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Abstract

We study the societal tradeoffs problem, where a set of vot-
ers each submit their ideal tradeoff value between each pair
of activities (e.g., “using a gallon of gasoline is as bad as cre-
ating 2 bags of landfill trash”), and these are then aggregated
into the societal tradeoff vector using a rule. We introduce the
family of distance-based rules and show that these can be jus-
tified as maximum likelihood estimators of the truth. Within
this family, we single out the logarithmic distance-based rule
as especially appealing based on a social-choice-theoretic ax-
iomatization. We give an efficient algorithm for executing this
rule as well as an approximate hill climbing algorithm, and
evaluate these experimentally.

Introduction

There are many actions that we take in life that are generally
agreed to have some negative effects on society. For exam-
ple, consider actions with environmental downsides, such as
using gasoline, creating landfill trash, and clearing forest, to
name a few. Which of these is worse? To answer this, clearly
one would first need to know how much gasoline is used,
etc. This then suggests the following type of question: how
many bags of trash are as bad as using one gallon of gaso-
line? Knowing the answer to this question could be useful
to policy makers as well as to socially minded individuals
or companies who are looking to reduce their environmental
footprint in the most efficient way. However, since the envi-
ronmental effects of these actions are different, it seems un-
likely that an objective answer to this question exists. Rather,
we as a society need to collectively decide what these trade-
offs should be, based on our own subjective opinions.

This suggests a social-choice-theoretic approach, where
agents submit their preferences or opinions about what these
tradeoff values should be as a vote. This social choice prob-
lem was suggested by Conitzer, Brill, and Freeman (2015)
in an AAMAS 2015 Blue Sky paper. It has close con-
ceptual ties to judgment aggregation (List and Pettit 2002;
Endriss 2015), where the assessments of multiple judges are
aggregated into a logically consistent social judgment. One
difference is that here the assessments are quantitative rather
than logical in nature. Specifically, we assume that each
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voter expresses for each pair of activities her ideal tradeoff
value between those two. For example, a voter may feel that
a gallon of gasoline corresponds to two bags of trash.

From a social-choice-theoretic viewpoint, when aggregat-
ing numbers, one submitted per voter, choosing the median
is particularly compelling. When preferences are single-
peaked, this results in choosing the Condorcet winner, and
the corresponding voting rule is group-strategyproof. How-
ever, Conitzer, Brill, and Freeman (2015) pointed out that
simply taking the median for each pair of activities can result
in the aggregate tradeoffs being inconsistent, in the sense
that the chosen tradeoff between a and c is not equal to the
product of the tradeoff between a and b and the tradeoff be-
tween b and c. See the example in Figure 1, where a voter’s
tradeoffs are represented by a graph with its edges labeled
with tradeoff values (e.g., voter 1 believes a gallon of gaso-
line is as bad as 2 bags of trash). This paradox is reminiscent
of judgment aggregation paradoxes where taking majority
on all individual issues results in a logically inconsistent ag-
gregate judgment (Kornhauser and Sager 1993).

So what are we to do? We insist that the aggregate trade-
offs be consistent; if not, then it is not clear how to use them
to guide decisions involving three or more activities. That
means we must judiciously deviate from the median in some
cases, but presumably we want to deviate as little as possi-
ble. The topic of this paper is how to make this precise.

We introduce a class of rules for this context that we call
distance-based rules. We prove that these rules choose the
median when there are only two activities and can be inter-
preted as maximum likelihood estimators of the “truth.” We
also axiomatize this class of rules. We then focus our atten-
tion on a particularly natural rule within this class, namely
the logarithmic distance-based rule, and show it satisfies fur-
ther nice properties, which allow us to also axiomatize it
specifically. We give a linear program formulation for com-
puting its outcomes, as well as a simple hill-climbing algo-
rithm that can get stuck in local optima but is surprisingly
effective in experiments. Generally, our positive results hold
even when agents submit inconsistent votes and our negative
results hold even when they submit consistent votes.

Preliminaries

Let A be a finite set of activities and N = {1, . . . , n} a
finite set of voters. Let E be a set of ordered pairs such that
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Figure 1: Example from Conitzer, Brill, and Freeman (2015) that illustrates that taking the median on each edge can lead to
inconsistent outcomes even when each individual voter is consistent. Each of the left three graphs illustrates the consistent
preferences of a single voter, with the label on each edge indicating the voters ideal tradeoff between the corresponding two
activities. The rightmost graph, which results from taking the median on each edge, is inconsistent because 300 �= 2 · 200.

for every pair a, b ∈ A, either (a, b) ∈ E or (b, a) ∈ E,
but not both. For i ∈ N , let tabi denote voter i’s preferred
tradeoff value between activities a and b, and let tab denote a
(potential) aggregate (societal) tradeoff value between a and
b. Let ti = (tabi )(a,b)∈E denote the vector of all i’s preferred
tradeoff values (i’s vote) and t = (tab)(a,b)∈E a (potential)
aggregate tradeoff vector. A profile P is a collection of n
votes (one for each voter).

