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Abstract

This paper studies two suboptimal advice provisioning meth-
ods (“advisors”) as an alternative to providing optimal ad-
vice in repeated advising settings. Providing users with sub-
optimal advice has been reported to be highly advantageous
whenever the optimal advice is non-intuitive, hence might
not be accepted by the user. Alas, prior methods that rely
on suboptimal advice generation were designed primarily for
a single-shot advice provisioning setting, hence their perfor-
mance in repeated settings is questionable. Our methods, on
the other hand, are tailored to the repeated interaction case.
Comprehensive evaluation of the proposed methods, involv-
ing hundreds of human participants, reveals that both meth-
ods meet their primary design goal (either an increased user
profit or an increased user satisfaction from the advisor),
while performing at least as good with the alternative goal,
compared to having people perform with: (a) no advisor at
all; (b) an advisor providing the theoretic-optimal advice; and
(c) an effective suboptimal-advice-based advisor designed for
the non-repeated variant of our experimental framework.

Introduction
One important role of collaborative interfaces and AI-based
systems is supporting people in decision situations by pro-
viding them beneficial advices or suggesting a preferred
course of action (Azaria, Kraus, and Richardson 2013;
Rosenfeld et al. 2015; Ricci et al. 2011). Most research
to date in the area of advice provisioning focused on
providing the optimal (e.g., benefit-maximizing or utility-
maximizing) advice, making the assumption that the advice
provided would definitely be accepted by the user (Bharati
and Chaudhury 2004). Yet, there is much evidence that peo-
ple often fail to see the benefit in and often ignore utility-
maximizing advices and hints, especially when those are
associated with non-intuitive choices or courses of action
(Carroll, Bazerman, and Maury 1988). Therefore, an ef-
fective advice is not necessarily the one encapsulating the
greatest benefit to the user if accepted, but rather one that
maximizes the expected benefit when taking into consid-
eration its likelihood to be adopted by the user and its ef-
fect over the user’s choice otherwise (Elmalech et al. 2015;
Azaria et al. 2014).
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Alas to date, most designs following the above paradigm
have been focused in one-shot decision situations. As such
they are completely stateless and static in the sense that they
always provide the same advice at a given decision situa-
tion. Nevertheless, for many collaborative agents support-
ing people through advice provisioning the interaction with
the user is inherently repeated, and consequently their effec-
tiveness is measured over the long term. Examples include
route planning (e.g., googlemaps.com), investments advis-
ing (e.g., betterment.com) and recommending the timing for
buying a flight ticket (e.g., in kayak.com). As discussed in
detail in the following section, the repeated interaction dic-
tates designs that consider alongside the likelihood that the
user will accept a given advice also the influence of that ad-
vice (and the possible different outcomes if followed) over
the user’s willingness to accept future advices from the ad-
visor. For that reason, methods designed for providing sub-
optimal advice in non-repeated settings perform poorly once
switching to repeated settings—in our experiments the per-
formance of such method was even worse than the perfor-
mance of an advisor providing the theoretic-optimal advice,
reversing the dominance relationship between the two that
was demonstrated in the non-repeated version of the setting
used (Elmalech et al. 2015).

This paper studies two new methods for advice-
provisioning exclusively aimed at repeated interaction set-
tings. Both methods are designed to implicitly improve the
value the user sees in the advices provided to her over time.
Yet, despite this similar underlying design principle, each
method attempts to maximize a different measure. The first
method is aimed at maximizing the user’s actual profit when
provided with the advisor, through a gradual convergence
to the optimal (non-intuitive) advice. The second method
aims at maximizing the user’s satisfaction from the advisor
through considering a regret-like index. As our experimen-
tal results show, there is only a small correlation between
profit maximization and user satisfaction in repeated advice
settings, hence the importance of having the two methods.

The methods were tested using extensive experimenta-
tion with 500 human participants overall, using a well-
established testbed that enabled a common ground for com-
paring the performance of our methods with others and for
partial validation of the experimental design, as discussed
in detail in later sections. The analysis of the results ob-
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tained indicates that both proposed methods meet their de-
sign goals, exhibiting a statistically significant improved
performance according to the measure they are focused in
(user profit or user satisfaction) compared to all other tested
methods (performing with no advisor, with an advisor al-
ways providing the optimal advice and with an efficient
(experimentally-provable) advisor for the non-repeated set-
ting) while keeping at least the same level of performance
according to the alternative measure.

