
Personalized Alert Agent for Optimal User Performance

Avraham Shvartzon1, Amos Azaria2, Sarit Kraus1,
Claudia V. Goldman3, Joachim Meyer4 and Omer Tsimhoni3
1 Dept. of Computer Science, Bar-Ilan University, Ramat Gan 52900, Israel

2 Dept. of Machine Learning, Carnegie Mellon University, Pittsburgh, PA 15213
3 General Motors Advanced Technical Center, Herzliya 46725, Israel

4 Dept. of Industrial Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
{shvarta,sarit}@cs.biu.ac.il, azariaa@cs.cmu.edu, {claudia.goldman, omer.tsimhoni}@gm.com, jmeyer@tau.ac.il

Abstract

Preventive maintenance is essential for the smooth operation
of any equipment. Still, people occasionally do not main-
tain their equipment adequately. Maintenance alert systems
attempt to remind people to perform maintenance. However,
most of these systems do not provide alerts at the optimal
timing, and nor do they take into account the time required
for maintenance or compute the optimal timing for a specific
user. We model the problem of maintenance performance,
assuming maintenance is time consuming. We solve the op-
timal policy for the user, i.e., the optimal timing for a user to
perform maintenance. This optimal strategy depends on the
value of user’s time, and thus it may vary from user to user
and may change over time. Based on the solved optimal strat-
egy we present a personalized maintenance agent, which, de-
pending on the value of user’s time, provides alerts to the user
when she should perform maintenance. In an experiment us-
ing a spaceship computer game, we show that receiving alerts
from the personalized alert agent significantly improves user
performance.

Introduction

In our daily life we rely on various types of mechanical
equipment and electrical devices such as our computers,
cars or bicycles, smartphones, washing machines, dryers,
heating and air conditioning systems and so on. These de-
vices are very important to us, but they tend to malfunc-
tion occasionally, which can greatly disrupt our lives. Most
devices come with maintenance recommendations, which,
if followed, aim to decrease the probability and frequency
of such malfunctions. Unfortunately, performing mainte-
nance actions is both costly and time consuming. There-
fore many people fail to perform these maintenance actions
in a timely manner, and consequently they suffer the conse-
quences, when necessary devices suddenly malfunction (oc-
casionally when they are most needed).

This non-optimal behavior with regards to performing
maintenance may be attributed to the following reasons: 1.
Procrastination and forgetfulness: People are known to for-
get and procrastinate, especially in regard to tasks for which
the consequences are not immediately evident (Ariely and
Wertenbroch 2002; Weber 2006). Therefore, when it is time
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to perform a maintenance task (according to the user man-
ual), people often either forget or procrastinate. 2. Non-
optimal recommendations: Occasionally it is not optimal
for the user to perform all maintenance tasks as required
by the manual. Performing maintenance for all devices ac-
cording to their manual may be tedious and not cost effec-
tive. Users may actually benefit, in terms of time and cost,
from performing maintenance less often than requested by
the manual. 3. Non-personalized recommendations: The in-
structions which appear in manuals are not personalized and
thus do not account for people who have different values of
time or different costs associated with performing mainte-
nance and repairs. Therefore performing maintenance tasks
according to the manual may not be the optimal behavior for
a specific user.

In an attempt to increase people’s awareness to perform
maintenance, and solve the problem of procrastination and
forgetfulness, many devices include alert systems or re-
minders which recommend performing maintenance activ-
ities. For example, an air conditioning system may turn on
a warning light when it is recommended to change its fil-
ter. A car may have similar warning lights, which are set
to go on when an oil change or other periodic treatments
are recommended. There are also software programs which
alert users when a computer system has not been backed-up
for some time, recommending them to back-up their system.
Reminders and alerts have been shown to have a positive
impact on people’s tendency to perform a task (Barreau and
Nardi 1995).

We model the problem of providing maintenance alerts,
taking into account the fact that performing maintenance and
repairing malfunctions are both wealth and time consuming.
Inspired by the Bellman Equation, we solve the optimal pol-
icy for the user, i.e., the optimal timing for a user to perform
maintenance. It is important to note that in order to accu-
rately capture the cost of time consuming actions, the model
must take into account the value of time for each user (or
user performance). Therefore, our solution depends on this
value of time, and thus the optimal performance time varies
from user to user and may change over time.

