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Abstract

The Augmented Lagragian Method (ALM) and Alter-
nating Direction Method of Multiplier (ADMM) have
been powerful optimization methods for general con-
vex programming subject to linear constraint. We con-
sider the convex problem whose objective consists
of a smooth part and a nonsmooth but simple part.
We propose the Fast Proximal Augmented Lagragian
Method (Fast PALM) which achieves the convergence
rate O(1/K2), compared with O(1/K) by the tradi-
tional PALM. In order to further reduce the per-iteration
complexity and handle the multi-blocks problem, we
propose the Fast Proximal ADMM with Parallel Split-
ting (Fast PL-ADMM-PS) method. It also partially im-
proves the rate related to the smooth part of the objec-
tive function. Experimental results on both synthesized
and real world data demonstrate that our fast methods
significantly improve the previous PALM and ADMM.

Introduction

This work aims to solve the following linearly constrained
separable convex problem with n blocks of variables

min
x1,··· ,xn

f(x) =
n∑

i=1

fi(xi) =
n∑

i=1

(gi(xi) + hi(xi)) ,

s.t. A(x) =
n∑

i=1

Ai(xi) = b,

(1)

where xi’s and b can be vectors or matrices and both
gi and hi are convex and lower semi-continuous. For gi,
we assume that ∇gi is Lipschitz continuous with the Lip-
schitz constant Li > 0, i.e, ‖∇gi(xi)−∇gi(yi)‖ ≤
Li ‖xi − yi‖ , ∀xi,yi. For hi, we assume that it may be
nonsmooth and it is simple, in the sense that the proximal
operator problem minx hi(x) +

α
2 ||x − a||2 (α > 0) can

be cheaply solved. The bounded mappings Ai’s are linear
(e.g., linear transformation or the sub-sampling operator in
matrix completion (Candès and Recht 2009)). For the sim-
plicity of discussion, we denote x = [x1;x2; · · · ;xn], A =
[A1,A2, · · · ,An] and

∑n
i=1Ai(xi) = A(x), fi = gi + hi.

*Corresponding author.
Copyright © 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

For any compact set X , let DX = supx1,x2∈X ||x1−x2|| be
the diameter of X . We also denote Dx∗ = ||x0 − x∗||. We
assume there exists a saddle point (x∗,λ∗) ∈ X × Λ to (1),
i.e., A(x∗) = b and −AT

i (λ
∗) ∈ ∂fi(x

∗
i ), i = 1, · · · , n,

where AT is the adjoint operator of A, X and Λ are the
feasible sets of the primal variables and dual variables, re-
spectively.

By using different gi’s and hi’s, a variety of machine
learning problems can be cast into (1), including Lasso
(Tibshirani 1996) and its variants (Lu et al. 2013a; Jacob,
Obozinski, and Vert 2009), low rank matrix decomposi-
tion (Candès et al. 2011), completion (Candès and Recht
2009) and representation model (Lu et al. 2012; Liu and Yan
2011) and latent variable graphical model selection (Chan-
drasekaran, Parrilo, and Willsky 2012). Specifically, exam-
ples of gi are: (i) the square loss 1

2 ||Dx − y||2 , where D
and y are of compatible dimensions. A more special case
is the known Laplacian regularizer Tr(XLXT ), where L is
the Laplacian matrix which is positive semi-definite; (ii) Lo-
gistic loss

∑m
i=1 log(1 + exp(−yidT

i x)), where di’s and
yi’s are the data points and the corresponding labels, re-
spectively; (iii) smooth-zero-one loss

∑m
i=1

1
1+exp(cyidT

i x)
,

c > 0. The possibly nonsmooth hi can be many norms, e.g.,
�1-norm || · ||1 (the sum of absolute values of all entries),
�2-norm || · || or Frobenius norm || · ||F and nuclear norm
|| · ||∗ (the sum of the singular values of a matrix).

This paper focuses on the popular approaches which study
problem (1) from the aspect of the augmented Lagrangian
function L(x,λ) = f(x)+〈λ,A(x)−b〉+ β

2 ||A(x)−b||2,
where λ is the Lagrangian multiplier or dual variable and
β > 0. A basic idea to solve problem (1) based on L(x,λ)
is the Augmented Lagrangian Method (ALM) (Hestenes
1969), which is a special case of the Douglas-Rachford split-
ting (Douglas and Rachford 1956).

