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Abstract

Human choice is complex in two ways. First, human choice
often shows complex dependency on available alternatives.
Second, human choice is often made after examining com-
plex items such as images. The recently proposed choice
model based on the restricted Boltzmann machine (RBM
choice model) has been proved to represent three typical phe-
nomena of human choice, which addresses the first complex-
ity. We extend the RBM choice model to a deep choice model
(DCM) to deal with the features of items, which are ignored
in the RBM choice model. We then use deep learning to ex-
tract latent features from images and plug those latent fea-
tures as input to the DCM. Our experiments show that the
DCM adequately learns the choice that involves both of the
two complexities in human choice.

Introduction

The models of choice have been extensively studied in arti-
ficial intelligence (Faradani, Hartmann, and Ipeirotis 2011;
Pfeiffer et al. 2012; Zhen et al. 2015) and other areas (Farias,
Jagabathula, and Shah 2013). The research has revealed that
people show rather irrational but systematic bias in their
choices, and our choices are influenced by available alter-
natives in a complex manner (Rieskamp, Busemeyer, and
Mellers 2006). For example, the probability of choosing an
item, A, can be increased by adding an item, D, into the
choice set, when D is inferior to A in all aspects under
consideration (i.e., D acts as a decoy). This phenomenon is
known as the attraction effect (Rieskamp, Busemeyer, and
Mellers 2006). In addition, we make choices after examining
complex information. For example, we often choose or pur-
chase items after looking at photos or reading textual infor-
mation about products. However, these natural stimuli have
not been the scope of research on choice due to the difficulty
of handling their high-dimensional features. In fact, it has
been confirmed in psychological experiments that phenom-
ena such as the attraction effect appear when people make
choices from images of human faces (Ariely 2010).

Existing choice models either cannot represent some of
the biases in human choice or cannot effectively handle
natural stimuli. A choice model using a restricted Boltz-
mann machine (RBM), called an RBM choice model, was
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recently proposed (Osogami and Otsuka 2014). The RBM
choice model is the only choice model that has been proved
to represent three typical phenomena of human choice (the
similarity effect, the compromise effect, and the attraction
effect) and can learn those phenomena from choice data.
The RBM choice model, however, cannot handle features of
items. In this model, two items are either identical or dis-
tinct, and there is no notion of similarity between items.
Conventional choice models, including the standard multi-
nomial logit model (MLM), take into account the features
of items, but there has been no work that deals with natural
stimuli with choice models in the literature.

Deep learning (Hinton and Salakhutdinov 2006; Vincent
et al. 2010; Salakhutdinov and Hinton 2009a) extracts dis-
tributed representations of features that can be used for ad-
ditional learning. The performance of classification and re-
gression is greatly improved using deep learning in various
fields including image recognition (Krizhevsky, Sutskever,
and Hinton 2012) and audio classification (Lee et al. 2009).
To date, deep learning has not been applied to choice mod-
els, and it is non-trivial how deep learning should be applied,
particularly to the RBM choice model, in a way that repre-
sents the typical phenomena of human choice.

We propose a deep choice model (DCM) by extending the
RBM choice model to incorporate features extracted through
deep learning, which is the first contribution of this paper.
We show that the DCM generalizes the RBM choice model,
so that the DCM is guaranteed to represent all of the typi-
cal choice phenomena in the sense of Osogami and Otsuka
(2014) when it corresponds to the RBM choice model. We
will also see that the DCM generalizes the MLM in such a
way that it represents the typical choice phenomena. In ad-
dition, the DCM can be trained by following the exact log-
likelihood gradient without approximation.