We assume that all tradeoff values are positive real
numbers. A tradeoff vector t is consistent if for all
(a, b), (b, c), (a, c) ∈ E, tabtbc = tac, and for all
(a, b), (b, c), (c, a) ∈ E, tabtbc = 1/tca. A tradeoff rule f
is a function that maps each profile P to a non-empty set
of consistent tradeoff vectors f(P ). Note that we do not as-
sume votes to be consistent.

An example rule

In this section, we introduce an example tradeoff rule. It
is arguably the simplest way to obtain a variant of the Ke-
meny rule (Kemeny 1959) for this domain. However, as we
will show, it has some very undesirable properties. This will
help to motivate the rule that we introduce later in the paper,
which avoids these undesirable properties.

Definition 1 (Linear Distance Based Rule (DBRlinear)
The linear distance between two tradeoff vectors t1 and t2
is dlinear(t1, t2) =

∑
(a,b)∈E |tab1 − tab2 |. The score of a

(potential) aggregate tradeoff vector t relative to votes
(ti)i∈N is

∑
i∈N dlinear(t, ti). The tradeoff rule DBRlinear

chooses the tradeoff vector(s) with minimum score.

For example, if we apply this rule to the profile from Fig-
ure 1, we obtain the aggregate tradeoff vector in Figure 2.
Intuitively, the rule chooses to agree with the median on the
edges with larger values, because it is more costly to dis-
agree there; instead, it disagrees with the median on the bot-
tom edge. One nice property of DBRlinear is that when there
are only two activities, it necessarily chooses the median.
(We will prove a more general result as Proposition 2.)

Unfortunately, the rule has some undesirable properties.
Suppose we change the units on the forest clearing activ-
ity by a factor of 10,000 (say, we were using m2 before
and are now using cm2). Then naturally, the voters’ ideal
tradeoffs on these edges should change accordingly. Unfor-
tunately, as illustrated in Figure 3, this changes the outcome
of DBRlinear, even on the unrelated edge from gasoline to
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Figure 2: Aggregate tradeoff vector from applying DBRlinear

to the example from Figure 1. There is a disagreement of
100 with each of voters 1 and 2 on the forest-gasoline edge;
a disagreement of 100 with voter 1 and 300 with voter 3 on
the forest-trash edge; and a disagreement of 1/2 with voters
1 and 2, and 3/2 with voter 3 on the gasoline-trash edge. The
total disagreement is thus 602.5, which is minimal.

trash! Intuitively, the reason is that which edges are im-
portant has changed due to the change in units, so now it
chooses to agree with the median on the bottom edge. A sim-
ilar problem occurs if instead of changing units, we change
the direction of some of the edges. For instance, if we re-
verse the edges incident to the “forest” node in the exam-
ple in Figure 1 a vote for an ideal tradeoff of (say) 200 on
such an edge would become 1/200 on the reversed edge.
Hence, again the bottom edge would end up with the largest
numbers, and DBRlinear will again choose to agree with the
median there. These shortcomings of DBRlinear can be for-
malized as follows.

Definition 2 (ICU) A tradeoff rule f satisfies independence
of choice of units (ICU) if the following holds. Consider an
arbitrary profile (ti)i∈N and let a be an arbitrary activity
and k a constant. Let μ be a function modifying tradeoff vec-
tors as follows. For every edge (a, b), μ(t)ab = k·tab; for ev-
ery edge (b, a), μ(t)ba = k−1 · tba; and for every edge (b, c)
with a /∈ {b, c}, μ(t)bc = tbc. Then μ(f(t1, . . . , tn)) =
f(μ(t1), . . . , μ(tn)).1

Definition 3 (IED) A tradeoff rule f satisfies independence
of edge directions (IED) if the following holds. Consider an
arbitrary profile (ti)i∈N and let (a, b) be an arbitrary edge.
Let μ be a function transforming tradeoff vectors to the mod-
ified graph where the edge (a, b) is replaced by (b, a), in
the natural way—that is, μ(t)ba = 1/tab and μ(t)cd = tcd

for all other (unmodified) edges. Then μ(f(t1, . . . , tn)) =
f(μ(t1), . . . , μ(tn)).