In the following section we describe in detail the idea of
suboptimal advising in the context of effective advice provi-
sioning. Then, we describe our proposed methods for subop-
timal advising in repeated-interaction settings. The descrip-
tions of the experimental infrastructure, the experimental de-
sign and the results obtained follow. Finally we conclude
with a discussion of the findings and directions for future
research. Related work is cited throughout the paper.

Effective Advice Provisioning
Assume an advisor is capable of extracting the strategy that
is optimal to the user (taking into consideration all possible
outcomes and transitions to different world states), denoted
“optimal strategy” onwards.1 Sticking to providing advice
according to the optimal strategy is best only if the advi-
sor is fully confident that its advice is always adopted by
the advisee. Alas, people often do not follow the theoretic-
optimal strategy (Zhang, Bellamy, and Kellogg 2015; Hajaj,
Hazon, and Sarne 2015), especially in domains where the
optimal strategy has some non-intuitive properties (Rochlin,
Sarne, and Mash 2014; Rochlin and Sarne 2014), nor use it
when designing agent strategies (Rosenfeld and Kraus 2012;
Rosenfeld et al. 2012). This phenomenon carries over to re-
ceiving advice and it has been shown that providing the op-
timal advice in such domains typically results in low accep-
tance rate and consequently poor outcomes (Elmalech et al.
2015; Rosenfeld and Kraus 2015). Various approaches were
taken in prior work in order to overcome people’s inability
to recognize the benefit in following the optimal (or socially-
optimal) strategy, such as attempting to convince people of
the correctness of the optimal solution (Grosskopf, Bereby-
Meyer, and Bazerman 2007) or to teach people how to opti-
mally solve the decision problem (Lesser 1999). These ap-
proaches are irrelevant for our repeated advice provisioning
settings because they require substantial overhead from the
advisor’s side (and much of the user’s time).

Our approach coincides with the recently introduced idea
of using designs that provide suboptimal advices, yet ones
that are more appealing to the user thus are more likely to be
adopted (Elmalech et al. 2015). Previous work that has used
the idea aimed to non-repeated settings.2 As such, the main

1For now, we intentionally defer the discussion concerning the
nature of “optimality”.

2An exception is the work of Azaria et al. (2015) however the
interaction setting there is very different from ours, as their use of
a non-optimal advice is primarily to push the user towards a choice
that is more beneficial for the advisor itself. Also, their advice gen-
eration relies on the asymmetry in the information available to the
advisor and the user, while in our setting the asymmetry is in the

aspects considered in the designs used were the questions of
when agents should deviate from dispensing fully rational
advice and how far should the suboptimal advice provided
drift from the optimal one. In repeated settings the user gets
to see, and naturally becomes influenced by, outcomes of
(and regret from) previous advices provided by the advisor
over time, making the advisor’s design more challenging.3
Therefore the design of an advisor for such environments
should also consider aspects such as the level by which any
specific advice provided at a given point will influence the
user’s tendency to adopt further advice provided by the ad-
visor. In particular, it should balance to some extent between
the efforts to push the user to accept a given advice (or act in
a certain prescribed way) and the relative loss due to com-
promising on suboptimal advice. For example, following a
temporal sequence of losses in a poker game the advisor
may need to adopt a more conservative betting strategy, even
though it is not the expected-profit-maximizing strategy at
that time, in order to regain the user’s confidence and in-
crease the chance of consecutive advices to be accepted.