We validate the effectiveness of the DCM with experi-
ments that capture the essence of human choice from a set
of natural stimuli, which constitute our second contribu-
tion. Specifically, our choice set consists of images, and the
choice exhibits the attraction effect. Our experiments show
that we can train the DCM in such a way that the trained
DCM can adequately predict the choice probabilities for un-
seen images or unseen combinations of images.
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Related work

Much of the research on choice models has been on the
MLM and its variants. The MLM can be derived from the
axiom of independence from irrelevant alternatives (IIA),
which essentially states that the ratio between choice proba-
bilities of two items should not depend on what other items
are in the choice set (Luce 1959; McFadden 1974). As
the human choice often violates the IIA axiom (Rieskamp,
Busemeyer, and Mellers 2006), many variants of the MLM
have been studied in the literature. These include hierar-
chical MLM (Chapelle and Harchaoui 2005), multinomial
probit model (Hausman and Wise 1978), and nested logit
model (Ben-Akiva 1973). More generally, these variants of
the MLM fall into the class of random utility models (Mc-
Fadden 1981). Although these random utility models can vi-
olate the IIA axiom, they inherently cannot represent the at-
traction effect (Rieskamp, Busemeyer, and Mellers 2006).

Sequential sampling models (Busemeyer and Townsend
1993; Usher and McClelland 2004; Otter et al. 2008), on the
other hand, mimic the cognitive process of the human mak-
ing a choice and have been shown to represent the typical
phenomena of human choice, including the attraction effect,
for some specific cases. However, no algorithms have been
proposed to train a sequential sampling model in a way that
the trained model exhibits the typical choice phenomena.

Research on choice models has recently focused on learn-
ing and representing the typical phenomena of human choice
(Osogami and Katsuki 2014; Osogami and Otsuka 2014;
Shenoy and Yu 2013; Takahashi and Morimura 2015). The
RBM choice model has the unique characteristic that it can
be proved to represent all three typical phenomena of human
choice (Osogami and Otsuka 2014).

Unlike other choice models, however, the RBM choice
model cannot deal with the features of items, which has sig-
nificantly limited its applicability. More precisely, Osogami
and Otsuka (2014) briefly suggest a way to incorporate the
features of items into the RBM choice model but does not
discuss (and it is nontrivial) how to train the RBM choice
model when the features are incorporated in the suggested
approach. The DCM incorporates the features differently
from what was suggested in Osogami and Otsuka (2014) by
using the ideas from replicated soft max (Salakhutdinov and
Hinton 2009b; Srivastava, Salakhutdinov, and Hinton 2013).

Deep choice model

The DCM gives the probability of selecting each item, or
each subset of items, in a given choice set. In this section,
we introduce the DCM and show that the DCM generalizes
the MLM and the RBM choice model. We then present a
training algorithm for the DCM.

Model architecture

A choice set consisting of D items is represented by a set
of D vectors, X ≡ {x(1), . . . ,x(D)}. For d ∈ [1, D], a K-
dimensional binary vector, x(d) ∈ {0, 1}K , represents the
features of an item. The DCM gives the probability of select-
ing an item or a subset of items from a given choice set. The
set of selected items (the selected set) consisting of C items

is represented by Y ≡ {y(1), . . . ,y(C)}, where y(c) ∈ X
for c ∈ [1, C]. We do not a priori fix the size of the choice
set or the selected set, allowing C and D to vary.

The DCM is a restricted Boltzmann machine (RBM; Hin-
ton (2002)) that has the particular structure shown in Fig. 1a.
An RBM is composed of a layer of visible nodes (i.e., visible
layer) and a layer of hidden nodes (i.e., hidden layer). While
a node in one layer can be connected to a node in the other
layer, there are no intra-layer connections. In the DCM, the
visible layer (bottom part of Fig. 1a) is separated into two
parts: input layers and output layers.

The input layers (the left part of the visible layer) repre-
sent the choice set, X . For d ∈ [1, D], the d-th input layer
represents x(d), the K-dimensional binary feature of the d-
th item in X . The output layers (the right part of the visible
layer) represent the selected set, Y . For c ∈ [1, C], the c-th
output layer represents y(c), the feature of the c-th item in
Y . The number of input layers and output layers is variable,
because C and D are variable.