An influential variant of ALM is the Alternating Direction
Mehtod of Multiplier (ADMM) (Boyd et al. 2011), which
solves problem (1) with n = 2 blocks of variables. However,
the cost for solving the subproblems in ALM and ADMM in
each iteration is usually high when fi is not simple and Ai

is non-unitary (AT
i Ai is not the identity mapping). To al-

leviate this issue, the Linearized ALM (LALM) (Yang and
Yuan 2013) and Linearized ADMM (LADMM) (Lin, Liu,
and Su 2011) were proposed by linearizing the augmented
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PALM Fast PALM PL-ADMM-PS Fast PL-ADMM-PS

O
(

D2
x∗+D2

λ∗
K

)
O
(

D2
x∗+D2

λ∗
K2

)
O
(

D2
x∗
K +

D2
x∗
K +

D2
λ∗
K

)
O
(

D2
x∗

K2 +
D2

X

K +
D2

Λ

K

)

Table 1: Comparison of the convergence rates of previous methods and our fast versions

term β
2 ||A(x)− b||2 and thus the subproblems are easier to

solve. For (1) with n > 2 blocks of variables, the Proximal
Jacobian ADMM (Tao 2014) and Linearized ADMM with
Parallel Splitting (L-ADMM-PS) (Lin, Liu, and Li 2014)
guaranteed to solve (1) when gi = 0 with convergence guar-
antee. To further exploit the Lipschitz continuous gradient
property of gi’s in (1), the work (Lin, Liu, and Li 2014)
proposed a Proximal Linearized ADMM with Parallel Split-
ting (PL-ADMM-PS) by further linearizing the smooth part
gi. PL-ADMM-PS requires lower per-iteration cost than L-
ADMM-PS for solving the general problem (1).

Beyond the per-iteration cost, another important way to
measure the speed of the algorithms is the convergence
rate. Several previous work proved the convergence rates
of the augmented Lagrangian function based methods (He
and Yuan 2012; Tao 2014; Lin, Liu, and Li 2014). Though
the convergence functions used to measure the convergence
rate are different, the convergence rates of all the above dis-
cussed methods for (1) are all O(1/K), where K is the num-
ber of iterations. However, the rate O(1/K) may be subopti-
mal in some cases. Motivated by the seminal work (Nesterov
1983), several fast first-order methods with the optimal rate
O(1/K2) have been developed for unconstrained problems
(Beck and Teboulle 2009; Tseng 2008). More recently, by
applying a similar accelerating technique, several fast AD-
MMs have been proposed to solve a special case of problem
(1) with n = 2 blocks of variables

min
x1,x2

g1(x1) + h2(x2), s.t. A1(x1) +A2(x2) = b. (2)

A fast ADMM proposed in (Azadi and Sra 2014)1 is able
to solve (2) with the convergence rate O

(
D2

X

K2 +
D2

Λ

K

)
.

But their result is a bit weak since their used func-
tion to characterize the convergence can be negative. The
work (Ouyang et al. 2015) proposed another fast ADMM
with the rate O

(
D2

x∗
K2 +

D2
x∗
K

)
for primal residual and

O
(

D2
x∗

K3/2 + Dx∗+Dλ∗
K

)
for feasibility residual. However,

their result requires that the number of iterations K should
be predefined, which is not reasonable in practice. It is usu-
ally difficult in practice to determine the optimal K since we
usually stop the algorithms when both the primal and feasi-
bility residuals are sufficiently small (Lin, Liu, and Li 2014).
The fast ALM proposed in (He and Yuan 2010) owns the
convergence rate O(1/K2), but it requires the objective f to
be differentiable. This limits its applications for nonsmooth
optimization in most compressed sensing problems. Another
work (Goldstein et al. 2014) proved a better convergence

1The method in (Azadi and Sra 2014) is a fast stochastic
ADMM. It is easy to give the corresponding deterministic version
by computing the gradient in each iteration exactly to solve (2).

rate than O(1/K) for ADMM. But their method requires
much stronger assumptions, e.g., strongly convexity of fi’s,
which are usually violated in practice. In this work, we only
consider (1) whose objective is not necessarily strongly con-
vex.

