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Abstract

This paper suggests a model and methodology for mea-
suring the breadth and flexibility of a dialog system’s
capabilities. The approach relies on having human eval-
uators administer a targeted oral exam to a system and
provide their subjective views of that system’s perfor-
mance on each test problem. We present results from
one instantiation of this test being performed on two
publicly-accessible dialog systems and a human, and
show that the suggested metrics do provide useful in-
sights into the relative strengths and weaknesses of
these systems. Results suggest that this approach can
be performed with reasonable reliability and with rea-
sonable amounts of effort. We hope that authors will
augment their reporting with this approach to improve
clarity and make more direct progress toward broadly-
capable dialog systems.

Introduction

Two of the most glaring weaknesses of current dialog sys-
tems are their lack of breadth and flexibility. This already has
negative practical consequences on system usability, and we
can only expect the problem to get worse if these character-
istics are not emphasized.

Breadth is a system’s ability to perform adequately on a
variety of reasoning tasks. A lack of breadth has negative
consequences on user experience today. For example, if
a system has advanced capabilities without foundational
capabilities, it may not be able to fail gracefully. The
following example dialog with Google Now1 illustrates this:

User: How far is it to the moon?
Google Now: The moon is 238,000 miles from Earth.
User: How far is it from the moon to Saturn?
Google Now: about 1.4 billion km (incorrect)
User: How are you computing the distance between celes-
tial bodies?
Google Now: Shows Google search results: Celestial

Copyright c© 2016, Association for the Advancement of Artificial
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1All examples in this paper were from interactions during Au-
gust or September of 2015. The dialog systems used are cloud-
based, subject to A/B testing, and are updated over time. Therefore,
individual examples may not be repeatable.

navigation - Wikipedia, ...
User: Is the moon a thing?
Google Now: Shows Google search results: 10 Things You
Didn’t Know About the Moon, 10 Strange Secrets of the
Moon, Moon Facts, ...

Flexibility is a system’s ability to perform adequately on
a variety of tasks which require nearly identical knowledge
and reasoning. A lack of flexibility has negative conse-
quences on user experience with dialog systems today as
well. If a user does not know exactly how to phrase their
request, or what the system’s exact limits are, they may
be unable to get the system to work. The following two
examples from Google Now illustrate this:

User: How is traffic to San Francisco?
Google Now: There is currently heavy traffic from your
location to San Francisco, it is 1 hour and 6 minutes by car.

User: How is traffic to San Francisco via I-280?
Google Now: Shows Google search results: San Francisco
- Yelp, Bay Area Traffic Report, ...

As the number of highly-specialized functions integrated
into dialog systems increases, other issues will likely present
themselves. Capabilities will have to integrate with each
other, or else strange behavior may result. For example,
Google Now warns users to leave for their scheduled events
in a way that satisfies travel-time constraints, but does not
warn them if they schedule two events with travel-time con-
straints which are unsatisfiable. Users will also continue to
demand increased flexibility as the number of different de-
vices and input modalities grow.

There is an underlying problem with the engineering ap-
proach that leads to highly specialized capabilities, namely
that there is no attempt being made at building general ca-
pabilities. Generality is the characteristic whereby perfor-
mance on one intelligence-requiring task is predictive of
performance at other intelligence-requiring tasks. This idea
goes back to early work on psychometrics (Spearman 1928),
which showed that human performance across many diverse
tests of intelligence are correlated, and may be partially ex-
plained by a general intelligence factor, combined with more
specific intelligences.
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If engineers are to make progress toward generally-
capable dialog systems, there will have to be a scientific
process in place to support them. We believe that this pro-
cess is currently too difficult for dialog systems researchers,
and we make several contributions intended to kick-start it.
1) Researchers need a model for explicitly describing the
‘landscape of capabilities’ upon which dialog systems can
be evaluated. We present such a model and one demonstra-
tive instantiation of this model. 2) The complex capabili-
ties, breadth, and flexibility of a full-fledged dialog system
are difficult to describe, and in limited space, research au-
thors have no good option for concisely reporting this in-
formation. We present a methodology and metrics for eval-
uating systems’ performance within a given instantiation of
our model, which will allow researchers to concisely report
information about their systems that today goes unreported.
3) We carry out the proposed evaluation on several exist-
ing systems for demonstrative purposes, and present results
along with analysis of the method’s reliability and practical-
ity.