We present a simplified version of the spaceship game
(Shvartzon et al. 2015), which allows us to evaluate people’s
tendency to perform maintenance and repairs, with and with-
out recommendations obtained from a maintenance alert
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Figure 1: A screen-shot of the spaceship game in progress.

system. In this game, a player controls a spaceship, which
shoots asteroids (see Figure 1 for a screen-shot). The player
is required to perform maintenance actions on his or her
spaceship. Occasionally, and depending on the frequency at
which the player performs maintenance, the spaceship may
suffer malfunctions which are repaired at a significant cost.

We present a personalized alert agent which provides
maintenance recommendations. This agent tries to over-
come the three causes mentioned above for non-optimal hu-
man behavior with respect to taking maintenance actions.
Given the user’s performance so far the agent predicts the
user’s expected future performance, and, using our general
solution, the agent identifies the optimal timing for a player
to perform maintenance and recommends the user to per-
form maintenance at this optimal timing. We show in an
experiment, that when subjects are presented with person-
alized recommendations, they significantly perform better
than when they are presented with non-personalized rec-
ommendations (which are optimal only for average perfor-
mance) and when they receive no alerts at all. This result
may encourage maintenance alert system designers to not
only urge users to take maintenance actions, but to do so ac-
cording to timing which is optimal for each specific user and
his or her needs, which may change over time. Such person-
alized maintenance alert systems may significantly improve
users’ overall performance.

Related Work

An empirical study that examined users’ tendency to per-
form preventive maintenance actions with or without indi-
cations from an alert system that indicated the need for in-
tervention was conducted in an abstract laboratory setting
(Bitan and Meyer 2007). The study showed that users do
not optimally perform preventive actions, and that they can
be aided by an alert system, especially when the system
is reliable. The study of alert provision is part of the be-
havioral shaping field, in which an agent aims to change
the behavior of a human, either for the human’s self ben-
efit, or for the benefit of a different party (represented by
the agent). Much work in AI is dedicated to this field (Ha-
jaj, Hazon, and Sarne 2014; Azaria, Richardson, and Kraus

2014; Azaria et al. 2011; Hajaj, Hazon, and Sarne 2015;
Azaria, Aumann, and Kraus 2014; Azaria et al. 2014;
Rosenfeld et al. 2015b; Azaria et al. 2015).

Many applications exist to help equipment owners main-
tain equipment. In (Dekker 1996), the author describes
several optimization models for maintenance, including
stochastic and deterministic models, which are distinguished
by simplicity (with a single component) and complexity.
Such an optimization model is deployed by (Li, Mourelatos,
and Singh 2012). Their optimal maintenance model is based
on the expected lifecycle of a given equipment, taking into
account the costs of production, inspection, etc. So far, to the
best of our knowledge, no studies exist that discuss and eval-
uate different reminder strategies for maintenance of cars or
other equipment. Sherif and Smith (1981) provide a review
on optimal maintenance models. However, neither of the pa-
pers in the review account for the time required to perform
maintenance, and thus there is no personalized model.

Many studies on reminder strategies exist in the field of
medicine. For example, a survey by Vervloet et al. (2012)
examines the effectiveness of interventions using electronic
reminders in improving patients’ adherence to chronic med-
ication. This review provides evidence for the effectiveness
of electronic reminders in improving adherence by patients
taking chronic medication. However, these works did not
consider even the trivial personalization, of not sending a
reminder after the medication was taken. They emphasize
that further research is needed to investigate the influence
of the frequency with which reminders are sent on adher-
ence. The effectiveness of this non-automated type of elec-
tronic reminder for adherence is currently being investigated
(Vasbinder et al. 2013). Similarly, a survey by Tao et al.
(2014) supports these findings, affirming that the use of elec-
tronic reminders seems to be an effective way to improve
medication adherence of patients with chronic conditions.
They recommend that future research should aim to iden-
tify optimal strategies for the design and implementation of
electronic reminders, with which the effectiveness of the re-
minders is likely to be augmented.

Several works have considered interruption management,
questioning when would be the best time to interrupt the
user (Adamczyk and Bailey 2004; Bailey and Iqbal 2008;
Sarne and Grosz 2007; Rosenfeld et al. 2015a). Shrot et
al. (2014) clustered the users into groups and then used col-
laborative filtering in order to determine which interaction
method would work best with each type of user. This ap-
proach yields different policies for different users. However,
in contrast to this paper, they did not try to change the user’s
behavior, but convey information at the best timing.