In this work, we aim to propose fast ALM type methods
to solve the general problem (1) with optimal convergence
rates. The contributions are summarized as follows:

• First, we consider (1) with n = 1 (or one may regard all
n blocks as a superblock) and propose the Fast Proximal
Augmented Lagrangian Method (Fast PALM). We prove
that Fast PALM converges with the rate O

(
D2

x∗+D2
λ∗

K2

)
,

which is a significant improvement of ALM/PALM2 with
rate O

(
D2

x∗+D2
λ∗

K

)
. To the best of our knowledge, Fast

PALM is the first improved ALM/PALM which achieves
the rate O(1/K2) for the nonsmooth problem (1).

• Second, we consider (1) with n > 2 and pro-
pose the Fast Proximal Linearized ADMM with Par-
allel Splitting (Fast PL-ADMM-PS), which converges
with rate O

(
D2

x∗
K2 +

D2
X

K +
D2

Λ

K

)
. As discussed in Sec-

tion 1.3 of (Ouyang et al. 2015), such a rate is op-
timal and thus is better than PL-ADMM-PS with rate
O
(

D2
x∗
K +

D2
x∗
K +

D2
λ∗
K

)
(Lin, Liu, and Li 2014). To the

best of our knowledge, Fast PL-ADMM-PS is the first fast
Jacobian type (update the variables in parallel) method to
solve (1) when n > 2 with convergence guarantee.

Table 1 shows the comparison of the convergence rates
of previous methods and our fast versions. Note that Fast
PALM and Fast PL-ADMM-PS have the same pter-iteration
cost as PALM and PL-ADMM-PS, respectively. But the per-
iteration cost of PL-ADMM-PS and Fast PL-ADMM-PS
may be much cheaper than PALM and Fast PALM.

Fast Proximal Augmented Lagrangian Method

In this section, we consider (1) with n = 1 block of variable,

min
x

f(x) = g(x) + h(x), s.t. A(x) = b, (3)

where g and h are convex and ∇g is Lipschitz continuous
with the Lipschitz constant L. The above problem can be
solved by the traditional ALM which updates x and λ by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xk+1 =argmin
x

g(x) + h(x) + 〈λk,A(x)− b〉

+
β(k)

2
||A(x)− b||2,

λk+1 =λk + β(k)(A(xk+1)− b),

(4)

2PALM is a variant of ALM proposed in this work.
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Initialize: x0, z0, λ0, β(0) = θ(0) = 1.
for k = 0, 1, 2, · · · do

yk+1 = (1− θ(k))xk + θ(k)zk; (6)

zk+1 = argmin
x

〈∇g(yk+1),x
〉
+ h(x)

+
〈
λk,A(x)〉+ β(k)

2
‖A(x)− b‖2

+
Lθ(k)

2
‖x− zk‖2; (7)

xk+1 = (1− θ(k))xk + θ(k)zk+1; (8)

λk+1 = λk + β(k)(A(zk+1)− b); (9)

θ(k+1) =
−(θ(k))2 +

√
(θ(k))4 + 4(θ(k))2

2
; (10)

β(k+1) =
1

θ(k+1)
. (11)

end

Algorithm 1: Fast PALM Algorithm

where β(k) > 0. Note that ∇g is Lipschitz continuous. We
have (Nesterov 2004)

g(x) ≤ g(xk) + 〈∇g(xk),x− xk〉+ L

2
||x− xk||2. (5)

This motivates us to use the right hand side of (5) as a sur-
rogate of g in (4). Thus we can update x by solving the fol-
lowing problem which is simpler than (5),

xk+1 = argmin
x

g(xk) + 〈∇g(xk),x− xk〉+ h(x)

+ 〈λk,A(x)− b〉+ β(k)

2
||A(x)− b||2 + L

2
||x− xk||2.

We call the method by using the above updating rule as Prox-
imal Augmented Lagrangian Method (PALM). PALM can
be regarded as a special case of Proximal Linearized Alter-
nating Direction Method of Multiplier with Parallel Split-
ting in (Lin, Liu, and Li 2014) and it owns the conver-
gence rate O (1/K), which is the same as the traditional
ALM and ADMM. However, such a rate is suboptimal. Mo-
tivated by the technique from the accelerated proximal gra-
dient method (Tseng 2008), we propose the Fast PALM as
shown in Algorithm 1. It uses the interpolatory sequences
yk and zk as well as the stepsize θ(k). Note that if we set
θ(k) = 1 in each iteration, Algorithm 1 reduces to PALM.
With careful choices of θ(k) and β(k) in Algorithm 1, we can
accelerate the convergence rate of PALM from O (1/K) to
O(1/K2).