To absorb the impact of the varying C and D as well as the
imbalance between C and D, we replicate the input layer C
times and the output layer D times. This results in C D input
layers and C D output layers. Let xc,d,i denote the value of
the i-th node in the d-th layer of the c-th replica of the input:
xc,d,i = (x(d))i for i ∈ [1,K], d ∈ [1, D], and c ∈ [1, C].
Let yd,c,j denote the value of the j-th node in the c-th layer
of the d-th replica of the output: yd,c,j = (y(c))j for j ∈
[1,K], c ∈ [1, C], and d ∈ [1, D]. The hidden layer is not
replicated and is composed of L nodes, taking the binary
value h� ∈ {0, 1} for � ∈ [1, L]. Let h ≡ (h�)�∈[1,L].

The DCM is parameterized by bias and weight. Bias is as-
sociated with each node, and weight is associated with each
connection of a pair of nodes. We let some of these param-
eters share common values to keep the probability of select-
ing Y from X invariant to the order of the items in Y or X .

For reasons analogous to the RBM choice model (Os-
ogami and Otsuka 2014), the bias on the input nodes would
have no effect and are not considered here. For � ∈ [1, L],
let bhid� denote the bias associated with the �-th hidden node.
Let bhid ≡ (bhid� )�∈[1,L] ∈ R

L denote the vector of the bias
for the hidden nodes. Let boutd,c,j denote the bias associated
with the j-th node in the c-th layer of the d-th replica of the
output. The bias of the output nodes shares common values
and is normalized, depending on the size of the choice set
and the selected set, as follows:

boutd,c,j =
1

C D
boutj (1)

for j ∈ [1,K]. Let bout ≡ (boutj )j∈[1,K] ∈ R
K denote the

bias shared among the output nodes.
The weight is associated with each connection between

a hidden node and one of the input or output nodes. Let
Wc,d,i,� denote the weight for the connection between the
�-th hidden node and the i-th node of the d-th layer of the c-
th replica of the input. Let Ud,c,j,� denote the weight for the
connection between the �-th hidden node and the j-th node
of the c-th layer of the d-th replica of the output. The weight
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(a) The representation as an RBM
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(b) The simplified representation

Figure 1: Two representations of the DCM, where the input (bottom left part) is connected to the output (bottom right part)
via a hidden layer (top part). (a) Here, each node takes a binary value. (b) Here, input and output nodes take real values, while
hidden nodes take binary values.

shares common values and is normalized as follows:

Wc,d,i,� =
1

C D
Wi,�, Ud,c,j,� =

1

C D
Uj,� (2)

for i, j ∈ [1,K] and � ∈ [1, L]. To denote the weight shared
among the connections, let W ≡ (Wi,�)i∈[1,K],�∈[1,L] and
U ≡ (Uj,�)j∈[1,K],�∈[1,L], where W,U ∈ R

K×L.
The parameters of the DCM are collectively denoted by

θ ≡ {W,U,bout,bhid}. The values of (X ,Y,h) and θ
determine the energy of the DCM, E(X ,Y,h; θ), which in
turn defines the probability distribution over the values of
the nodes of the DCM.

In accordance with the standard properties of the RBM,
the energy of the DCM is represented as follows:

E(X ,Y,h; θ) = −
L∑

�=1

h� b
hid
� −

D∑
d=1

C∑
c=1

K∑
j=1

yd,c,j b
out
d,c,j

−
D∑

d=1

C∑
c=1

K∑
i=1

L∑
�=1

xc,d,i Wc,d,i,� h�

−
D∑

d=1

C∑
c=1

K∑
j=1

L∑
�=1

yd,c,j Ud,c,j,� h�. (3)

Plugging the shared values (1)-(2) into (3), we obtain

E(X ,Y,h; θ) = −h�bhid − ȳ�bout − x̄�Wh− ȳ�Uh, (4)

where

x̄ ≡ (x̄i)i∈[1,K] ≡ 1

|X |
∑
x∈X

x (5)

ȳ ≡ (ȳj)j∈[1,K] ≡ 1

|Y|
∑
y∈Y

y. (6)

The simplified expression (4) provides an alternative per-
spective of the DCM, as illustrated in Fig. 1b. Similar to
Fig. 1a, the DCM in Fig. 1b is represented with a hidden

layer and a visible layer. Here, the visible layer is split into a
single input layer and a single output layer, as opposed to the
C D layers in Fig. 1a. The visible nodes in Fig. 1b take real
values, x̄ and ȳ, so that this representation is not a proper
RBM. The following argument is based on the representa-
tion in Fig. 1a, where the nodes take binary values.