Notice that up to this point we have been using the
term “optimal” without discussing the essence of optimality.
There are several candidates for measuring the optimality of
a decision, ranging from utility theory and its many vari-
ants (Rochlin and Sarne 2013) to theories that incorporate
decision weights that reflect the impact of events on the over-
all attractiveness of uncertain choices (Starmer 2000), such
as sign-dependent theories (e.g., prospect theory (Kahneman
and Tversky 1979)) and rank-dependent theories (Quiggin
1982). Common to all these theories is that they require a
deep understanding of individual preferences and possibly
comprehensive utility elicitation efforts if basing the opti-
mality measurement upon them. Fortunately, when it comes
to repeated interaction the optimality measure is simpler
to extract, as people’s tendency to rely on expectations in
this case substantially strengthen. It has been shown that in
repeated-play settings people’s strategies asymptotically ap-
proach the expected monetary value (EMV) strategy as the
number of repeated plays increases (Klos, Weber, and We-
ber 2005). Within this context, prior work attributes people’s
failure to use an EMV-maximizing strategy to the complex-
ity and unintuitive nature of this strategy (Elmalech, Sarne,
and Grosz 2015). We thus take these evidence as a basis for
assuming that people are EMV-maximization seeking in re-
peated decision situations and use this strategy as the mea-
sure of optimality in analyzing our experimental results.

Relying on EMV as the sole measure of performance for
our methods is of course incomplete, as even if an advi-
sor manages to maximize (or at least substantially improve)
the expected payoff with the advices it provides, there is
no guarantee that the user perceives it as such. Since nature
plays a role in our settings, it is possible that even expected-
payoff-maximizing strategy will result in a sequence of
non-favorable actual outcomes at times. Users, as discussed
above, are highly affected by the nature of outcomes (e.g.,

ability to identify the optimal advice.
3Feedback plays a key role in decision making, as demonstrated

in prior work (Jessup, Bishara, and Busemeyer 2008).
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gains versus losses) and effects such as regret, and thus may
exhibit different levels of satisfaction based on the advices
given and actual outcomes, such that are not fully correlated
with the EMV. Therefore, to provide a comprehensive eval-
uation of user satisfaction we use two complementary mea-
sures. The first is the subjective reporting of the users them-
selves regarding their overall satisfaction from the advisor
provided to them. Decision maker’s satisfaction has tradi-
tionally functioned as a measure of past and current utility
(Lemon, Barnett White, and Winer 2002) and hence its key
influence on keeping or dropping the advice given. The sec-
ond is the users’ adoption rate of the advices provided by
the advisor, measured as the ratio between the number of
advices adopted and the overall number of advices provided.
This latter measure is important for two reasons. First, unlike
the first measure it is an objective measure. Second, it is a
measure of success for many real-world advisors, whenever
the advisor is compensated based on the number of times its
advice is accepted or used, typically in the form of commis-
sion (e.g., financial advisors and investments brokers).

Proposed Advice Generation Methods
Both our advice-generation methods are based on providing
suboptimal advice, however differ in the emphasis they place
on the different aspects of the advising effectiveness, i.e.,
actual performance and user satisfaction.

S-Gradual With this method the advisor always starts
with what might seem to be a highly intuitive advice for peo-
ple in the specific decision situation. A “highly intuitive ad-
vice” can be generated either based on observing decisions
made by other people when facing a similar decision situa-
tion (Martin et al. 2004) or by constructing user models that
take into consideration various kinds of known psycholog-
ical effects and human behaviors (Hajaj, Hazon, and Sarne
2014) to predict the appeal of different advices to people
in general. The idea is to strengthen the user’s perception
that the advisor “knows what it is doing” and then gradu-
ally trade intuitiveness with expected benefit. Meaning that
on each interaction the generated advice becomes closer to
the optimal one, encompassing greater expected profit to the
user (if adopted), though with the price of an increased non-
intuitiveness. The underlying assumption here is that over
time the user will become less resistant to “unsensible” ad-
vices due to prior successful “more sensible” ones. Despite
the simplicity of the idea, to the best of our knowledge it has
not been used in the design of advice-provisioning systems.4

S-Aggregate With this method we consider the potential
differences in the actual profit when adopting the advice
and when sticking to the user’s initial choice (i.e., before
receiving the advice). The idea is to provide the advice y
that maximizes a weighted sum of these differences over
all possible world sates (nature states). Formally, denoting

4A somehow similar idea of “step by step” advice-giving is used
for teaching—starting with small hints and gradually increases the
level of detail of the advice given (Watanabe et al. 2003).

the profit of choosing A when the world state turns to be
w by V (A|w), the advisor provides the advice y that satis-
fies: argmaxy

∑
w Beta(Norm(V (y|w)−V (I|w)))p(w),

where p(w) is the a priori probability that the state of na-
ture will turn to be w, I is the user’s initial choice and
Norm(V (y|w) − V (I|w)) is the difference V (y|w) −
V (I|w) normalized to the interval 0 − 1, so that it could be
used as an input for the Beta cumulative distribution func-
tion.