Proposed Approach

We propose evaluation driven by an explicit model of a
dialog agent’s capability landscape. All the capabilities so
encoded are externally observable behaviors, so this ap-
proach is agnostic about internal representations and pro-
cesses. Even so, our model groups together capability cate-
gories which intuitively require related classes of knowledge
or reasoning.

Capability Taxonomy

We model the evaluation landscape as a set of capabilities K
and capability categories C where each individual capability
k ∈ K is a member of exactly one category c ∈ C. The
capabilities and categories used in this paper are described
in Table 1.

Capabilities are general classes of behavior, which need
to be further specified to generate a single test problem. A
test domain consists of a set Θ of parameters and a function
Param : K × Θ → {T, F} which returns true if and only
if the the capability accepts the domain parameter. In this
paper, each θ ∈ Θ (shown in Table 2) is either a physical
object or an action verb with a simple one or two-word form.

Instantiating a Capability Taxonomy and Domain

The taxonomy model described above needs to be instan-
tiated with capabilities and capability categories, and a do-
main scope for evaluation needs to be defined. Test reliabil-
ity will depend on the clarity of capability definitions and
documentation. Capabilities should be selected to reflect the
variety of functions taxonomy designers desire a system to
have. Capabilities are grouped into categories based on an
assumption that they require very similar knowledge and
reasoning capabilities. Our hope is that taxonomy specifi-
cations will be developed collaboratively and shared widely.

For this paper, we used a small number of domain con-
cepts (shown in Table 2) several of which are central to ad-
vanced capabilities of interest to the authors. For example,

Google Now can give directions to a nearby coffee shop,
so coffee, drinking, cars, coffee shops, and driving are all
concepts within the test domain. Test performance for an in-
dividual system will depend strongly on the domain, so it is
important for researchers to report the domain they test in.

Elicitation Trials

The basic unit of testing is the elicitation trial, in which a hu-
man tester tries to get the system being tested to demonstrate
the desired capability. The tester uses a tool which presents
a capability for them to test along with the domain con-
cept which parametrizes the capability. The tester then must
formulate a problem in order to elicit the desired behavior.
The tool presents documentation for the capability, which in-
cludes example eliciting utterances the tester might attempt.
The tester has the option to skip a trial if they can not easily
formulate a test, and the tester and system can both attempt
clarification at the tester’s discretion. The tester labels each
trial with one of the following: ‘Pass’, ‘Fail’, ‘Alternative’.
Where Pass and Fail are self-explanatory, and Alternative in-
dicates that the system performed some action that gives the
user the right information, but fails to perform the capability
desired, even after optional repeated attempts and clarifica-
tions.

An example elicitation trial may proceed as follows: The
evaluation tool selects the ‘Class Search’ capability, and the
‘coffee shop’ physical noun. Documentation and example
eliciting utterances for ‘Class Search’ are shown to the
evaluator, along with the parameter ‘coffee shop’ and its
definition. The human evaluator must then formulate their
own test utterance and judge the response:

Human Evaluator: Do you know of any coffee shops?
Test System: Shows search engine results: 13 Tips to Open
a Successful Coffee Shop, Coffee Shop Tips, ...

If the evaluator does not want to rephrase, the trial would
end there, and the evaluator should score it as a ‘Fail’.

Below is another elicitation trial where the evaluator
decides that clarification is needed in order to score the
system. In this case, the tool selected the ‘Has-a YNQ’
capability and the ‘moon’ physical noun:

Human Evaluator: Do moons have gravity?
Test System: Duh.
Human Evaluator: Yes or no.
Test System: Or none of the above?

The initial response was unclear, so the evaluator clarified
the question. Once the system evaded the evaluator’s second
attempt, the human gave up and failed the system on that
trial.

Both of the previous examples were one-off question-
answering capabilities, and do not necessarily require a
dialog system. The ‘Narrowed Search’ capability does
require an extended dialog in order for the capability to be
performed. For the following example, the tool selected the
‘Narrowed Search’ capability, and the ‘moon’ concept:
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Capability Category Capability Example Elicitation Example Correct Response
c1
Physical Object
Ontology

Hierarchy YNQ “Is a car a type of vehicle?” “Yes.”
Get Definition “Define car.” “A car is a four-wheeled vehicle,

typically powered by gasoline ...”
Has-a YNQ “Do cars have ears?” “No.”

c2
Physical Object
Search

Class Search “What cars do you know of?” “I have records for over 10K cars.”
Property Search “What blue used cars do you know

of?”
“There are 14 blue used cars in my
database.”

Narrowed Search ...“Are any of them convertible?” “None of the blue used cars are con-
vertible.”