Proposition 1. In Algorithm 1, for any x, we have

1− θ(k+1)

(θ(k+1))2
(
f(xk+1)− f(x)

)−
〈AT (λk+1),x− zk+1

〉
θ(k)

≤ 1− θ(k)

(θ(k))2
(
f(xk)− f(x)

)
(12)

+
L

2

(‖zk − x‖2 − ‖zk+1 − x‖2) .
Theorem 1. In Algorithm 1, for any K > 0, we have

f(xK+1)− f(x∗) +
〈
λ∗,A(xK+1)− b

〉
(13)

+
1

2
‖A(xK+1)− b‖2 ≤ 2

(K + 2)2
(
LD2

x∗ +D2
λ∗

)
.

We use the convergence function, i.e., the left hand side of
(13), in (Lin, Liu, and Li 2014) to measure the convergence
rate of the algorithms in this work. Theorem 1 shows that
our Fast PALM achieves the rate O

(
LD2

x∗+D2
λ∗

K2

)
, which

is much better than O

(
LD2

x∗+ 1
βD2

λ∗
K

)
by PALM3. The

improvement of Fast PALM over PALM is similar to the
one of Fast ISTA over ISTA (Beck and Teboulle 2009;
Tseng 2008). The difference is that Fast ISTA targets for un-
constrained problem which is easier than our problem (1).
Actually, if the constraint in (1) is dropped (i.e., A = 0,
b = 0), our Fast PALM is similar as the Fast ISTA.

We would like to emphasize some key differences be-
tween our Fast PALM and previous fast ALM type meth-
ods (Azadi and Sra 2014; Ouyang et al. 2015; He and Yuan
2010). First, it is easy to apply the two blocks fast ADMM
methods in (Azadi and Sra 2014; Ouyang et al. 2015) to
solve problem (3). Following their choices of parameters and
proofs, the convergence rates are still O(1/K). The key im-
provement of our method comes from the different choices
of θ(k) and β(k) as shown in Theorem 1. The readers can re-
fer to the detailed proofs at http://arxiv.org/abs/1511.05133.
Second, the fast ADMM in (Ouyang et al. 2015) requires
predefining the total number of iterations, which is usually
difficult in practice. However, our Fast PALM has no such
a limitation. Third, the fast ALM in (He and Yuan 2010)
also owns the rate O(1/K2). But it is restricted to differen-
tiable objective minimization and thus is not applicable to
our problem (1). Our method has no such a limitation.

A main limitation of PALM and Fast PALM is that their
per-iteration cost may be high when hi is nonsmooth and
Ai is non-unitary. In this case, solving the subproblem (7)
requires calling other iterative solver, e.g., Fast ISTA (Beck
and Teboulle 2009), and thus the high per-iteration cost may
limit the application of Fast PALM. In next section, we
present a fast ADMM which has lower per-iteration cost.

Fast Proximal Linearized ADMM with

Parallel Splitting
In this section, we consider problem (1) with n > 2 blocks
of variables. The state-of-the-art solver for (1) is the Proxi-

3It is easy to achieve this since PALM is a special case of Fast
PALM by taking θ(k) = 1.
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mal Linearized ADMM with Parallel Splitting (PL-ADMM-
PS) (Lin, Liu, and Li 2014) which updates each xi in parallel
by

xk+1
i = argmin

xi

gi(x
k
i ) +

〈∇gi(x
k
i ),xi − xk

i

〉
+ hi(xi)

+
〈
λk,Ai(xi)

〉
+
〈
β(k)AT

i

(A(xk)− b
)
,xi − xk

i

〉

+
Li + β(k)ηi

2
‖xi − xk

i ‖2, (14)

where ηi > n||Ai||2 and β(k) > 0. Note that the subprob-
lem (14) is easy to solve when hi is nonsmooth but simple.
Thus PL-ADMM-PS has much lower per-iteration cost than
PALM and Fast PALM. On the other hand, PL-ADMM-PS
converges with the rate O(1/K) (Lin, Liu, and Li 2014).
However, such a rate is also suboptimal. Now we show that
it can be further accelerated by a similar technique as that in
Fast PALM. See Algorithm 2 for our Fast PL-ADMM-PS.
Proposition 2. In Algorithm 2, for any xi, we have