Several additional approaches use a form of personaliza-
tion for maintenance. A model based on equipment person-
alization is discussed in (Last 2011). This model predicts
equipment failures, based on sensor measurements and war-
ranty claims. Huang et al. (2009) suggest a maintenance
model, which indeed uses a form of personalization, albeit
the model does not attempt to optimize the maintenance, but
rather utilizes collected data to inform the user about rec-
ommended tasks that needed to be performed, based on the
personalized usage history.
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The Spaceship Game

In this work we use a simplified version of the spaceship
game (Shvartzon et al. 2015) in order to model the problem
of maintenance alert provision. In this game the player con-
trols a spaceship (see Figure 1). Throughout the flight the
spaceship should shoot down meteors which fly in space.
Every time a meteor is shot down, the player gains money
(points). The player must also avoid getting hit by the mete-
ors, and he loses money if he is hit by them. As the players
achieve points, they obtain additional cannons.

In order to reduce the probability of malfunctions, the
spaceship needs to occasionally carry out maintenance ac-
tions. Each of these actions is both time consuming and
incurs a monetary cost. While performing a maintenance
action (which lasts several seconds), the spaceship ’freezes’
and the player cannot shoot down any asteroids and thus is
unable to gain any points (but at the same time cannot lose
points either). If a malfunction occurs it is repaired. This
repair is associated with both a score and time cost (i.e. the
spaceship freezes during the repair time). In this paper we
study how an agent providing maintenance alerts may im-
prove a player’s performance in the spaceship game.

Formal Model

In this section we build a formal model of a maintenance
game. This model has the following characteristics (which
are motivated by real world maintenance settings): 1. A user
must determine at which time (t) to perform maintenance.
2. Such maintenance actions impact the probability of faults
(as will be explained below). 3. If a malfunction occurs, the
user must fix it in order to continue. 4. Maintenance and re-
pair actions are associated with a maintaining / repairing cost
and maintaining / repairing time. While the equipment is
being either maintained or repaired, it may not be used. We
denote by cm the monetary cost of maintenance and by cr
the monetary cost of repair (usually cm < cr). We use wm

to denote the waiting time required (cost of time in seconds)
once the player performs maintenance and wr to denote the
waiting time of repairing a malfunction. 5. Future discount-
ing. We assume that any future action is discounted, i.e.,
multiplied by an exponentially decreasing discounting fac-
tor (γ). Future discounting has justification from both psy-
chology and economics (Broome 1994) (although the exact
function that should be used is often in dispute (Rubinstein
2003)). In our domain, a discount factor may be justified by
a probability for a sudden break-down (which is unrelated to
the maintenance-repair actions), such as a total loss in a car
accident, the loss of a phone, sudden-death of the player etc.

We use Π to denote a maintenance policy, which deter-
mines at any given time, whether the user should perform
maintenance or not. We assume the following sampling
method procedure for determining when and whether a mal-
function will occur: 1. At the beginning of the game a time
at which a malfunction may potentially occur is sampled us-
ing some probability density function (pdf ) (or a cumula-
tive density function, CDF ). 2. If the player performed
maintenance before that time, this malfunction is removed.
Once the maintenance ends, a new potential malfunction is

sampled using the same pdf , but from the current time. The
player is associated with both the monetary and time costs of
maintaining. 3. If the player has reached the time at which
a malfunction may potentially occur, a malfunction occurs
and is fixed (and the player is associated with both the mon-
etary and time costs of repairing). A new future potential
malfunction is sampled similarly to the above.

The following two propositions relate to the properties of
the optimal policy. We show that the optimal policy has the
form of performing maintenance every X seconds since the
last maintenance or repair action has ended (or X seconds
since the beginning of the game, if no malfunction has oc-
curred).

From the sampling method we observe that once the
player performs maintenance (and the maintenance cost is
applied), or a malfunction occurs (and is fixed, along with
its cost), the player faces the exact situation as in t = 0.