1Note that technically, f is set-valued, so μ is applied to a set
of tradeoff vectors, in the natural way.
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Figure 3: Example illustrating that a change of units can change the outcome on an unrelated edge under DBRlinear. The leftmost
three graphs are the votes and the rightmost one is the outcome produced by DBRlinear.

Proposition 1 DBRlinear violates both ICU and IED.

A more general class of rules

We now introduce a broader class of tradeoff rules.

Definition 4 A distance-based rule (DBR) is defined by a
function g : R → R. The g-distance between two tradeoff
vectors t1 and t2 is dg(t1, t2) =

∑
(a,b) |g(tab1 ) − g(tab2 )|.

The score of a (potential) aggregate tradeoff vector t rel-
ative to votes t1, . . . , tn is

∑
i d

g(t, ti). DBRg chooses the
tradeoff vector(s) with minimum score.

We now show that these rules always select the median.
(For simplicity, we will only consider the case where the
number of voters is odd, but the result extends naturally to
even numbers. For our axiomatic results involving the me-
dian later, we only need profiles with odd numbers.)

Proposition 2 For any strictly monotone function g, when
there are only two activities, DBRg chooses the median
uniquely.

Proof: Let A = {a, b} and consider the edge (a, b). Con-
sider some potential aggregate tradeoff value tab that is
(without loss of generality) strictly less than the median
tabmed = med(tab1 , . . . , tabn ). For every voter i with tabi ≥
tabmed, we have |g(tabmed) − g(tabi )| = |g(tab) − g(tabi )| −
|g(tabmed)−g(tab)|. For every voter i with tabi < tabmed, we have
|g(tabmed)− g(tabi )| ≤ |g(tab)− g(tabi )|+ |g(tabmed)− g(tab)|.
Because there is at least one more voter in the former cat-
egory than the latter, it follows that the total score for tabmed
is at most the total score for tab, minus |g(tabmed) − g(tab)|.
Because g is strictly monotone, tabmed obtains a strictly lower
score than tab.

MLE interpretation of distance-based rules

In this section, we show that every distance-based rule
can be interpreted as a maximum likelihood estimator of
the “correct” tradeoff vector. The interpretation of voting
rules as maximum likelihood estimators of the “truth” can
be said to date back to Condorcet ((de Condorcet 1785));
Young (1988; 1995) later made this more precise. The as-
sumption is that there is an unobserved correct ranking of
the alternatives, and every voter’s vote (also a ranking) is
a noisy observation of this correct ranking. Then, we can
set ourselves the goal of choosing as the aggregate rank-
ing a statistical estimate of the truth, given the votes. It
is natural to choose the maximum likelihood estimate, and

Young showed that for a particular noise model the Ke-
meny ranking (1959) coincides with the maximum likeli-
hood estimate. Other noise models result in MLEs that co-
incide with other voting rules (Drissi-Bakhkhat and Tru-
chon 2004; Conitzer and Sandholm 2005; Truchon 2008;
Conitzer, Rognlie, and Xia 2009).

Analogously, in our setting, we assume that there exists
an unobserved “correct” tradeoff vector, and the votes are
noisy observations of this correct vector. We consider the
following specific family of noise models:

Definition 5 Let ttrue denote the correct tradeoff vector. For
a function g : R → R, let P ttrue

g denote the following dis-
tribution over votes. Each agent’s vote is drawn i.i.d. More-
over, each agent i draws its ideal tradeoffs tabi independently
across edges. Finally, let the probability of a specific value
tabi be proportional to e−|g(tab

true)−g(tab
i )|.

Because tradeoffs are drawn i.i.d. across edges in this
model, it will generally not produce consistent votes. This
will not matter for our purposes; we can either consider this
a feature and treat it as a remarkable accident when voters
are in fact consistent, or we can remove the probability on
inconsistent votes and renormalize on the consistent votes.2
We next show that this family produces the distance-based
rules as MLEs.

Proposition 3 DBRg is the MLE for P ttrue
g .

Proof: The MLE for the distribution P ttrue
g selects

argmax
∏

i

∏
ab e

−|g(tab
true)−g(tab

i )|. Taking the loga-
rithm results in argmax

∑
i

∑
ab −|g(tabtrue) − g(tabi )| =

argmin
∑

i

∑
ab |g(tabtrue)− g(tabi )|, which is also chosen by

DBRg .

Characterization of distance-based rules

In this section, we give an axiomatic justification for the
class of distance-based rules. We first show that mono-
tonicity of g is necessary for selecting the median in two-
alternative cases.