Alternative Search ...“How about red?” “There are 12 red used cars in my
database.”

c3
Action Verb
Ontology

Effect YNQ “If a person rides a bus, does he stay
in the same place?”

“No.”

Pre-conditions YNQ “Does a person need money to ride
a bus?”

“Yes.”

During WHQ “What happens while riding a bus?” “The bus driver directs the bus
along the bus route, stopping at
scheduled stops.”

c4
Simple Planning

Provide Plan “I want to go downtown” “Take the 4b Bus.”
Grounded Effects
YNQ

“If I ride the 4b, will it take me
downtown?”

“Yes.”

Grounded Pre-
conditions YNQ

“Can I get on the 4b bus if I am at
4th and Duran?”

“No.”

Table 1: Summary of the example taxonomy of capabilities and capability categories used in the presented evaluations. Cate-
gories c1 and c2 are parametrized by physical nouns, c3 and c4 are parametrized by action verbs as shown in Table 2.

Physical Nouns Action Verbs
moon, sports team, coffee
shop, city, car

play game, drink, drive,
pay

Table 2: The domain of evaluation used within this paper.
These concepts are relevant to some advanced capabilities
of interest to the authors, such as Google Now’s navigation
function.

Human Evaluator: What moons does Saturn have?
Test System: Saturn has moons Titan, Enceladus and
others.
Human Evaluator: Do any of them have volcanic activity?
Test System: Shows search engine results: Volcanology on
Mars (Wikipedia), Volcano (Wikipedia), ...

The system correctly performed the initial search, but was
unable to narrow the search by adding the constraint that the
moon should have volcanic activity, so it fails this trial.

Each trial t for system s is represented by the tuple:
t = (e[t], k[t], θ[t], o[t]), where e[t] is the evaluator, k[t] is
the capability being tested, θ[t] is the parameter for the ca-
pability, and o[t] ∈ {0, 1} corresponding to ‘Fail’ / ‘Pass’
is the outcome of the trial according to the evaluator (‘Al-
ternative’ test results are mapped to ‘Fail’ for the purposes
of all the metrics in this paper, though other metrics could
be introduced to measure these). We also define c[t] as the
capability category the trial is testing (recall from earlier,
c ∈ C where C is the set of taxonomy concept categories),

which can be determined uniquely from k[t]. After all eval-
uators have tested a system, the test result Ts is the set of
trials used for analysis.

For each evaluator, the tool traverses the entire taxonomy,
grouping together all tests from the same category. Domain
concept parameters are selected randomly for each problem,
meaning that there is a possibility of multiple problems hav-
ing the same capability and parameter.

Evaluation Metrics

Evaluating Performance Performance P of a system s
within a capability k is computed by the following:

Pk(s) = Average({o[t]; t ∈ Ts, k[t] = k})
Performance P of a system s within a capability category

c is the average capability performance of capabilities within
that category:

Pc(s) = Average({Pk(s); k ∈ c})
Total performance is the sum of category performance

measures over all categories:

Ptotal(s) =
∑
c∈C

Pc(s)

Evaluating Breadth Breadth should measure the ability
of the system to make use of a wide variety of reasoning
procedures and knowledge. In terms of our capability taxon-
omy model, this means breadth should measure the diversity
of capability categories which can be performed. Measuring
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diversity is in itself a complicated problem, leading to sev-
eral approaches such as that introduced by (Rao 1982) and
investigated in (Pavoine, Ollier, and Pontier 2005). For sim-
plicity, we measure diversity using the normalized Shannon
entropy measure (Kumar, Kumar, and Kapur 1986), denoted
by H̃(Q) where Q is a discrete probability distribution.:

H̃(Q) = − 1

ln(n)

n∑
i=1

qi ∗ ln(qi)

A system’s breadth B is the diversity of capability cate-
gory performance:

B(s) =

{
0 if Ptotal(s) = 0

H̃(QB) otherwise

where the distribution QB has the probability mass function:

qB(c) =
Pc(s)

Ptotal(s)
, c ∈ C

The MLE estimate of entropy is negatively biased as de-
scribed in (Paninski 2003), but estimates have low vari-
ance, so H̃ serves the purpose of a reliable diversity mea-
sure. However, comparisons should only be made between
breadth measures based on the same number of samples, due
to the estimator bias’s dependence on sample size.

Evaluating Flexibility Flexibility should intuitively mea-
sure the ability of the system to bring some knowledge and
reasoning to bear in a variety of ways. As such, we com-
pute flexibility of a capability category Fc as the diversity of
capability performance within that category.