Proposition 1. The optimal policy may be determined by
some value t. When following the optimal policy, the player
performs maintenance once t time units have passed since
the last time maintenance was performed or a malfunction
has occurred.
Proof. Assume an optimal policy Π∗. Since this policy may
be general, it may take into account all previous actions and
occurrences. Running Π∗ on a sampled game, and assum-
ing no malfunction occurred from the beginning until the
first maintenance, denote by X the first time Π∗ implied a
maintenance action. Clearly (since Π∗ must be determinis-
tic), in any game, unless a malfunction occurs before t, t is
fixed. Once a maintenance action is performed or a malfunc-
tion occurs (resulting in a repair action) at time t1, according
to the above observation the game becomes identical to the
starting position and thus the optimal policy is identical and,
unless a malfunction occurs, the next maintenance should be
performed at t1 + t.

A corollary of Proposition 1 is that the domain of policies
may be determined by a single parameter t. Thus, we use
Π(t) to denote a policy in which maintenance is performed
when t seconds have elapsed since the last maintenance or
repair actions have ended.

Due to the complexity of our solution, we begin by pre-
senting a simpler model in which there is no time cost as-
sociated with performing maintenance or repairing a mal-
function, i.e., there are only monetary costs associated with
maintenance and repairing malfunctions.

Actions Have Monetary Cost Only

In this section we assume that there is no time cost associ-
ated with performing maintenance or repairing a malfunc-
tion. This simplifies the model and makes it easier to iden-
tify the optimal strategy for maintenance. In this section we
will compute the policy which brings to minimum the ex-
pected cost of maintenance / repair actions, over time.

According to Proposition 1, finding the optimal policy is
equivalent to determining t such that the overall expected
cost under a policy Π(t) is minimized. We use C(t) to de-
note the expected cost of maintenance and repairs under a
policy in which maintenance is performed when t seconds
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have elapsed since the last maintenance or repair actions
have ended. Thus the optimal policy, Π∗ is Π(t) such that:
t = argmint C(t).

In order to calculate C(t) we will first calculate C(t)
given no malfunction occurs the first time, i.e., the first mal-
function is sampled after t. Denote the first malfunction
sampling time by tm1. We are therefore interested in C(t |
tm1 > t). The next lemma will show that C(t | tm1 > t)
has a form similar to that of a Bellman Equation, i.e., the
expected cost appears on the right side of the formula multi-
plied by the discount factor.
Lemma 1. C(t | tm1 > t) has the following property:
C(t | tm1 > t) = γt(cm + C(t))
Proof. Since no malfunction occurs, at time t, according to
the policy, the user performs maintenance at a cost of cm.
This cost is discounted by γt (since it occurs at time t). Once
a maintenance is performed, the player faces the same situ-
ation as in t = 0 and thus the expected cost is C(t) (multi-
plied by the discount factor).

Denote pr(·) as the probability for an event. We now cal-
culate C(t | tm1 < t) · pr(tm1 < t), the expected cost given
that the malfunction actually occurs in the first time, i.e. the
malfunction is sampled before t, multiplied by the probabil-
ity that the malfunction actually occurs before time t.
Lemma 2. C(t | tm1 < t) · pr(tm1 < t) has the following
property:
C(t | tm1 < t) · pr(tm1 < t) =∫ t

x=0
pdf(x)γx(cr + C(t))dx

Proof. Once a malfunction occurs, the player encountered
cost cr and returns to the starting position C(t). Assum-
ing this malfunction occurred at time x, this cost and the
starting position are multiplied by γx. Given an infinitesi-
mally small time x, the probability that the malfunction oc-
curs at this time is pdf(x)dx. Therefore, the portion of the
expected cost when the malfunction actually occurs before t
is
∫ t

x=0
pdf(x)γx(cr + C(t))dx.

Finally we define an equation which allows us to calculate
C(t):
Theorem 1. The expected cost follows: C(t) =∫ t

x=0
pdf(x)γx(cr + C(t))dx+(1−CDF (t))γt(cm+C(t))

Proof. According to the law of total probability: C(t) =
C(t | tm1 < t) · pr(tm1 < t) + C(t | tm1 >
t) · pr(tm1 > t) By Lemmas 1 and 2: C(t) =∫ t

x=0
pdf(x)γx(cr + C(t))dx+γt(cm+C(t))·pr(tm1 > t).

The probability for a single malfunction to be sampled af-
ter t, pr(tm1 > t), is (1 − CDF (t)), since by definition,
CDF (x) is the probability that X ≤ x.

Time consuming actions

In this subsection we take into account the fact that per-
forming maintenance or repair may be time consuming. As
we will show, this solution implies that the player’s opti-
mal time to perform maintenance actually depends on the
player’s performance (in the spaceship game this would be
the average points gained per second).