Proposition 4 If DBRg always uniquely selects the median
in profiles with two activities, then g is strictly monotone.

Proof: Suppose that g is not strictly monotone. There are
several cases; all are similar and we present only one here.

2This is entirely similar to the fact that the simplest way to spec-
ify a noise model that produces the Kemeny rule as the MLE is to
allow cyclical preferences.
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Suppose there exist x < y < z with g(x) ≥ g(z) ≥ g(y).
Consider a profile with three voters, tab1 = x, tab2 = y, and
tab3 = z. Setting tab = z gives total score |g(z) − g(x)| +
|g(z) − g(y)| = g(x) − g(y). Setting tab = y gives total
score |g(y)−g(x)|+ |g(y)−g(z)| = g(x)+g(z)−2g(y) ≥
g(x) − g(y), so tab = z achieves at least as low a score as
tab = y = tabmed. Thus tabmed is not uniquely chosen.

By a similar argument, if DBRg always selects the median
(but sometimes not uniquely), then g is weakly monotone.

For the rest of this section, we will take a slightly different
view of tradeoff rules, to facilitate the introduction of certain
axioms. Let h be a function that takes as input a profile of
votes and a tradeoff vector and outputs a nonnegative real
number. Further, suppose that h takes value 0 whenever the
tradeoff vector exactly matches every vote. We say that h
represents tradeoff rule f if, for every profile P , f(P ) con-
sists exactly of the aggregate tradeoff vectors that minimize
the function h(P, ·). We note that every unanimous3 trade-
off rule is represented by at least one such h: simply define
h(P, t) = 0 whenever t ∈ f(P ) and h(P, t) = 1 otherwise.
MLE interpretations of rules such as the one given earlier
also naturally provide such a score function: see the proof of
Proposition 3. Next we show that, subject to two natural con-
ditions, strictly monotone distance-based rules are the only
tradeoff rules that choose the median when there are only
two activities.

Definition 6 (Agent Separability) A function h satisfies
agent separability if h(P, t) =

∑
i∈N h(ti, t) for all profiles

P and tradeoff vectors t.

Agent separability implies anonymity, i.e., all voters are
treated equally. Under an MLE interpretation, this axiom
would correspond to the assumption that votes are drawn
independently (conditional on the truth).

Definition 7 (Edge Separability) For a profile P and a
tradeoff vector t, let P ab = {tab1 , . . . , tabn }. A function h sat-
isfies edge separability if h(P, t) =

∑
(a,b)∈E h(P ab, tab)

for all profiles P and tradeoff vectors t.

Edge separability implies a kind of neutrality, i.e., all
edges are treated equally. Under an MLE interpretation, this
axiom would correspond to the assumption that the trade-
offs on each edge are drawn independently (conditional on
the truth).

Theorem 1 Let f be a tradeoff rule that is represented by
function h satisfying agent separability and edge separabil-
ity, and suppose f uniquely selects the median when there
are only two activities. Then f = DBRg for some strictly
monotone function g.

Proof: To determine f , we need to specify some func-
tion h that represents f . By agent separability, h(P, t) =∑

i∈N h(ti, t) for all P and t, so it is sufficient to spec-
ify h(ti, t) for every possible vote ti and tradeoff vector t.
By edge separability, h(ti, t) =

∑
(a,b)∈E h(tabi , tab), so we

need only specify the value of h when passed a single vote
3A unanimous rule is one that selects tradeoff vector t (possibly

among others) when all votes agree exactly, i.e. t1 = . . . = tn = t.

on a single edge (i.e., a voter’s ideal tradeoff for that edge)
and a single candidate tradeoff for that edge. For ease of
notation, we will write h(x, y) where x is a vote and y a
candidate tradeoff value (note that the value of h(tabi , tab)
does not depend on the voter i or on the edge (a, b)), and
x, y ∈ R≥0. Note that h(x, x) = 0 by our assumption on h.

Suppose that f uniquely selects the median when there are
only two alternatives. We first show that h(x, y) = h(y, x)
for all x, y. For contradiction, suppose not. Then with-
out loss of generality there exist x, y such that h(x, y) <
h(y, x). Therefore there exists some n such that (n +
1)h(x, y) < nh(y, x). Consider a two-alternative profile
P on A = {a, b}, where n + 1 voters have tabi = x and
n voters have tabi = y. We have h(P, x) = nh(y, x) >
(n+ 1)h(x, y) = h(P, y). Thus x = tabmed /∈ f(P ), a contra-
diction.