1− θ(k+1)

(θ(k+1))2
(
fi(x

k+1
i )− fi(xi)

)

− 1

θ(k)

〈
AT

i (λ̂
k+1),xi − zk+1

i

〉

≤ 1− θ(k)

(θ(k))2
(
fi(x

k
i )− fi(xi)

)
(15)

+
Li

2

(‖zki − xi‖2 − ‖zk+1
i − xi‖2

)

+
β(k)ηi
2θ(k)

(‖zki − xi‖2 − ‖zk+1
i − xi‖2 − ‖zk+1

i − zki ‖2
)
,

where λ̂
k+1

= λk + β(k)
(A(zk)− b

)
.

Theorem 2. In Algorithm 2, for any K > 0, we have

f(xK+1)− f(x∗) +
〈
λ∗,A(xK+1)− b

〉
+

βα

2

∥∥A(xK+1)− b
∥∥2 (16)

≤2LmaxD
2
x∗

(K + 2)2
+

2βηmaxD
2
X

K + 2
+

2D2
Λ

β(K + 2)
,

where α = min
{

1
n+1 ,

{
ηi−n‖Ai‖2

2(n+1)‖Ai‖2 , i = 1, · · · , n
}}

,

Lmax = max{Li, i = 1, · · · , n} and ηmax = max{ηi, i =
1, · · · , n}.

From Theorem 2, it can be seen that our Fast PL-
ADMM-PS partially accelerates the convergence rate of
PL-ADMM-PS from O

(
LmaxD

2
x∗

K +
βηmaxD

2
x∗

K +
D2

λ∗
βK

)
to

O
(

LmaxD
2
x∗

K2 +
βηmaxD

2
X

K +
D2

Λ

βK

)
. Although the improved

rate is also O(1/K), what makes it more attractive is that
it allows very large Lipschitz constants Li’s. In particular,
Li can be as large as O(K), without affecting the rate of
convergence (up to a constant factor). The above improve-
ment is the same as fast ADMMs (Ouyang et al. 2015)
for problem (2) with only n = 2 blocks. But it is infe-
rior to the Fast PALM over PALM. The key difference is

Initialize: x0, z0, λ0, θ(0) = 1, fix β(k) = β for k ≥ 0,
ηi > n‖Ai‖2, i = 1, · · · , n,
for k = 0, 1, 2, · · · do

//Update yi, zi, xi, i = 1, · · · , n, in parallel by

yk+1
i = (1− θ(k))xk

i + θ(k)zki ; (17)

zk+1
i = argmin

xi

〈∇gi(y
k+1
i ),xi

〉
+ hi(xi)

+
〈
λk,Ai(xi)

〉
+
〈
β(k)AT

i

(A(zk)− b
)
,xi

〉

+
L(gi)θ

(k) + β(k)ηi
2

‖xi − zki ‖2; (18)

xk+1
i = (1− θ(k))xk

i + θ(k)zk+1
i ; (19)

λk+1 = λk + βk
(A(zk+1)− b

)
; (20)

θ(k+1) =
−(θ(k))2 +

√
(θ(k))4 + 4(θ(k))2

2
. (21)

end

Algorithm 2: Fast PL-ADMM-PS Algorithm

that Fast PL-ADMM-PS further linearizes the augmented
term 1

2 ||A(x)− b||2. This improves the efficiency for solv-
ing the subproblem, but slows down the convergence. Ac-
tually, when linearizing the augmented term, we have a new
term with the factor β(k)ηi/θ

(k) in (15) (compared with (12)
in Fast PALM). Thus (16) has a new term by comparing
with that in (13). This makes the choice of β(k) in Fast PL-
ADMM-PS different from the one in Fast PALM. Intuitively,
it can be seen that a larger value of β(k) will increase the sec-
ond terms of (16) and decrease the third term of (16). Thus
β(k) should be fixed in order to guarantee the convergence.
This is different from the choice of β(k) in Fast PALM which
is adaptive to the choice of θ(k).

Compared with PL-ADMM-PS, our Fast PL-ADMM-PS
achieves a better rate, but with the price on the bounded-
ness of the feasible primal set X and the feasible dual set
Λ. Note that many previous work, e.g., (He and Yuan 2012;
Azadi and Sra 2014), also require such a boundedness as-
sumption when proving the convergence of ADMMs. In the
following, we give some conditions which guarantee such a
boundedness assumption.