The reason for using the Beta distribution for this purpose
relates to the essence of the difference. In some sense, the
difference V (y|w)− V (I|w) can be correlated with the no-
tion of “regret”. Most people regret when they realize an al-
ternative decision would bring them better profit, retrospec-
tively. The meaning of regret is that people care not only
on what they actually receive, but also what they could have
received had they chosen the alternative option, so their cur-
rent utility is actually also a function of former possible de-
cisions (Zeelenberg 1999). Prior work has dealt extensively
with the way people take the feeling of regret into account
when facing a decision making situation (Bleichrodt, Cillo,
and Diecidue 2010). It was found to be a more complex
emotion than the basic ones like anger, fear or happiness,
as people usually tend to compare their decision’s outcome
to what they could have gotten had they chosen differently.
Moreover, regret is a negative emotion, as large intensities
of regret are weighted disproportionally heavier than small
ones.While regret is, by definition, always positive (or zero),
the difference V (y|w)−V (I|w) in our case can also be neg-
ative. Meaning that we are not measuring the user’s regret
from her decision given a specific state of nature per-se. In-
stead, we are measuring the user’s “regret” should she had
switched her original choice and used the advice provided.
In that sense, switching to adopting the advice provided can
be accompanied by either a relative gain or relative loss.

The characterization of the differences as gains and losses
calls for some adjustment in the way these values are aggre-
gated. It is well known that people are highly affected by the
nature of outcomes (gains or losses). In particular, people
are greatly (negatively) affected by losses compared to (the
positive effect of) gains. In Prospect theory, it is customary
to use a (subjective) S-shaped value function (Tversky and
Kahneman 1981) combined of a concave function for gains
and convex function for losses, as shown in Figure 1.

Figure 1: A hypothetical valuation function for gains and
losses (Kahneman and Tversky 1979).

This latter behavior can be captured by the Beta cumula-
tive distribution function —with a proper use of the α and
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β parameters (different sets for valuing positive and nega-
tive differences) we manage to assign substantial (negative)
value to cases where the user’s initial plan turns to be bet-
ter than the advisor’s. For the opposite case (advisor’s ad-
vice turned to result in a better outcome than the user’s ini-
tial plan) the value assigned still monotonically increases in
the difference, yet in a slower increase rate compared to the
case of losses. Using Beta functions with parameters α = 1
and β = 4 for valuing (normalized) positive differences and
α = 0.7 and β = 4 for valuing (normalized) negative differ-
ences we obtain a valuation function that aligns with the one
suggested by by Kahneman and Tversky (1979), as given in
Figure 1. This way we actually put more emphasis on the
chance that the advice will result in a better outcome com-
pared to the user’s initial plan, rather than on the magnitude
of (or the average value of) the improvement achieved. This
latter property aligns with evidence given in recent work for
people’s preference of decision strategy that favors winning
most of the time over the one that yields higher final value
(Hills and Hertwig 2010).

Experimental Framework
For our experiments we used a common repeated deci-
sion making setting captured by the Car Purchasing Game
(CPG) (also known as “Acquiring a Company game”) that
was originally introduced by Samuelson and Bazerman
(1985). In this game there are two players: the seller of a
car and a buyer who is interested in buying it. The actual
condition of the car, and consequently its value, denoted v
(v > 0), is privately held by the seller. The buyer is only
acquainted with the underlying a priori probability distribu-
tion function of the car’s worth, denoted f(v). If buying the
car, the buyer will be able to improve its condition (e.g., she
knows a gifted mechanic) by a factor x (x > 1), making its
worth x · v. The buyer needs to come up with a “take it or
leave it” offer (denoted O) to the seller, meaning that if O is
above v the seller will accept it, selling the car to the buyer
at that price, and otherwise reject, leaving the buyer with a
zero profit. The buyer’s goal in this game is to maximize her
expected profit, defined as the car’s worth v times x minus
the payment O.