Next we show that for all x ≤ y ≤ z, h(x, y) + h(y, z) =
h(x, z). Suppose that h(x, y) + h(y, z) > h(x, z) for some
x ≤ y ≤ z. Then there exists n such that nh(x, y) +
nh(y, z) > nh(x, z) + h(y, z). Consider a profile P with n
voters with tabi = x, n voters with tabi = z, and 1 voter with
tabi = y. Then tabmed = y but h(P, z) = nh(x, z) + h(y, z) <
nh(x, y) + nh(y, z) = h(P, y), so y /∈ f(P ). Suppose next
that h(x, y) + h(y, z) < h(x, z). Then there exists n such
that (n+1)h(x, y)+nh(y, z) < nh(x, z). Consider profile
P with n+1 voters with tabi = x and n voters with tabi = z.
We have h(P, y) = (n+1)h(x, y)+nh(y, z) < nh(x, z) =
h(P, x). Thus x = tabmed /∈ f(P ), a contradiction.

We can now express f as a distance based rule. Define

g(x) :=

{
h(1, x) : x ≥ 1
−h(1, x) : x < 1

Using the “triangle equality” derived above, we now show
that h(x, y) = |g(x) − g(y)| for all x, y. There are several
cases.
Case 1: 1 < x < y. Then |g(x)− g(y)| = |g(y)− g(x)| =
|h(1, y)− h(1, x)| = h(x, y) = h(y, x).
Case 2: x < 1 < y. Then |g(x)− g(y)| = |g(y)− g(x)| =
|h(1, y)+h(1, x)| = h(1, y)+h(x, 1) = h(x, y) = h(y, x).
Case 3: x < y < 1. Then |g(x)− g(y)| = |g(y)− g(x)| =
| − h(1, y) + h(1, x)| = h(x, 1) − h(y, 1) = h(x, y) =
h(y, x).

By the definition of h, tradeoff rule f minimizes
h(P, t) =

∑
i∈N h(ti, t) =

∑
i∈N

∑
(a,b)∈E h(tabi , tab) =∑

i∈N

∑
(a,b)∈E |g(tabi )− g(tab)|, therefore f = DBRg . By

Proposition 4, g must be strictly monotone as f uniquely
chooses the median on two activities.

The logarithmic distance based rule

We will be particularly interested in the logarithmic distance
based rule, where g = log.

Proposition 5 DBRlog is the same regardless of the base of
the logarithm.

Proof: Consider two different bases α and β; we have that
logα(x) = logβ(x)·logα(β). Because logα(β) is a constant,
the score of any aggregate tradeoff will only be changed by
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a constant when we change the base of the logarithm.

Proposition 6 DBRlog satisfies ICU and IED.

Proof: We have | log(k · tab) − log(k · tabi )| = | log k +
log(tab)− log k− log(tabi )| = | log(tab)− log(tabi )|. There-
fore, if we perform a change of units (both on the votes and
the aggregate tradeoff vectors), no scores change, and hence
outcomes remain the same. Similarly, we have | log(1/tab)−
log(1/tabi )| = | − log(tab) + log(tabi )| = | log(tab) −
log(tabi )|. Therefore, if we change the direction of an edge
(both in the votes and the aggregate tradeoff vectors), no
scores change, and hence outcomes remain the same.

We now consider a slightly stronger version of ICU that
makes sense for the class of distance-based rules. It states
that the score on any single edge should be independent of
the units chosen for that edge.

Definition 8 (Strong ICU) A distance-based rule DBRg

satisfies strong ICU if, for all k, x, y ∈ R
+, |g(kx) −

g(ky)| = |g(x)− g(y)|.
It is clear that strong ICU implies ICU, since under strong

ICU any change of units can not change the score on even
a single edge. It remains an open problem whether the con-
verse holds, in general. However, we show that under the
condition that the derivative g′ is bounded below and above
on any closed interval, strong ICU is equivalent to ICU.

Lemma 1 Let g : R
+ → R be a strictly monotone, dif-

ferentiable function. Suppose that for any closed interval
[p, q] ⊆ R

+, there exist c, C with 0 < c < C such that
c < g′(x) < C for all x ∈ [p, q]. If DBRg satisfies ICU then
DBRg satisfies strong ICU.