Theorem 3. Assume the mapping A(x1, · · · ,xn) =∑n
i=1Ai(xi) is onto4, the sequence {zk} is bounded, ∂h(x)

and ∇g(x) are bounded if x is bounded, then {xk}, {yk}
and {λk} are bounded.

Many convex functions, e.g., the �1-norm, in compressed
sensing own the bounded subgradient.

Experiments

In this section, we report some numerical results to demon-
strate the effectiveness of our fast PALM and PL-ADMM-

4This assumption is equivalent to that the matrix A ≡
(A1, · · · , An) is of full row rank, where Ai is the matrix repre-
sentation of Ai.
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(d) m = 800, n = 1000

Figure 1: Plots of the convergence function values of (13) in each iterations by using PALM and Fast PALM for (22) with
different sizes of A ∈ R

m×n.

PS. We first compare our Fast PALM which owns the opti-
mal convergence rate O(1/K2) with the basic PALM on a
problem with only one block of variable. Then we conduct
two experiments to compare our Fast PL-ADMM-PS with
PL-ADMM-PS on two multi-blocks problems. The first one
is tested on the synthesized data, while the second one is
for subspace clustering tested on the real-world data. We ex-
amine the convergence behaviors of the compared methods
based on the convergence functions shown in (13) and (16).
All the numerical experiments are run on a PC with 8 GB of
RAM and Intel Core 2 Quad CPU Q9550.

Comparison of PALM and Fast PALM

We consider the following problem

min
x
||x||1 + α

2
||Ax− b||22, s.t. 1Tx = 1, (22)

where α > 0, A ∈ R
m×n, b ∈ R

m, and 1 ∈ R
n is the

all one vector. There may have many fast solvers for prob-
lem (22). In this experiment, we focus on the performance
comparison of PALM and Fast PALM for (22). Note that the
per-iteration cost of these two methods are the same. Both of
them requires solving an �1-minimization problem in each
iteration. In this work, we use the SPAMS package (Mairal
et al. 2010) to solve it which is very fast.

The data matrix A ∈ R
m×n, and b ∈ R

m are gener-
ated by the Matlab command randn. We conduct four ex-
periments on different sizes of A and b. We use the left
hand side of (13) as the convergence function to evaluate
the convergence behaviors of PALM and Fast PALM. For
the saddle point (x∗,λ∗) in (13), we run the Fast PALM
with 10,000 iterations and use the obtained solution as the
saddle point. Figure 1 plots the convergence functions value
within 1,000 iterations. It can be seen that our Fast PALM
converges much faster than PALM. Such a result verifies
our theoretical improvement of Fast PALM with optimal rate
O(1/K2) over PALM with the rate O(1/K).

Comparison of PL-ADMM-PS and Fast
PL-ADMM-PS

In this subsection, we conduct a problem with three blocks
of variables as follows

min
X1,X2,X3

3∑
i=1

(
||Xi||�i +

αi

2
||CiXi −Di||2F

)
,

s.t.
3∑

i=1

AiXi = B,

(23)

where || · ||�1 = || · ||1 is the �1-norm, || · ||�2 = || · ||∗ is
the nuclear norm, and || · ||�3 = || · ||2,1 is the �2,1-norm
defined as the sum of the �2-norm of each column of a ma-
trix. We simply consider all the matrices with the same size
Ai,Ci,Di,B,Xi ∈ R

m×m. The matrices Ai,Ci,Di, i =
1, 2, 3, and B are generated by the Matlab command randn.
We set the parameters α1 = α2 = α3 = 0.1. Problem (23)
can be solved by PL-ADMM-PS and Fast PL-ADMM-PS,
which have the same and cheap per-iteration cost. The exper-
iments are conducted on three different values of m =100,
300 and 500. Figure 2 plots the convergence function values
of PL-ADMM-PS and Fast PL-ADMM-PS in (16). It can
be seen that Fast PL-ADMM-PS converges much faster than
PL-ADMM-PS. Though Fast PL-ADMM-PS only acceler-
ates PL-ADMM-PS for the smooth parts gi’s, the improve-
ment of Fast PL-ADMM-PS over PL-ADMM-PS is similar
to that in Fast PALM over PALM. The reason behind this is
that the Lipschitz constants Li’s are not very small (around
400, 1200, and 2000 for the cases m = 100, m = 300, and
m = 500, respectively). And thus reducing the first term of
(16) faster by our method is important.