The buyer’s expected profit can be explicitly expressed as∫ O

v=0
(x · v − O)f(v)dv.5 The expected-profit-maximizing

offer (to which we refer as “optimal” onwards), denoted O∗,
can be trivially extracted by taking the first derivative of the
latter expression and equating it to zero. In particular, when
the car’s value is uniformly distributed over some interval
(0, V ), as used in all prior work relying on CPG-like settings,
then O∗ = 0 for any x ≤ 2 and O∗ = V otherwise.6

While the problem is common and most people face it
(or a similar one) quite often, its solution for the uniform
distribution function is highly non-intuitive to people—the

5The calculation goes over all possible v values for which the
offer is accepted. For all other values the profit is zero.

6Intuitively, in this case the expected worth of the car, given that
an offer O ≤ V was accepted, is O/2 and therefore the expected
profit is (O/V )(x ·O/2−O) = O2

V
x−2
2

, which is maximized for
O = 0 when x ≤ 2 and O = V otherwise.

optimal strategy depends solely on x, and shifts from one
extreme to another at the point x = 2 using a step function-
like pattern. It suggests that the car should not be purchased
at all for cases where x < 2, even though the buyer values it
more than the seller (and even for the case where x = 2− ε,
i.e., the buyer values it almost twice its value to the seller).
Similarly, when x > 2 one should offer the maximum possi-
ble worth of the car, even though it is possible that the car is
worth way less. In particular, the transition between the two
extremes (avoid purchasing and offer the maximum possi-
ble) at x = 2 is confusing for people. Indeed, prior research
has given much evidence to a substantial deviation in the of-
fers made by human subjects in this setting from the optimal
ones. For example, studies that used x = 1.5 have shown
that most offers people make lie between the expected value
(V/2) and the ex-ante expected value of the item (1.5 · V

2 )
(Carroll, Bazerman, and Maury 1988). A possible explana-
tion for this is that participants simplify their decision task
by ignoring the selective acceptance of the seller, as if the
seller does not have more information than they have. Sim-
ilarly, for a variety of x values within the range 2 − 3 it has
been shown that people make offers that are substantially
lower than V . Furthermore, it has been shown that even
when providing people with the optimal offers they tend not
to adopt them (Elmalech et al. 2015). Unlike the general ac-
ceptance among experimental economists that optimal be-
havior should not necessarily be expected right away, but is
likely to evolve through the process of learning and adjust-
ment (Kagel 1995), participants in our settings were reported
to exhibit a strong persistence in suboptimal behavior, even
when experiencing with the task for the purpose of fostering
learning (Grosskopf, Bereby-Meyer, and Bazerman 2007;
Carroll, Bazerman, and Maury 1988).

The fact that people are known to act suboptimally and
fail to adopt the optimal solution in CPG makes it a per-
fect framework for testing our advice generation methods.
Furthermore, the fact that it has been extensively used in
prior work enables us validating our experimental findings
through the comparison of a “no-advisor” control group to
prior reported results.

Experimental Design
We implemented the CPG as a java-script web-based appli-
cation such that participants could interact with the system
using a relatively simple graphic interface, thus facilitating
interactions with a variety of people (see screenshots in Fig-
ure 2). The car’s worth a priori distribution was set to be uni-
form between 0 and 1000 (i.e., V = 1000). From the user-
interface point of view, the advice (i.e., the suggested offer)
was presented to participants by a virtual advisor. Partici-
pants did not receive any information related to the nature of
the advisor, and the advice they received used the text “The
best advice I can give you is: offer to the seller K dollars”
(where K is the advice in the current game). The interface
was designed such that we can run experiments with and
without an advisor. When using an advisor, after introducing
the user the x value for the game, she is first asked to input
her initial offer (see Figure 2(a)). Then the advisor provides
the advice and the user can either adopt the advice received
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or use the offer she initially intended to use before receiving
the advice (see Figure 2(b)). Once the final offer was set, the
user became acquainted with the actual worth of the car v,
and consequently whether or not it was accepted (see Fig-
ure 2(c)). The system also calculated and displayed to the
user the actual benefit obtained based on the offer made and
the potential benefit if she had chosen the other offer (either
the advisor’s suggestion, in case of sticking with the original
user’s offer, or the original offer if switching to the advisor’s
suggestion).

Figure 2: Screen-shots of the CPG interface.