In order to account for the value of time and thus model
the loss which the player will encounter by waiting, we need

to consider the performance of the player, i.e., the points
or value the player obtains per unit of time (excluding any
maintenance or repair costs). This value will be denoted p.
Since the player is assumed to have some value of time, we
now denote Up(t) as the expected utility for a player with
performance p using a policy that performs maintenance ev-
ery t seconds, and our problem becomes a maximization
problem. The optimal policy Π∗ is now Π(t), such that:
t = argmaxt Up(t).

Calculating the expected utility, is fairly similar to the cal-
culation of the expected cost in the previous section, though
must take into account the player’s performance and the time
cost of both maintenance actions and malfunctions (or re-
pair). We first calculate the utility of Up(t) given no mal-
function occurs the first time, i.e., the first malfunction is
sampled after t (tm1 > t).
Lemma 3. Up(t | tm1 > t) has the following property:
Up(t | tm1 > t) = γt

(− cm + γwmUp(t)
)
+
∫ t

y=0
pγydy

Proof. Since no malfunction occurs, at time t, according to
the policy, the user performs maintenance at a cost of cm
(discounted by γt). After waiting the time cost of mainte-
nance, wm, and thus applying an additional discounting fac-
tor of γwm , the player faces the same situation as in t = 0.
Since the player played until time t performing no mainte-
nance, and no malfunction occurs, the utility from perfor-
mance alone up to time t is given by:

∫ t

0
pγydy.

We now calculate Up(t | tm1 < t) · pr(tm1 < t), the
expected utility of the player given that the malfunction is
sampled before t and multiplied by the probability that the
malfunction actually occurs before time t.
Lemma 4. Up(t | tm1 < t) · pr(tm1 < t) equals:∫ t

x=0
pdf(x)

(
γx

(− cr + γwrUp(t)
)
+
∫ x

y=0
pγydy

)
dx

Proof. Until the malfunction occurs (at time x), the player
gains a utility of

∫ x

y=0
pγydy. Once the malfunction occurs,

the player encountered cost cr and returns to the starting po-
sition Up(t) after waiting the time cost of repairing, wr, thus
an additional factor of γwr . All other factors are identical to
Lemma 2.

Finally we define an equation which calculates Up(t):
Theorem 2. The expected utility of a policy Π(t) perform-
ing maintenance every t time units since the previous mal-
function or maintenance, and assuming performance p fol-
lows the following equation:
Up(t) =

∫ t

x=0

pdf(x)
(
γ
x( − cr + γ

wrUp(t)
)
+

∫ x

y=0

pγ
y
dy

)
dx+

(
1 − CDF (t)

)(
γ
t( − cm + γ

wmUp(t)
)
+

∫ t

y=0

pγ
y
dy

)
(1)

Proof. According to the law of total probability: Up(t) =
Up(t | tm1 < t) · pr(tm1 < t) +Up(t | tm1 > t) · pr(tm1 >
t). The rest follows from Lemmas 3 and 4:

Equation 1 can be written as:

Up(t) =
(−cr + p

ln(γ)
)
∫ t
x=0

pdf(x)γxdx − p
ln(γ)

∫ t
x=0

pdf(x)dx

1 − (1 − CDF (t))γ(t+wm) − ∫ t
x=0

pdf(x)γ(x+wr)dx
+

(1 − CDF (t))
(
γt

( − cm + p
ln(γ)

) − p
ln(γ)

)

1 − (1 − CDF (t))γ(t+wm) − ∫ t
x=0

pdf(x)γ(x+wr)dx
(2)
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In order to find the optimal policy, we must differentiate
Equation 2 with respect to t and solve U ′

p(t) = 0 (and test
the two extreme cases of t = 0 and t = ∞).

Maintenance Timing in the Spaceship Game

We use a simple form of the beta distribution with α = 2 and
β = 1, spread over T seconds. That is, we calibrate the beta
distribution over a time-line of T seconds, i.e., pdf(t) = 2

T 2 t

and CDF (t) = ( t
T )

2. This function has the following cru-
cial property related to repairing and maintenance: the more
time that has passed since the latest maintenance, the more
likely it is that a malfunction will occur at each moment.