To define the choice probability with the DCM, let
F (X ,Y; θ) be the equilibrium free energy given (X ,Y):

F (X ,Y; θ) ≡
∑

h̃

E(X ,Y, h̃; θ), (7)

where the summation with respect to h̃ is over all of the pos-
sible binary vectors of L dimensions. Then the probability of
selecting Y given X is defined as follows:

p(Y|X ; θ) =
exp(−F (X ,Y; θ))∑

Ỹ∈Z
exp(−F (X , Ỹ; θ))

, (8)

where Z ⊂ 2X denotes the candidates of the selected set.
Using the energy function of the DCM defined in Eq. (4),

we express the free energy given X and Y as follows:

F (X ,Y; θ) = −x̄�Wĥ− ȳ�Uĥ− ȳ�bout − ĥ�bhid,
(9)

where, letting σ(z) ≡ (1 + exp(−z))−1 be the logistic sig-
moid function, we define ĥ ≡ (ĥ�)�∈[1,L] such that

ĥ� = σ
(
b� +

K∑
i=1

x̄iWi,� +

K∑
j=1

ȳjUj,�

)
(10)

is the probability that the hidden node � ∈ [1, L] takes the
value of 1 given x̄ and ȳ. We will discuss ways to calculate
(8) when we introduce a training algorithm in the following.

The DCM extends replicated softmax (Salakhutdinov and
Hinton 2009b; Srivastava, Salakhutdinov, and Hinton 2013)
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to the model with input and output. Replicated softmax has
been used to absorb the impact of the varying size of the doc-
ument, where a visible softmax layer representing a word is
replicated to the number of total words. Each softmax layer
has a shared bias and is connected to the hidden layer with
shared weights. In replicated softmax, the bias for the hid-
den layer is multiplied by the total number, B, of words,
which we interpret as making B copies of RBMs sharing a
common hidden activation to deal with the case where both
input and output have varying size. Unlike replicated soft-
max, the layers of the DCM are not softmax but binary.

Relationship to other choice models

The DCM is reduced to the MLM, when C = 1, W = 0,
U = 0, and bhid = 0. In this case, the choice probability of
y from X is expressed as follows:

p(y|X ;bout) =
exp(y�bout)∑

ỹ∈X
exp(ỹ�bout)

, (11)

which is exactly the choice probability given by the MLM.
The MLM can also be seen as the DCM with no hidden
nodes (L = 0) when exactly one item is selected (C = 1).

The DCM is reduced to the RBM choice model when the
binary features of the items are the standard basis of the
K-dimensional Euclidean space. Here, there are K distinct
items that can be included in a choice set. For 1 ≤ k ≤ K,
the feature of the k-th such item is the unit vector whose
k-th element is 1 and the other elements are 0. This means
that the i-th element of the feature vector denotes whether
the item is the i-th item in I. Then x̄i = 1/C if x(i) ∈ X ,
and x̄i = 0 otherwise. Likewise, ȳj = 1/D if y(j) ∈ Y ,
and ȳj = 0 otherwise. Multiplying x by C and y by D, then
dividing W by C and U by D, we keep the energy of the
DCM unchanged and obtain the energy of the RBM choice
model shown in Osogami and Otsuka (2014).