We implemented both our suboptimal advisors, for the
CPG. The S-Gradual advisor was implemented with an ini-
tial advice of $300 for x < 2 and $700 for x > 2.7 Each
subsequent advice further converged towards the expected-
profit-maximizing advice by $30. This enabled reaching the
highly non-intuitive yet optimal advices of $0 and $1000
(for x < 2 and x > 2, respectively) within 10 rounds
(for each x value type). The S-Aggregate method was im-
plemented using the possible car’s worth values as possi-
ble world states (w), where I is the user’s initial offer as
received in the system. The Beta function parameters used
were (α = 1, β = 4) and (α = 0.7, β = 4) for positive
and negative differences, respectively, for the reasons given

7The choice of these initial values is based on Elmalech et al.
(2015), where these were found to be the most commonly used by
people when not given any advice, in a non-repeated setting.

above. In addition, we have implemented two advisors, to
be used as a benchmark for evaluating the performance of
our two suboptimal advice provisioning methods. The first
is the advisor suggested by Elmalech et al. (2015), denoted
“S-Elmalech” onwards. This advisor generates suboptimal
advices for CPG-like settings however was initially designed
and tested for non-repeated interaction. The second is an ad-
visor that always suggests the optimal offer. i.e., $0 in case
x < 2 and $1000 otherwise, denoted “Optimal” onwards.

Participants were recruited and interacted through Ama-
zon Mechanical Turk (AMT) which has proven to be a well
established method for data collection of tasks which re-
quire human intelligence to complete (Paolacci, Chandler,
and Ipeirotis 2010). To prevent any carryover effect a “be-
tween subjects” design was used, assigning each participant
to one experiment only, which was randomly selected out
of five possible treatments: (a) playing the game without an
advisor; (b) playing the game with the Optimal advisor; (c)
playing the game with the S-Elmalech advisor; (d) playing
the game with our S-Gradual advisor; and (e) playing the
game with our S-Aggregate advisor.

The compensation for taking part in the experiment was
composed of a show-up fee (the basic “HIT”) and also in-
cluded a bonus, which was linear in the participant’s average
profit over all games played, in order to encourage thought-
ful participation. Each participant received thorough instruc-
tions of the game rules, the compensation terms and her goal
in the game. Then, participants were asked to engage in prac-
tice games until stating that they understood the game rules
(with a strict requirement for playing at least three practice
games). Prior to moving on to the actual games, participants
had to correctly answer a short quiz, making sure they fully
understand the game and the compensation method. Finally,
participants had to play a sequence of 25 CPGs, each differ-
ing in the value of x used.8 In order to have a better con-
trol over the experiment, we used 10 randomly generated
sequences of x values (25 values in each) and each experi-
ment was randomly assigned one of these sequences. Simi-
larly, the actual car’s worth v associated with each of the ten
x sequences in each experiment was taken from one of ten
pre-drawn sets of 25 values within the range 0− 1000.9 For
each game the system stored the offer originally made, the
advice given, the offer eventually picked, the car’s true worth
and the profit with both offers (the user’s original offer and
the advice received). While participants did not receive any
information related to the advisor and the nature of its ad-
vice, they were told that they will be using the same advisor
throughout all the 25 games.

In order to evaluate the user satisfaction with the differ-
ent advisors, we asked users to answer the following three
questions at the end of the experiment:

1. ”Overall, how satisfied were you with the advisor?”
2. ”Based on your experience with the advisor, would you

recommend to a friend using it?”

8The choice of 25 games was made in order to push people to
use expected-benefit maximization strategy, as discussed above.

9See supplementary material in the authors’ web-site for the full
set of values used.
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3. ”If you had to choose between playing with or without the
advisor given, what would you choose?”

Each of the three questions relate to user satisfaction from
a slightly different aspect. For example, the answer to the
second question reflects user’s loyalty and there is a direct
link between loyalty and user satisfaction (Hallowell 1996).

Overall, we had 500 participants taking part in our exper-
iments, 100 for each treatment, each playing 25 games ac-
cording to the above design. Participants ranged in age (21-
70), gender (61% men and 39% women), education (25%
with secondary education, 50% bachelor’s degree, 17% mas-
ters) and nationality (63% from US, 30% from India), with
a fairly balanced division between treatments.