We use our results from Theorem 2 to solve the opti-
mal maintenance timing in the spaceship game and plug the
given beta distribution into Equation 2 (the equation and its
derivative are omitted due to lack of space). Given the total
length of the game, ttot, we use: γ = 1

1−ttot
to determine the

discount factor. Assuming the discount factor is viewed as
a way to model the probability that the game will suddenly
end, the above formula ensures that the expected length of
such a game when using the discount factor will be ttot.

Agents for Maintenance Alerts

We considered two maintenance alert agents. The first, is a
non-personalized agent (NPA) that only uses the average hu-
man performance when providing maintenance alerts. This
agent, calculates the optimal time to perform maintenance,
using the formulas developed above and assuming the per-
formance of an average player.

The second is our Fully Personalized Agent (FPA). This
agent predicts the expected performance of the current
player, and, using this information, the FPA calculates the
optimal time to perform maintenance (using the formulas
developed above). We considered four different methods to
compute the expected performance, based on the previous
data of the current player. The first method is simply to use
the performance in the previous second to predict the perfor-
mance in the current second. The second method is to use
the average performance of the current player from the be-
ginning of the (current) game. The third method, the mov-
ing window method, requires a parameter x. This method
uses the average performance of the past x seconds to pre-
dict the current performance. The fourth method, known
as exponential smoothing ((Gans, Knox, and Croson 2007))
predicts current performance by multiplying the previous
expected performance by some discount factor, δ, and the
performance of the previous second by 1 − δ. Exponential
smoothing was shown to work well when predicting human
behavior ((Acuna and Schrater 2008)). Both the exponen-
tial smoothing and moving window methods require some
initial value (a parameter that must be determined).

In order to determine the average performance for NPA
and the method to be used to predict the user performance
along with its parameters for FPA, we collected training data
from 20 subjects. Table 1 presents the mean squared error
(MSE) of the prediction methods employing a tenfold-cross-
validation on the training data (lower values indicate a bet-
ter fit). As shown, the exponential smoothing method exhib-

ited a higher fit-to-data than all other performance prediction
methods. Therefore the exponential smoothing method was
selected to be implemented in the FPA.

Evaluation

Experimental Setup

In order to evaluate our agent, we recruited a total of 56
subjects via Amazon’s Mechanical Turk (AMT) to play the
spaceship game. The set of subjects consisted of 57% males
and 43% females. Subjects’ ages ranged from 18 to 51,
with a mean of 32. All subjects were residents of the USA.
The subjects were paid 20 cents to participate in the exper-
iment, and, depending on their performance, could achieve
an additional payment of up to $2.00. Before playing, the
subjects filled out a short demographic questionnaire. They
were then presented a tutorial, played a training game to help
them understand the game rules and played a two minute
practice game. Each subject played 3 actual games which
lasted 4 minutes each. In these three games the subjects ei-
ther received alerts from FPA, NPA or received no alerts and
were simply told that they should perform maintenance ev-
ery 20 seconds (which is optimal for a player with average
performance). The order of these different games may have
a significant impact on the performance of the user, since
the user may gain experience over time. Note, that there are
6 possible permutations on the order of the three conditions.
Therefore, every time a new subject joined, she was assigned
to the permutation with the least subjects so far.

In order to increase compliance, when presenting a main-
tenance alert, the screen flashed for a second and a tone was
played. The alerts were presented one second in advance
(i.e., one second before the agent wanted the user to actu-
ally perform maintenance). Table 2 presents the settings we
used for the spaceship game. After playing all games, the
subjects filled out a questionnaire.

Requiring full attention for all these games, is more than
most AMT workers are used to. Therefore, we expected that
some subjects will not play seriously for so long, and de-
cided on an exclusion criterion of removing all subjects who
had a negative score game in any of the three conditions.
This exclusion criterion was reinforced by the fact that sev-
eral subjects stated (in the comments part of the ending ques-
tionnaire) that over time they have lost interest in the game.
Unfortunately, 20 subjects have met this exclusion criterion.