Training

We train the DCM, parameterized by θ, by following the
gradient of conditional log-likelihood:

∇θ log
∏

(X ,Y)∈D
p(Y|X ; θ) =

∑
(X ,Y)∈D

∇θ log p(Y|X ; θ),

(12)

where D is the set of training data, consisting of pairs of a
choice set, X , and a selected set, Y . By (8) and (9), we have

∇θ ln p(Y|X ; θ)

= −∇θF (X ,Y; θ) +
∑

Ỹ∈Z
p(Ỹ|X ; θ)∇θF (X , Ỹ; θ).

(13)

The gradient of the free energy in (13) with respect to each
parameter is given as follows:

∇WF (X ,Y; θ) = −x̄ ĥ�, ∇UF (X ,Y; θ) = −ȳ ĥ�,

∇boutF (X ,Y; θ) = −ȳ, ∇bhidF (X ,Y; θ) = −ĥ . (14)

Eq. (9) and Eq. (14) suggest that F (X ,Y; θ) can be eval-
uated in O(K L) time. With Eq. (8), we can then evaluate
Eq. (13) in O(|Z|K L) time, where recall that Z denotes
the candidates of selected sets. When the size of Z is small,
Eq. (13) can be evaluated exactly. For example, if we con-
sider only the cases where exactly one item is selected, we
have |Z| = |X |. When |Z| is prohibitively large, we can
estimate the second term in Eq. (13) using Gibbs sampling.

Numerical experiments

We now validate the effectiveness of the combination of the
DCM and deep learning through numerical experiments. Be-
cause data of choosing from natural stimuli is unavailable,
we will create a dataset from publicly available images.

Digit choice task

We consider the setting where an agent chooses an image
from a set of images. The goal of our task, which we refer to
as the digit choice task, is to learn the probability distribution
that the agent follows when the agent chooses images. Train-
ing data consist of the pairs of X , a choice set of images,
and Y , the selected image (here, C = |Y| = 1). Specifically,
we use the gray-scale images of handwritten digits from the
MNIST dataset1. Due to the size (28 × 28) of the images
in the MNIST dataset, the item shown to the agent is repre-
sented as a 784-dimensional vector [0, 1]784, where the pixel
intensity is scaled between 0 and 1.

To create the training dataset, we use 100 images for each
of the three digits: 0, 1, and 9. These 300 images are ran-
domly selected from the MNIST dataset without duplica-
tion. Our choice set, X , consists of two or three images of
the three digits: {0, 1}, {0, 1, 9}, or {1, 9}. Fig. 2a shows the
probability distribution that the agent follows. Specifically,
when the choice set consists of images of 0 and 1, the agent
chooses the image of 0 with probability 0.9 and the image of
1 otherwise. When the choice set consists of images of 0, 1,
and 9, the choice probabilities are 0.1, 0.8, and 0.1, respec-
tively. When the choice set consists of images of 1 and 9, the
choice probabilities are 0.1 and 0.9, respectively.

Notice that the choice probabilities in Fig. 2a cause the at-
traction effect. Specifically, the images of 0 are more attrac-
tive (selected more frequently) than the images of 1, when
only images of 0 and 1 are in the choice set. However, the
images of 1 are more attractive than the images of 0, when
an image of 9 is in the choice set together with images of 0
and 1. That is, an image of 9 acts as a decoy and increases
the relative attractiveness of an image of 1.

For each of the three combinations of the three digits
({0, 1}, {0, 1, 9}, or {1, 9}), we create 1,000 pairs of X and
Y in such a way that the empirical distribution of the choices
exactly matches the target distribution in Fig. 2a. For ex-
ample, for the combination of {0, 1}, we randomly choose
1,000 pairs of an image of 0 and an image of 1 from the
100 images prepared for training. These constitute the 1,000
choice sets. For each choice set of two images, X , one of the
two images is chosen as the single element of the selected
set, Y . Specifically, an image of 1 is selected as the element

1http://yann.lecun.com/exdb/mnist/index.html.
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(b) DCM-0 (MLM; baseline)
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(c) DCM-64

Figure 2: The digit choice task. (a) The target distribution, of selecting each digit given a choice set, that is used to generate
training data. (b) The distribution learned by the MLM. (c) The distribution learned by the DCM with 64 hidden nodes.

of Y for 900 choice sets, and an image of 0 is selected for
the remaining 100 choice sets.