Fc(s) =

{
0 if Pc(s) = 0

H̃(QF (c)) otherwise

where the distribution QF (c) has the probability mass func-
tion:

qF (k) =
Pk(s)∑

k′∈c Pk′(s)
, k ∈ c

This measure will distinguish between systems with one
highly-specialized capability and systems with several.

Procedure

We perform evaluations on two computer dialog systems and
one human within a small but diverse test domain (shown
in Table 2). The two computer dialog systems were Google
Now, which uses a speech input interface, and Cleverbot,
which uses a typed interface. The human evaluation was per-
formed anonymously over Internet chat, where the test sub-
ject did not have access to Internet search. The human test
subject was a graduate student in our lab, and is not meant
to be representative of the average human. We use six evalu-
ators, who evaluate the test systems in counter-balanced or-
der.

Each evaluator was given a basic explanation of the pur-
pose of the experiment, and shown instructions for how to

Figure 1: Google Now shows a lack of flexibility by
performing unevenly across capabilities that have similar
knowledge requirements. This difference is captured by the
flexibility metrics in Table 4. This table shows system capa-
bility performances (see definition of Pk) for the three capa-
bilities k in category c1, “Physical Object Ontology”.

rate responses and an example. They were then shown the
tool, and supervised through the first couple problems. One
of the experimenters was available at all times to answer
their questions. Each evaluator performed two elicitation
trials per capability per test system. Evaluators performed
the test on one system completely before moving on to the
next system, and evaluated both programs and the human in
counterbalanced order in one 1.5 hour session. In total, this
process created 468 scored problems for our analysis.

Experimental Results

This paper tries to evaluate three claims about our approach.
First, we claim that our model and metrics can distinguish
between systems with a small number of highly-specialized
capabilities and systems with general capabilities. Second,
we claim that this evaluation method gives reliable results
across different test administrations. Lastly, we claim that
this evaluation can be performed within a time frame typical
of dialog system evaluations.

Exemplifying evidence for our first claim, Figure 1 shows
a typical outcome illustrating the problem with lack of flex-
ibility in Google Now. For “Get Definition”, Google Now
performs as well as a human, but this is a specialized imple-
mentation, and the knowledge which should contribute to
“Get Definition” can not be used flexibly to answer ques-
tions which are conceptually very similar. Not only does
the human outperform the competition on average (which
is captured by performance numbers Pc1 , shown in bold in
Table 3), human performance is more consistent across ca-
pabilities within the category (which is captured by the flex-
ibility numbers Fc1 , shown in bold in Table 4).

To provide evidence for our second claim, we start by
reporting standard deviations for our performance metrics
in Table 3. These tests are only consistent enough to sup-
port drawing slightly significant conclusions about the dif-
ferences between Google Now and Cleverbot for the Physi-
cal Object Ontology and Simple Planning categories (c1 and
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c4, p < .1 with Holm-adjusted t-test). A slightly different
approach is used to measure and determine reliability for
the entropy-based metrics of breadth and flexibility. Since
a sample size much larger than the number of bins is re-
quired for favorable properties of entropy estimators (such
as normality) to materialize (Paninski 2003), we base our
measures on data from groups of three judges. We estimate
our test-retest standard deviation by averaging the sample
standard deviations taken from all possible pairs of non-
overlapping groups of three judges. Results are shown in Ta-
ble 4. Even with groups of three judges, variances in breadth
and flexibility are too high to draw significant conclusions
about differences between the two computer systems.

Measure Cleverbot Google Now Human
Ptotal 0.31 (0.16) 1.04 (0.25) 3.63 (0.27)
Pc1 0.17 (0.1) 0.39 (0.16) 0.97 (0.06)
Pc2 0.06 (0.1) 0.21 (0.12) 0.79 (0.19)
Pc3 0.06 (0.08) 0.11 (0.12) 0.92 (0.13)
Pc4 0.03 (0.06) 0.33 (0.22) 0.94 (0.08)

Table 3: The human subject performance dominated Google
Now and Cleverbot across all categories. A breakdown for
c1, “Physical Object Ontology”, is shown in Figure 1.

Measure Cleverbot Google Now Human
B 0.71 (0.2) 0.91 (0.05) 1 (0)
Fc1 0.54 (0.21) 0.48 (0.25) 1 (0)
Fc2 0 (0) 0.59 (0.09) 0.99 (0.01)
Fc3 0.13 (0.13) 0.44 (0.44) 1 (0)
Fc4 0 (0) 0.65 (0.18) 1 (0)

Table 4: The human subject demonstrated greater overall
breadth and flexibility across all capability categories. A
breakdown for the capabilities in c1, “Physical Object On-
tology”, is shown in Figure 1.