Results

The fully personalized agent (FPA) accounted for an
improvement of between 17% and 18% over the non-

Method MSE
Previous second 1393

Full average 766.5
Moving window 767.1

Exponential smoothing 649.5

Table 1: Prediction methods and their mean squared error
(MSE) on training data.
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Action Score ($) Time cost
(spaceship frozen)

Maintenance −$5 8 secs
Repair −$500 3 secs

Hit by meteor −$10 N/A
Hit a meteor +$30 N/A

Table 2: Settings used in the spaceship game
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Figure 2: Average performance of subjects in FPA, NPA and
no alert games.

personalized agent (NPA) and the no alert condition (5637
vs. 4756 and 4833). We ran an ANOVA test with repeated
measurements on the subject score and set the agent type as
our dependent variable and the game order as a controlled
variable. The impact that the agent type had on the sub-
ject’s score was statistically significant (F (2, 30) = 3.467,
p < 0.05). In pairwise comparisons FPA significantly out-
performed both NPA and the no alert condition (with Bon-
ferroni adjustment for multiple comparisons, single tailed,
p < 0.05). Any differences between NPA and no alert were
minor and not significant. Figure 2 illustrates these results.

The average standard deviation of the scores within each
of the groups was 3573, which is in fact 70% of the average
score. This is clearly a very large standard deviation, em-
phasizing the need for a personalized agent which is most
required when people differ from one another. Interestingly,
the subjects performed more maintenance actions when pre-
sented with alerts from the NPA (7.8 per game), than with
the FPA (6.2 per game) and when they received no alerts at
all (6.2 per game). This indicates that the failure of the NPA
was not due to the subjects not following its alerts but due
to the fact that these alerts were not presented at the optimal
timing according to the individuals’ performance.

When discarding the exclusion criterion and including all
subjects the average performance with FPA was 3770, still
outperforming NPA (with 3613) and No-alert (with only
2950). Though, clearly, subjects who lost interest in a game,
added a tremendous amount of noise.

The subjects seemed to enjoy the game, giving it an av-
erage of 7.7 on a 1 to 10 scale. We found low correlation
between the average score of a player and the answer to
this question (0.29), and negligible correlation between the
player’s age and the answer to this question (0.06).

Discussion

Any maintenance agent is limited in the ability to increase
the overall performance of the user, due to the fact that the
major contributor to the user’s score is actually the ability
of the player to shoot down asteroids and avoid being hit by
them, and we assume that the maintenance alert agent has
no impact on such abilities. Therefore, we believe that our
results, which show that FPA increases the average perfor-
mance of the players by 17% is a very significant result.

The consequences of not performing maintenance may
vary among different environments. The more immediate
and obvious is the link between not performing maintenance
and malfunctioning, the more likely the user is to follow the
advice, and the more important it may be to provide person-
ally fitted alerts. If the result of maintenance is more vague,
the agent may need to provide additional information on top
of merely alerting the user, so that if and when a malfunction
occurs, the user will be able to link it with her own actions,
and perhaps follow the advice next time.

In this paper we use past performance to predict future
performance. While in real life, the value of time may be
more challenging to obtain, some bodies (insurance, law-
suits etc.) try evaluating it. These bodies usually consider
the earning wage, i.e. the amount the person earns a month
or year divided by the number of working hours and some-
times ask the subject, either direct questions (e.g. How much
would you be willing to spend to save an hour of your time?),
or indirect questions (e.g. How much time would you be
willing to spend to save $50 on your groceries?).

The cost (both in time and in money) of maintenance and
repairing is often available. The probability density function
may be trickier to obtain. In order to learn a reasonable ap-
proximation for it, one needs to collect enough data. How-
ever, in the field of car maintenance, for instance, most new
cars have logs stating when each treatment was performed
and when each malfunction appeared, etc. This informa-
tion, if gathered from enough cars, may be a valid source
for computing the probability density function. Additional
domains exist in which the performance may be easier to
predict, e.g. a company using machines which produce a
value to the company as long as they work, and have some
cost maintaining them.

Conclusions

In this paper we study to what extent a maintenance recom-
mendation system can be beneficial to a user. We present the
spaceship game, which is a game wherein a user controls a
spaceship that requires maintenance to avoid malfunctions.
This game allows the quantification and scoring of the user’s
performance and enables us to measure to what extent rec-
ommendation alerts affect her behavior and performance.

In this paper we show the effectiveness of a personalized
maintenance recommendation agent. When interacting with
a user, the agent predicts the expected performance of that
user. Based on this prediction and our analytically derived
solution, the agent alerts the user to perform maintenance at
the optimal maintenance timing. To the best of our knowl-
edge, this is the first paper that attempts to solve the optimal
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time for performing maintenance, when taking into account
the value of time for the individual users and thus resulting
in personalized recommendations.
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