Application to Subspace Clustering

In this subsection, we consider the following low rank and
sparse representation problem for subspace clustering

min
Z

α1||Z||∗ + α2||Z||1 + 1

2
||XZ−X||2,

s.t. 1TZ = 1T ,

(24)

where X is the given data matrix. The above model is mo-
tivated by (Zhuang et al. 2012). However, we further con-
sider the affine constraint 1TZ = 1T for affine subspace
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(b) m = 300
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(c) m = 500

Figure 2: Plots of the convergence function values of (16) in each iterations by using PL-ADMM-PS and Fast PL-ADMM-PS
for (23) with different sizes of X ∈ R
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(a) 5 subjects
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(b) 8 subjects
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Figure 3: Plots of the convergence function values of (16) in each iterations by using PL-ADMM-PS and Fast PL-ADMM-PS
for (24) with different sizes of data X for subspace clustering.

Table 2: Comparision of subspace clustering accuracies (%)
on the Extended Yale B database.

Methods 5 subjects 8 subjects 10 subjects
PL-ADMM-PS 94.06 85.94 75.31

Fast PL-ADMM-PS 96.88 90.82 75.47

clustering (Elhamifar and Vidal 2013). Problem (24) can be
reformulated as a special case of problem (1) by introducing
auxiliary variables. Then it can be solved by PL-ADMM-PS
and Fast PL-ADMM-PS.

Given a data matrix X with each column as a sample, we
solve (24) to get the optimal solution Z∗. Then the affinity
matrix W is defined as W = (|Z| + |ZT |)/2. The normal-
ized cut algorithm (Shi and Malik 2000) is then performed
on W to get the clustering results of the data matrix X. The
whole clustering algorithm is the same as (Elhamifar and
Vidal 2013), but using our defined affinity matrix W above.

We conduct experiments on the Extended Yale B database
(Georghiades, Belhumeur, and Kriegman 2001), which is
challenging for clustering (Lu et al. 2013b). It consists of
2,414 frontal face images of 38 subjects under various light-
ing, poses and illumination conditions. Each subject has 64
faces. We construct three matrices X based on the first 5,
8 and 10 subjects. The data matrices X are first projected
into a 5 × 6, 8 × 6, and 10 × 6-dimensional subspace by
PCA, respectively. Then we run PL-ADMM-PS and Fast
PL-ADMM-PS for 1000 iterations, and use the solutions

Z to define the affinity matrix W = (|Z| + |ZT |)/2. Fi-
nally, we can obtain the clustering results by normalized
cuts. The accuracy, calculated by the best matching rate of
the predicted label and the ground truth of data, is reported
to measure the performance. Table 2 shows the clustering
accuracies based on the solutions to problem (24) obtained
by PL-ADMM-PS and Fast PL-ADMM-PS. It can be seen
that Fast PL-ADMM-PS usually outperfoms PL-ADMM-PS
since it achieves a better solution than PL-ADMM-PS within
1000 iterations. This can be verified in Figure 3 which shows
the convergence function values in (16) of PL-ADMM-PS
and Fast PL-ADMM-PS in each iteration. It can be seen
that our Fast PL-ADMM-PS converges much faster than PL-
ADMM-PS.

Conclusions

This paper presented two fast solvers for the linearly con-
strained convex problem (1). In particular, we proposed the
Fast Proximal Augmented Lagragian Method (Fast PALM)
which achieves the convergence rate O(1/K2). Note that
such a rate is theoretically optimal by comparing with the
rate O(1/K) by traditional ALM/PALM. Our fast version
does not require additional assumptions (e.g. boundedness
of X and Λ, or a predefined number of iterations) as in the
previous works (Azadi and Sra 2014; Ouyang et al. 2015).
In order to further reduce the per-iteration complexity and
handle the multi-blocks problems (n > 2), we proposed
the Fast Proximal Linearized ADMM with Parallel Splitting
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(Fast PL-ADMM-PS). It also achieves the optimal O(1/K2)
rate for the smooth part of the objective. Compared with
PL-ADMM-PS, though Fast PL-ADMM-PS requires addi-
tional assumptions on the boundedness of X and Λ in theory,
our experimental results show that significant improvements
are obtained especially when the Lipschitz constant of the
smooth part is relatively large.
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