problem difficulty for all solvers (although in some
examples, such as |P | = 300 and |A| = 75, we observed
an interior hardness peak as a function of chain cap for CG-
TSP). BNP-DFS and CG-TSP timed out on instances with
just 3 altruists and a chain cap of 5. BNP-POLY beat both of
those prior solvers (with respect to timeouts and runtime).

Figure 5 again shows that BNP-POLY is clearly faster
and has fewer timeouts than BNP-DFS and CG-TSP. With
an interior number of altruists in the pool, all algorithms
take non-negligible time. For very large |A|, BNP-POLY
solves instances more quickly than for a medium number.
We conjecture that this is because good upper bounds are
reached quickly in the branch-and-bound tree, since with
large |A| the best feasible solution matches all pairs and thus
meets the upper bound that is computed without cycle or
chain caps.7 BNP-DFS will have these same bounds, but the
exponential-time pricing problem takes substantially longer
due to a (potentially necessary) crawl of a large number of
chains. With large numbers of altruists, BNP-POLY is fast
while the other solvers time out on essentially all instances.

When there is no chain cap, experiments show that CG-
TSP tends to significantly outperform other solvers. How-
ever, as explained earlier in the paper, the very long chains it
generates in that setting typically fail to execute in practice.

6http://www.kidneyregistry.org
7This can be solved in polynomial time using maximum-

weighted matching (Abraham, Blum, and Sandholm 2007)

6 Conclusions & Future Research

In this paper, we built a fast clearing engine to optimally
solve the maximum-cardinality and maximum-weight kid-
ney exchange problems. First, we identified a bug in the
state-of-the-art algorithm, proposed a fix, and proved its cor-
rectness. We incorporated this fixed method and other per-
formance improvements into a prior branch-and-price-based
integer program solver. Motivated by our experience with
the UNOS kidney exchange which, like other exchanges,
uses cycles and chains with finite caps, we then tested our
solver against the leading constraint-generation-based solver
and a prior state-of-the-art branch-and-price solver. On both
real data from the UNOS exchange and realistic simulated
data, for realistic cycle and chain caps, our solver signifi-
cantly outperforms both prior state-of-the-art solvers—often
optimally clearing instances that the other solvers cannot.

Beyond being able to support growing practical pools
and desired chain caps, faster clearing algorithms enable
more expressive—thus more realistic—models of kidney
exchange to be solved and deployed. Batch solvers also
serve as the innermost engine in dynamic kidney exchange
frameworks—all of which struggle with computational
complexity even at very small exchange sizes (Awasthi
and Sandholm 2009; Dickerson, Procaccia, and Sandholm
2012a; Dickerson and Sandholm 2015); taking exchange dy-
namics (vertex entrance/departure, edge failure, and so on)
into account would result in substantial gains in theory and
practice, making this a promising research direction (Ünver
2010; Blum et al. 2013; Akbarpour, Li, and Gharan 2014;
Blum et al. 2015; Anderson et al. 2015a). Adaptations of
our solver could also be used to clear exchanges with dif-
ferent logistical constraints, e.g., lung (Ergin, Sönmez, and
Ünver 2014; Luo and Tang 2015), liver, and cross-organ ex-
changes (Dickerson and Sandholm 2016).
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