When we test the quality of trained choice models, we
use another set of 300 images (100 images for each of the
three digits) that have not been used for training. The choice
set, X , for testing is created analogously to that for training.
The goal of the digit choice task is to train a choice model,
parameterized with θ, such that the conditional probability
distribution, p({y}|X ; θ) for y ∈ X , well approximates the
corresponding conditional probability distribution that the
agent follows, for each X of the choice sets for testing.

Deep learning

To handle images with the DCM, we first create distributed
binary representation for each image of handwritten digits
in an unsupervised fashion using deep learning. The aim of
deep learning is to extract binary features reflecting latent
structures embedded in images without using class labels.
With the MNIST dataset, the latent structure is expected to
reflect the digit associated with the image. We use 50,000
images from the MNIST dataset for deep learning. These
50,000 images do not overlap with any of the 300 images
used to train choice models or with the 300 images used to
test the choice models.

We employ the stacked denoising autoencoder (SDA;
Vincent et al. (2010)) for deep learning. We prepare 500 bi-
nary nodes with the hyperbolic tangent nonlinearity for the
first hidden layer, which is fully connected to the nodes in
the input layer with 784 binary nodes. We prepare another
500 binary nodes with the hyperbolic tangent nonlinearity
for the second hidden layer, which is fully connected to the
first hidden layer. We use the activation of the second hid-
den layer as the latent features of the corresponding input
images. More specifically, the values of the second hidden
layer are scaled to [0, 1]500 and then rounded to {0, 1}500.

The SDA is trained by the use of Pylearn2 (Goodfellow et
al. 2013). Before training the SDA, all of the weights and
biases associated with the two hidden layers of the SDA
are initialized by random samples from the uniform distri-
bution over (−0.05, 0.05). We first train the weights and bi-
ases for the first hidden layer of the SDA for 1,000 epochs. In

each epoch, the SDA is trained with the 50,000 images with
stochastic gradient descent using the minibatches of 100 im-
ages. Here, the learning rate is set to a small constant value
of 0.001. The corruption level for the input layer, which is
the probability of randomly setting the value of nodes to 0,
is set to 0.2. After training the first layer of hidden units, we
fix the parameters associated with the first hidden layer and
train the parameters associated with the second hidden layer
with exactly the same settings used for the first hidden layer,
except for the corruption level, which is now set to 0.3.

Results

We train the DCM using the training data, which consist of
the 3,000 pairs of the choice set of images and the selected
image (X and Y). We use the binarized latent features ex-
tracted from an image via deep learning as the feature vector
of that image. Hence, the feature vector has K = 500 di-
mensions. The number of hidden nodes, L, is varied among
0, 4, 16, 64, 256, and 1024. Weights W and U are initial-
ized by samples from the uniform distribution over [−a, a],
where a ≡ m/

√
max{K,L}; we use m = 10 for W and

m = 0.1 for U. Biases bh and by are initialized to 0. The
DCM is trained for 20 epochs, where all of the 3,000 pairs
of (X ,Y) are used as training data in each epoch, and the
parameters of the DCM are updated with stochastic gradient
descent (Eq. 13) using the minibatches of 10 images. The
learning rate is set to 0.001.

Fig. 2b shows the choice probabilities that are predicted
by the trained DCM with no hidden nodes, which corre-
sponds to the MLM, as is shown in Eq. (11). Here, the choice
probabilities are evaluated for the 1,000 choice sets of im-
ages for each of the three combinations of digits: {0, 1},
{0, 1, 9}, and {1, 9}. For each of the three combinations of
digits, the predicted choice probabilities are averaged over
the 1,000 choice sets and shown as bars in the figure. Error
bars show corresponding standard deviations.