Results
Results are presented in a comparative manner, according to
the average profit, advice adoption rate and user satisfaction.

User Profit Figure 3 depicts the difference in the average
profit (cross-participant) between the NoAdvice and the four
other treatments (methods) used. It also includes the statisti-
cal significance of the difference between the different treat-
ments (reporting only cases where the p− value obtained is
less than 0.1). The statistical test used is the Mann Whitney
U-test (also known as the Wilcoxon rank-sum test) which is
a nonparametric test of the null hypothesis that two samples
come from the same population against the alternative hy-
pothesis that one population tends to have larger values than
the other (Nachar 2008). The advantage of this test in the
context of our experimental design is that it can be applied
on unknown distributions, contrary to t− test which has to
be applied only on normal distributions, and it is nearly as
efficient as the t-test on normal distributions.

Based on Figure 3 we conclude that both our S-Gradual
and S-Aggregate methods perform at least as good as all the
other tested methods as far as user’s profit is concerned. In
particular, S-Gradual performs substantially better than all
other methods that were checked (including S-Aggregate),
suggesting an improvement of 55%−71% in average profit.
Interestingly, the S-Elmalech method that was shown ex-
perimentally to result in the best profit in very similar yet
non-repeated settings (Elmalech et al. 2015) is actually a
poor choice once switching to a repeated setting, perform-
ing worse than all other methods (and substantially worse
(statistically significant) than our S-Gradual method).

Advice Adoption Rate In our experiments we had 2500
advices given in each treatment (100 participants, each
playing 25 games), hence the adoption-rate relates to the
percentage of these advices that were adopted. The aver-
age adoption-rate in our experiments was 25%, 35%, 37%
and 38% for the Optimal, S-Elmalech, S-Aggregate and S-
Gradual advisors, respectively. These results suggest that
the advices of all three suboptimal advisors were generally
more appealing to participants. The breakdown of the above
averages according to the number of times the advice was
adopted with each advisor, as well as additional insights, ap-
pear in the supplementary material in the authors’ web-site.
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Figure 3: The difference in the average actual profit between
each treatment and the NoAdvice treatment and statistical
significance results (p-value).

Putting the acceptance rate with the different methods over
the timeline, we observed the following patterns: (a) the ac-
ceptance rate with the Optimal advisor converges to 25%,
hence it is likely to remain within this level in further in-
teractions (i.e., beyond the 25 tested interactions for each
participant); (b) the acceptance rate with the S-Elmalech ad-
visor is stable over time, hence is also likely to remain within
this level in additional interactions; (c) with the S-Aggregate
advisor the acceptance rate was stable within the first 16
interactions, and then it monotonically increased in a rela-
tively constant pace; and (d) with the S-Gradual advisor the
acceptance rate is the highest (compared to all other meth-
ods) within the first few interactions (as the offers made at
this stage are highly intuitive), then it decreases (as offers
became less intuitive) and finally stabilizes within the last
few interactions. Interestingly, the adoption rate level within
the last few interactions with S-gradual is greater than the
level obtained with the Optimal advisor despite providing
the same advice (as by then S-Gradual advisor has finished
its gradual transition towards the optimal advice). This can
possibly indicate that the users find it more competent due to
the fact that it provided more “reasonable” advices at first.

Offers Made In an attempt to better understand the source
of improvement with the different methods compared to the
NoAdvice case, we calculated the average initial offer users
made within the first and last six games of the experiment.
The results (brought in detail in the supplementary mate-
rial in the authors’ web-site) indicate that there is no statis-
tically significant difference between the averages in early
and later games for all advisors. Meaning that none of the
advisors affected the user’s understanding of the solution to
the problem. The performance improvement achieved with
our methods can therefore be fully attributed to the user’s
perception of the advisor’s competence (which is also re-
flected in the increase in the adoption rates) and the value
encapsulated in the advices given.

Furthermore, the distribution of offers for the NoAdvice
treatment was used for validation purposes, as this is a set-
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ting similar to the ones originally used in prior work. The
results are indeed quite similar. For example, the percentage
of participants offering $600 and more when using x = 1.6
in our experiment is 36% compared to 38% in Samuelson et
al. (1985) and 36% in Elmalech et al (2015).