Proof: Let g satisfy the conditions of the lemma statement.
We will suppose without loss of generality that g is (strictly)
increasing. Suppose that DBRg fails Strong ICU; that is
|g(kx)−g(ky)| �= |g(x)−g(y)| for some k, x, y, and (with-
out loss of generality) that x > y, and therefore g(x) > g(y)
and g(kx) > g(ky). Let c, C be the lower and upper bounds
on g′ for the interval [1, kx]. Let n be sufficiently large such
that 2nc− (C x

y + Cx) > 0.
We exhibit an instance of the societal tradeoff problem on

which DBRg fails ICU. Consider three activities a, b, c and
2n+ 1 voters who cast the following votes:

n × tabi = 1, tbci = x, taci = x

n × tabi = 1, tbci = y, taci = y

1 × tabi =
x

y
, tbci = y, taci = x

We first determine the aggregate tradeoff(s) output by
DBRg on this instance. Observe that such a tradeoff t sat-
isfies tab ∈ [1, x

y ], for the following reason. If tab > x
y then

either tbc < y or tac > x. We can decrease the score of t by
adjusting tab towards tabmed = 1 and simultaneously increas-
ing tbc towards tbcmed = y (in the former case), or decreasing
tac towards tacmed = x (in the latter case). If tac < 1 then
tbc > tac and we can decrease the score by increasing tab

towards tabmed = 1 while simultaneously either decreasing tbc

(if tbc > y) or increasing tac (if tac < x). It can be verified
that at least one of these conditions is guaranteed to be true
by the relations x > y and tbc > tac. Given that tab ∈ [1, x

y ],
it is also easy to check that tbc, tac ∈ [y, x].

We now show that in fact tab = 1. For contradiction, sup-
pose instead that tab > 1 and consider scaling it by some
factor ε with 1

tab < ε < 1 (that is, we shift tab towards 1
by some absolute amount that is between ε and εxy , depend-
ing on the value of tab). For the 2n voters with tabi = 1, the
distance dg(tabi , tab) decreases by at least cε, by the lower
bound on g′. For the single voter with tabi = x

y , the distance
dg(tabi , tab) increases by at most Cεxy , by the upper bound
on g′. Thus the change in the score on edge (a, b) is at most
−2ncε+ Cεxy .

By the consistency constraint, scaling tab by ε requires
scaling tbc and/or tac so that tabtbc = tac. We will scale tac

by ε and obtain an upper bound on the change in score as a
result (there are other possiblities here, but we only need to
exhibit a single tradeoff vector with lower score than t, so
we are free to consider only one case). The scaling results in
an absolute change in tac of at most εx. Note that the change
in score on this edge for the first n voters is exactly canceled
by the change in score for the second set of n voters. So
we need only consider the last voter, for whom the distance
dg(taci , tac) increases by at most Cεx. Therefore, the total
change is at most −2ncε + Cεxy + Cεx, which is less than
zero by the choice of n. Thus no value tab > 1 is optimal.

By consistency, tab = 1 implies that tbc = tac. We note
that as long as tbc ∈ [x, y], the resulting tradeoff vector is op-
timal. The sum of scores on the two edges is exactly equal
to (2n+ 1)|g(x)− g(y)|. Therefore DBRg outputs a tie be-
tween the tradeoff vectors tab = 1, tbc = x, tac = x and
tab = 1, tbc = y, tac = y (among others).

We can now prove that DBRg fails ICU by showing that
the output changes when we consider a change of units ap-
plied to activity a with constant k. In particular, one of the
two tradeoff vectors specified in the previous paragraph (ad-
justed for change of units) will no longer be chosen. The
score of tradeoff tab = k, tbc = x, tac = kx is now
|g(kxy )− g(k)|+ (n+1)|g(x)− g(y)|+n|g(kx)− g(ky)|,
and the score of tradeoff tab = k, tbc = y, tac = ky is
|g(kxy )− g(k)|+n|g(y)− g(x)|+ (n+1)|g(ky)− g(kx)|.
The difference in the two scores is

|g(ky)− g(kx)| − |g(x)− g(y)| �= 0

so there is no longer a tie between the two outcomes, and at
least one of them is no longer chosen by DBRg .

We are now able to uniquely characterize DBRlog.

Theorem 2 DBRlog is the only distance-based rule that sat-
isfies strong ICU and uniquely selects the median when there
are only two activities.

Proof: By Proposition 4, it is sufficient to show that the
logarithm is the only strictly monotone function satisfying
|g(kx) − g(ky)| = |g(x) − g(y)| for all k, x, y ∈ R

+. Let
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Figure 4: Example illustrating the additive variant. The leftmost three graphs are the votes and the rightmost one is an outcome
produced by the linear distance-based rule with an objective value of 70.

g be a function with this property and assume (without loss
of generality) that x > y. Rearranging, g(kx) − g(x) =
g(ky) − g(y) = ck for all x, y ∈ R

+ and some constant ck
that depends on k. So

g(kx) = g(x)+ck⇒ g(k) = g(1)+ck ⇒ ck = g(k)−g(1).