As is evident in Fig. 2b, the target distribution in Fig. 2a
cannot be represented by the MLM. In the target distribu-
tion, an image of 9 acts as the decoy and causes the attrac-
tion effect in which the relative probability of choosing an
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Figure 3: Kullback-Leibler (KL) divergence between the target distribution and the distribution predicted by the trained DCM.
(a) The average KL divergence is shown as a function of the number of hidden nodes in the DCM. (b-c) The average KL
divergence is shown for each choice set. The error bar shows the corresponding standard deviation.

image of 1 over an image of 0 increases. The trained MLM
shows that the ratio between the probabilities of choosing an
image of 0 or 1 is essentially independent of the existence of
an image of 9 in the choice set.

Fig. 2c shows the choice probabilities that are predicted
by the DCM with 64 hidden nodes (DCM-64), which has
been trained analogously to the MLM. Contrary to the
MLM, the choice probabilities predicted by the DCM-64 ex-
hibits the attraction effect that appears in the target distribu-
tion. Although prior work shows that the RBM choice model
can also be trained to represent the attraction effect (Os-
ogami and Otsuka 2014), the RBM choice model cannot
give any useful prediction for the digit choice task. Recall
that the images used for training are never used in testing
the choice model, so that the prediction given by the RBM
choice model will be essentially random.

We use the results in Fig. 3 to quantitatively evaluate the
predicted distributions. As a measure of the quality of pre-
diction, we use the Kullback-Leibler divergence,

KLX (q||p) ≡
∑
Y

q(Y|X ) log
q(Y|X )

p(Y|X )
, (15)

between the target distribution, q, and the predicted distribu-
tion, p. In Fig. 3a, the KL divergence is plotted as a function
of L, the number of hidden nodes used in the DCM. Here,
KLX (q||p) is averaged over the 3,000 choice sets prepared
for testing. In this particular setting, the average KL diver-
gence is 0.374 for the DCM-0 (or equivalently MLM), which
is reduced by increasing L and reaches the minimum value
of 0.153 with the DCM-64. The predictive error is thus re-
duced by 58.8 %. Adding further hidden nodes deteriorates
the predictive performance in this case, but the optimal num-
ber of hidden nodes depends on the particular settings such
as the amount of training data. In Fig. 3b-3c, we show the
KL divergence for each of the three combinations of digits.
Here, the KL divergence is averaged over the 1,000 choice
sets for each case. The DCM-64 has a smaller average KL
divergence than the MLM for each of the three cases, and
the improvement is most significant for the cases when the
choice set consists of three images of 0, 1, and 9.

We ran the experiments on a Windows workstation having

16 cores of Intel Xeon CPU E5-2670 2.6 GHz and 64 GB
memory. Training the SDA took 406 minutes, including the
time to store intermediate results and other overhead that
constitute about 25 % of the total execution time. Training
the deep choice model took 268 seconds, and training the
multinomial logit model took 190 seconds. Notice that we
did not optimize the hyperparameters such as the learning
rate for acceleration, which is not a major focus of this paper.

Conclusion

The study of choice has a long history (Train 2009; Greene
2011), but this paper addresses the problem of learning
choices from natural stimuli, or images in particular, for the
first time in the literature. The combination of the MLM and
deep learning, which is used as the baseline in our experi-
ments, is in fact new. The key idea of the DCM when com-
bined with deep learning is in creating the average vector of
the features of items in the choice set and using that average
vector as input to the choice model. This idea can potentially
be applied to other choice models to be combined with deep
learning, opening up a new direction of research on the use
of deep learning for modeling and learning human choice.

While our digit choice task focuses on the attraction ef-
fect, we show in the supplementary material (Otsuka and
Osogami 2016) that the DCM can represent three typi-
cal phenomena of human choice (the similarity effect, the
compromise effect, and the attraction effect) in the set-
tings of (Shenoy and Yu 2013). These three typical phe-
nomena are considered to be robust and significant in the
human choice (Rieskamp, Busemeyer, and Mellers 2006;
Otter et al. 2008).
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