User’s satisfaction Figure 4 depicts the results of user sat-
isfaction based on the three questions that users had to an-
swer at the end of the experiment. The proportions given in
graphs (a), (b) and (c) correspond to the percentage of people
who felt generally satisfied with the advisor, would recom-
mend it to a friend and stated that will use the advisor again,
respectively. The figure also includes the statistical signifi-
cance of the difference in the proportions between the dif-
ferent treatments (reporting only cases where the p− value
obtained is less than 0.1). The statistical test used is the Z-
Test for two population proportions.
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Figure 4: User satisfaction survey results.

Based on Figure 4 we conclude that both S-Gradual and
S-Aggregate perform at least as good as all the other tested
methods as far as user satisfaction is concerned. In par-
ticular, both methods perform substantially better (statisti-
cally significant) than all other methods that were checked
in the general satisfaction question, with an improvement of
32%− 50% in that measure. In the two other questions both
methods, as well as S-Elmalech, were found to be signifi-
cantly better than the Optimal advisor, providing evidence
to the strength of the suboptimal advising approach in gen-
eral. Interestingly, the S-Elmalech method that was found to
perform worse than the Optimal advisor as far as average
profit is concerned, was found to result in a better user sat-
isfaction (statistically significant for two of the questions).
This strengthens our hypothesis that the average profit is not
necessarily a sufficient measure for user satisfaction.

Discussion, Conclusions and Future Work
The (relative) failure of the Optimal advisor both in the av-
erage profit and user satisfaction fronts, as well the low ac-

ceptance rate it achieved compared to the other methods,
provide a strong motivation for the development of advice
provisioning methods that use suboptimal advice. The fail-
ure of the S-Elmalech method in the repeated version of the
setting it was initially designed for is yet another evidence
for the need to apply different designs whenever the advi-
sor is used beyond a single interaction. The results reported
in the former section suggest that both methods studied in
this paper are effective in repeated advice provisioning set-
tings and meet their design goals—the use of the S-gradual
results in a significantly improved performance (a greater
average profit in our experimental infrastructure) compared
to all other tested methods, while keeping user satisfaction
at least at the same level (or without a statistically signif-
icant reduction) as with the other methods. The use of the
S-Aggregate results in a significantly improved user satis-
faction compared to all other tested methods, while keeping
average profit at least at the same level (or without a sta-
tistically significant reduction) as with the other methods.
As our experimental results show, maximizing the actual
profit and maximizing the user’s satisfaction from the ad-
visor are two different things with little correlation between
them. The choice of which should be maximized and how to
tradeoff the two is the agent designer’s, hence the usefulness
of having the two methods rather than one.

One encouraging finding related to S-aggregate is that its
acceptance rate was found to monotonically increase over
the last few interactions of the experiment. A high accep-
tance rate for itself is an important desirable property of an
advisor, as argued throughout the paper. Another implication
of this finding, however, is that the increase in the adoption
rate of S-Aggregate is likely to translate to better profits over
time, hence this method is likely to perform even better (than
the current reporting) if extending the experiments beyond
the 25 interactions. This latter phenomena does not recur in
the other methods. A possible limitation of the S-aggregate
method is that it requires knowing what the user is about to
do by herself prior to receiving the advice. While this is in-
applicable for some settings, there are many others where
such information can be obtained, e.g., through user model-
ing, asking the user directly or simply delaying the advice
until after observing the user’s plan for the next move.

We note that, much like many other works in the area of
advice provisioning and human-agent interaction in general,
our experimental design uses only a single testbed (CPG).
Obviously, testing the proposed methods in additional do-
main will strengthen the generality of the results. Having
said that, we emphasize that the CPG is a well established in-
frastructure, that has been extensively used in prior research,
and formerly reported results enabled us in this case to val-
idate the experimental design used. Furthermore, the meth-
ods presented in this paper are general (i.e., do not relate to
specific characteristics of CPG), and can be applied in var-
ious other situations. Also, the decision setting captured by
the CPG is similar to the ones found in various other real life
decision situations, e.g., investments in stocks, bonds and
options.

An important direction for future work is the integration
of methods for user classification in order to fit the advice
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provided to the specific user. Other possible extensions of
this work include the integration of formal methods for esti-
mating user’s trust and confidence in the advisor’s design.
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