We may assume that g(1) = 0, since any distance-based
rule is unchanged by the addition of a constant to g. So the
condition reduces to

g(kx) = g(x) + g(k)

for all x, k ∈ R
+. The only strictly monotone functions sat-

isfying this condition have the form g(x) = c log(x) for
c ∈ R (see, e.g., Smı́tal, 1988, for a proof of this well known
fact). The result follows by observing that DBRg = DBRcg ,
which leaves us with only the rule DBRlog.

The following corollary follows directly from Lemma 1
and Theorem 2.

Corollary 1 Let g be a strictly monotone, differentiable
function. Suppose that for any closed interval [p, q] ⊆
(0,∞), there exist c, C with 0 < c < C such that c <
g′(x) < C for all x ∈ [p, q]. Suppose moreover that DBRg

satisfies ICU. Then DBRg = DBRlog.

Can we efficiently compute outcomes under DBRlog? It
turns out that we can. In fact, it turns out that the logarithmic
transformation is actually helpful. Intuitively, the reason is
that once we apply logarithms to all tradeoff values, the con-
sistency constraint becomes additive. That is, tab · tbc = tac

is equivalent to log(tab) + log(tbc) = log(tac). To see more
precisely how this is helpful, we first discuss an additive
variant of our problem, which may be of independent in-
terest but whose primary purpose is to help us efficiently
compute outcomes under DBRlog.

An additive variant

Consider an additive variant of our problem, where we com-
pare activities by saying that a is x units “better” than b.
Then, the consistency constraint becomes that tac = tab +
tbc. Consider the example in Figure 4, in which, for instance,
agent 1 feels that watching basketball is 5 units more en-
joyable than watching football. In this case, we can again
define the linear distance based rule, based on the distance
dlinear(t1, t2) =

∑
(a,b) |tab1 − tab2 |. Unlike in the original

(multiplicative) context, in this additive context using the
linear distance seems to make sense – changing units does
not seem relevant, and changing the direction of an edge

only changes the sign of values on it, rather than their mag-
nitude, so the outcome remains unaffected. The rightmost
graph in Figure 4 gives an outcome produced by this rule.

As it turns out, in this variant we can solve for optimal
solutions (i.e., the outcomes produced by the rule) in poly-
nomial time, using a linear program. This linear program
contains a variable qa for each activity, representing the
aggregate quality of that activity. We will only be interested
in differences in qualities—e.g., qa − qb = tab—so we can
normalize an arbitrary one of the activities to have quality 0.
The linear program also contains variables dabi , denoting the
distance |tabi −qa+qb|. The linear program is then as follows:

minimize
∑

i∈N

∑
(a,b)∈E dabi

subject to dabi ≥ qa − qb − tabi (∀i, a, b)
dabi ≥ tabi − qa + qb (∀i, a, b)

Instead of solving the LP directly, there is also a natu-
ral hill-climbing approach. This involves initializing the qa
variables arbitrarily and then checking them individually to
see whether it can be changed to a value that increases the
objective. This check has a nice social-choice-theoretic in-
terpretation, as follows. Consider some activity a. Then, for
any b �= a and voter i, define the implied vote by (i, b) on a
to be tabi + qb (or qb − tbai ), where qb is the current setting
for b. The reason is that if qa is set to this value, then there
will be no disagreement with tabi ; more generally, the dis-
agreement with tabi resulting from setting qa to a value will
be the distance of that value to the implied vote. Hence, the
overall objective value will be maximally improved by set-
ting qa to the median of these implied votes. (Note that the
number of implied votes may be even even if the number of
agents is odd, in which case any value between the left and
right medians will be optimal.)

Executing DBRlog via the additive model

As it turns out, an algorithm for the additive model (with
linear distance) will allow us to directly solve the orginal
(multiplicative) model (with logarithmic distance) using a
simple transformation. We simply take the logarithm of each
tabi to obtain t̂abi = ln(tabi ), run an algorithm for the additive
model to obtain optimal values t̂ab, and exponentiate back
to obtain tab = et̂

ab

.

Proposition 7 When using an exact solver for the additive
model, the procedure described above results in an optimal
solution for DBRlog.
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Figure 5: Runtime comparison for different algorithms and distributions over vote profiles. The prefixes “uniform,” “spanning,”
and “noise” specify how votes are generated. The suffixes “GLPK,” “greedy,” and “median” specify the algorithms: GLPK is
the optimal LP solver (using the GNU linear programming kit), greedy is the hill-climbing algorithm, and median simply picks
a random spanning tree of activities and uses the median rule for each spanning tree edge.