To assess our third claim, we timed evaluators while in-
structing them to take their time and be accurate. Each elic-
itation trial took on average 62 seconds, meaning a single
evaluator can comfortably test a system in 30 minutes us-
ing the taxonomy version and exam size used here. This
should allow evaluation well within the time frame typi-
cally required for current dialog system evaluations with
human subjects such as (Jordan, Albacete, and Katz 2015;
Pincus, Georgila, and Traum 2015).

Prior Work

Dialog system evaluations are as old as AI itself. This sec-
tion presents an overview of prior approaches, which, for the
various reasons described, have not enabled clear reporting
of system capabilities and have not led to consistent progress
toward broadly capable and flexible systems.

Evaluating Chatbots

The Turing Test (Turing 1950) is the most famous test for
computer intelligence, and it assumes a chatbot interface.

If a computer can hold a conversation with a human (from
another room, using a keyboard to communicate), whether
it ‘thinks’ or not is irrelevant. The view that intelligence
should be evaluated by observing behavior, rather than in-
sisting on some unobservable internal phenomenon such as
‘thought’ is widely held today. (Cohen 2005) provides sev-
eral useful criticisms of and alternatives to the Turing Test.
First, the author argues that it is not diagnostic or specific
enough to be used as a benchmark for incremental progress.
Also, the author argues that a system that could pass the Tur-
ing test would not necessarily generalize to perform well on
other intelligence-related tests. Nevertheless, the Turing Test
is iconic, and pursued in the annual Loebner competition 2.

(Shawar and Atwell 2007) describes a small-scale evalu-
ation of several chat-bots and attempts to provide more use-
ful information than the Loebner competition. They test a
machine-learning approach to learning response templates
based on input patterns by generating 3 versions of the AL-
ICE chatbot system3, and analysing the reasonableness of
a chat system’s responses, relatedness of an information-
retrieval system’s results, and the ability of the search sys-
tem to find answers. This is important progress relative to
the sole Loebner / Turing criterion of ‘acting human’, but
definitions need to be more precise, test reliability needs
to be better understood, and performance needs to be bro-
ken down by capability. (Morrissey and Kirakowski 2013)
clarifies the Loebner criterion by using human evaluator sur-
veys and PCA to identify four factors contributing to chatbot
naturalness; they dub these factors conscientiousness, man-
ners, thoroughness, and originality. These factors could be
adapted as categories of capabilities in the approach we take
here, where they would form part of a larger comprehensive
landscape of capabilities. (Vinyals and Le 2015) presents
a novel chatbot architecture, and uses human evaluators to
compare systems by how crowd-sourced human evaluators
prefer their responses to questions. However, there are no
clear criteria for selecting questions, and no analysis is pre-
sented of what these questions are testing or how systems
differ in their performance depending on the types of ques-
tions asked.

Evaluating Spoken Dialog Systems

Most spoken dialog system evaluation has focused on user
satisfaction and task completion. The most influential such
approach is the PARADISE framework (Walker et al. 1997).
PARADISE presumes that maximizing user satisfaction is
the purpose of dialog systems, and goes about defining an
approach for predicting user satisfaction based on more
readily-available performance and cost metrics. There are
several problems with this assumption and any particular
attempt to apply PARADISE. Firstly, dialog systems may
serve purposes other than satisfying their users for example,
a tutoring system may be designed to improve test scores
in its users whether they like it or not, a testing system
may be designed to evaluate a user’s knowledge, and a de-
bate system may be designed to frustrate and embarrass its

2http://www.loebner.net/Prizef/loebner-prize.html
3http://alice.pandorabots.com
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users. Secondly, even if human satisfaction was the end goal,
we do not believe that dialog systems have reached a level
of breadth where focusing on performance now will yield
long-term benefits. Lastly and more practically, task success
and other variables which will contribute to user satisfaction
are highly dependent on experimental conditions, including
what exact tasks users attempt to use the system for and what
sort of highly-suggestive help the system gives the user.

While PARADISE relies on the user’s own judgement
of the system’s performance, there has also been substan-
tial work on exclusively using annotations by third parties
to evaluate dialog systems. Both expert annotators as in
(Dayanidhi et al. 2013), and novices via crowd-sourcing as
in (Yang et al. 2010) have been successfully applied. The
only evaluation we are aware of that attempted to include ex-
pert judgement by actually having experts interact with the
test system was in (Scheffler, Roller, and Reithinger 2009),
but this was only to test two capabilities of the spoken in-
teraction. Though crowd-sourcing has been used effectively
for many NLP annotation tasks (Snow et al. 2008), it is un-
proven for creative and technically demanding tasks such as
the evaluation we propose.

Question-Answering to Evaluate Language
Understanding

A common early approach to evaluating story understand-
ing systems was to ask the systems questions about the story
after reading, such as in (Dyer 1982). This approach also
reflects the intuition that ‘understanding’ as an internal pro-
cess is ill-defined and behavior is a better way to judge an
intelligent system. A similar approach was used to demon-
strate understanding and intelligence in early dialog systems
such as SHRDLU (Winograd 1971). However, questions and
passages were often selected to demonstrate rather than to
realistically evaluate capabilities. Also, by having the sys-
tem designer select questions, issues of performance with
non-expert users and system flexibility were ignored, and the
practical capabilities of systems were greatly exaggerated.

The Text Retrieval Challenge (TREC) conference
(Voorhees and Buckland 2003) has yielded consistent im-
provements to document and answer extraction from large
text corpora. Though a large amount of factual knowledge
can be demonstrated through these techniques, the TREC
challenge does little to test a system’s ability to synthesize
knowledge (a.k.a reasoning). Another question-answering
proposal is described in (Levesque 2012). This involves a
specific type of question called a Winograd Schema, which
is designed to require application of knowledge and defeat
shallow methods. Interestingly, the author makes a claim
similar to Turing’s, that a system which can pass a Wino-
grad Schema test is thinking. The author mentions the im-
portance of having a test that permits incremental progress,
but his only suggestion is that questions can have varying
levels of background knowledge requirements, without be-
ing specific about what those different types of knowledge
might be.

(Levesque 2012) points out that a problem with dialog-
based evaluations is the trickery and evasion which dialog
systems can use to avoid being tested on their knowledge.

Our approach specifically is meant to counteract this weak-
ness by targeting specific capabilities, and failing the test-
taker if they do not perform them. At the same time, us-
ing dialog allows this approach to avoid several inherent
weaknesses of question-answering evaluations; for example,
many possible answers could be correct but unanticipated by
test set designers, answers might require follow-ups for clar-
ification, or questions might require disambiguation.

Psychometric Intelligence Tests

Psychometric research has yielded interesting models and
insights relevant to test design for measuring human intelli-
gence. Pearson’s seminal early work (Spearman 1928) laid
much of the conceptual and statistical foundation for intel-
ligence testing. This has been further refined and adapted to
specific aptitude tests with item response theory (IRT) (Em-
bretson and Reise 2013). The entire concept of test reliabil-
ity depends on the assumption that there is some underlying
factor being measured. For general intelligence tests, this is
widely known as the g factor (Spearman 1928), but in the
case of highly specialized AI systems being tested on broad
capabilities, it is difficult to argue that there is any such thing
as an underlying general intelligence. Psychometric AI as
discussed in (Bringsjord 2011) is the field dedicated to build-
ing computer programs which can perform reasonably well
“on all established, validated tests of intelligence and mental
ability”, or in other words, computer programs which have
general intelligence. One example test of intelligence is the
Wechsler Adult Intelligent Scale (WAIS) (Pearson Educa-
tion Inc. 2008), which is subdivided into performance sub-
tests, much as our approach proposes. Some of the verbal
subtests of WAIS bear a strong resemblance to the example
capabilities we introduce in this paper.

Conclusion and Future Work

This paper presents a model and metrics which clarify the
notions of breadth and flexibility, and a methodology for
measuring dialog system capabilities and reporting them
concisely. We urge dialog system researchers to incorporate
this method, since doing so will greatly help readers under-
stand what the presented systems can do without requiring
extensive description.

The taxonomy used in this paper is demonstrative, and
is focused on areas of capabilities which are of interest to
the authors. To better represent broad research interests will
require a standardization effort and collaboration among di-
alog system researchers.

Beyond using our approach to round out dialog system
papers, an approach like ours may prove useful for human-
level intelligent systems research. One problem with past
psychometric AI evaluations is that IQ tests can be auto-
mated quite easily without building a generally intelligent
system, as in (Sanghi and Dowe 2003; Evans 1964). Breadth
and flexibility metrics should prove useful for detecting im-
postor programs such as these, as well as other programs
which specifically target narrow capabilities.
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