Proof: We first observe that when tab = et̂
ab

, t is consistent
in the multiplicative model if and only if t̂ is consistent in the
additive model. This follows simply from the fact that tac =
tabtbc ⇔ et̂

ac

= et̂
ab

et̂
bc

= et̂
ab+t̂bc ⇔ t̂ac = t̂ab + t̂bc.

Furthermore, the objective value of t in the multiplicative
model is the same as that of t̂ in the additive model. This
is because | ln(tab) − ln(tabi )| = | ln(et̂ab

) − ln(et̂
ab
i )| =

|t̂ab − t̂abi |, so each term in the summation of the objective
value is the same.

Because linear programs can be solved in polynomial
time (Khachiyan 1979), we immediately obtain:

Corollary 2 We can solve for an outcome under DBRlog in
polynomial time.

Of course, we can also use the hill-climbing algorithm de-
scribed in the previous section to the transformed instance
and then transform it back to the multiplicative model to ob-
tain a (possibly suboptimal) solution.

Experiments

We generated three classes of voting profiles and compare
the different algorithms’ performances in terms of running
time, penalty (LP’s objective), and the distance between the
aggregated result and the ground truth (if there is one).

For the first class of voting profile (uniform), each vote is
generated as follows. For every pair of activities, we draw a
number x ∈ [−1, 1] uniformly at random and let the voter’s
tradeoff between two activities be ex. Note that this gener-
ally generates inconsistent votes.

For the second class (spanning), which generates consis-
tent votes, each vote is generated by first generating a ran-
dom spanning tree among activities. Then, for each pair of
activities that forms a spanning tree edge, we draw a number
x ∈ [−1, 1] uniformly at random and let the voter’s trade-
off between those two activities be ex. Finally, we use those
spanning tree edges and the consistency constraint to infer

the relationships between pairs of activities that do not form
a spanning tree edge.

For the third class (noise), we first sample a ground truth
quality qa, uniformly at random between −10 and 10 for
each activity a. Then for each voter i, we draw noise δai from
a normal distribution with mean 0 and standard deviation 1
for each activity. We then let the tradeoff between two activ-
ities a and b be eqa+δai /eqb+δbi for that voter.

Results are shown in Figures 5 and 6. Particularly notable
is the performance of the hill-climbing algorithm, whose so-
lution quality in the experiments is indistinguishable from
that of the LP, while being significantly faster. This is in
spite of it being naı̈vely initialized to 0 and not using random
restarts. We have manually constructed an example where
hill climbing gets stuck at a local optimum (and verified this
with our code), but it appears such instances do not get gen-
erated in the experiments.

Conclusion

We believe we have made a very strong case for the loga-
rithmic distance-based rule. We have shown that it uniquely
satisfies some very desirable properties and can be executed
efficiently. Some practical issues would likely need to be ad-
dressed before real deployment. For example, one concern
may be that agents would have a hard time providing ex-
act ideal tradeoff values; they may, for example, be more
comfortable reporting an interval for each edge. Farfel and
Conitzer (2011) propose aggregating intervals by taking the
median of the lower bounds and the median of the upper
bounds; similarly, we could aggregate lower bounds and up-
per bounds separately. Various other practical issues are dis-
cussed by Conitzer, Brill, and Freeman (2015). Still, we be-
lieve that the identification of this rule and algorithms for
computing it represent a major step forward in this agenda.

We believe this work also generates appealing theoretical
questions. Can we say something about the structure of the
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Figure 6: Performance comparison for different algorithms and distributions over vote profiles. “Penalty” is the sum of dis-
agreement between the aggregated tradeoff and all votes (our LP objective):

∑
i∈N

∑
(a,b)∈E | log(tab) − log(tabi )|. For the

noise case, we use distance to the ground truth instead of penalty. “Distance” is n · |(qa − qb)− log(tabi )| where q is the ground
truth (after the log adjustment). We multiply the difference by the number of voters n so that it has the same scale as penalty.

solutions generated? (We have an example where the op-
timal solution does not coincide with the median on any
edge.) Can we explain the remarkable performance of the
hill-climbing algorithm? What about incentives for voters
to strategically misrepresent their ideal tradeoffs? Finally,
is the societal tradeoffs problem really just one of a larger
class of social-choice-theoretic problems? The additive vari-
ant suggests so, and one can imagine other variants. For ex-
ample, the voters may report what they perceive to be the
distances (i.e., dissimilarities) between the nodes, in which
case the consistency constraint may be a triangle inequality
on the distance.
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