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Abstract

The Maximum Weight Clique problem (MWCP) is an im-
portant generalization of the Maximum Clique problem with
wide applications. This paper introduces two heuristics and
develops two local search algorithms for MWCP. Firstly,
we propose a heuristic called strong configuration checking
(SCC), which is a new variant of a recent powerful strategy
called configuration checking (CC) for reducing cycling in
local search. Based on the SCC strategy, we develop a lo-
cal search algorithm named LSCC. Moreover, to improve the
performance on massive graphs, we apply a low-complexity
heuristic called Best from Multiple Selection (BMS) to se-
lect the swapping vertex pair quickly and effectively. The
BMS heuristic is used to improve LSCC, resulting in the
LSCC+BMS algorithm. Experiments show that the proposed
algorithms outperform the state-of-the-art local search algo-
rithm MN/TS and its improved version MN/TS+BMS on the
standard benchmarks namely DIMACS and BHOSLIB, as
well as a wide range of real world massive graphs.

Introduction

Given an undirected graph G=(V ,E), a clique C of G is a
subset of V such that each pair of vertices in C is mutu-
ally adjacent. The maximum clique problem (MCP) con-
sists in finding a clique with maximum number of ver-
tices. An important generalization of MCP is the maxi-
mum weight clique problem (MWCP), in which each ver-
tex is associated with a non-negative integer, and the goal
is to find a clique with the largest total weight. Obvi-
ously, MWCP reduces to MCP if each vertex has the same
weight. MWCP has been widely used in many fields, from
theoretical computer science to valuable applications (Bal-
lard and Brown 1982; Balasundaram and Butenko 2006;
Gomez Ravetti and Moscato 2008).

As is known, the decision version of MCP is one of Karp’s
prominent 21 NP-complete combinatorial problems (Karp
1972). Both MCP and MWCP has been proved to be NP-
hard and state-of-the-art approximation algorithms can only
achieve an approximate ratio of O(n(log log n)2/(log n)3)
(Feige 2004). Thus it is common to see that a huge amount
of effort has been devoted to finding a “good” clique within
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reasonable time. Up to now, there are mainly two types of
algorithms for MCP and MWCP, i.e. exact algorithms and
heuristic algorithms.

A number of exact algorithms have been proposed to
solve MCP and MWCP. A classic branch and bound algo-
rithm is MCQ (Tomita and Seki 2003), which uses a heuris-
tic vertex order for independent set partition. The MCQ al-
gorithm is further improved by computing the degree of ver-
tices dynamically, resulting in the MaxCliqueDyn algorithm
(Konc and Janezic 2007). Recently, another paradigm en-
codes MCP into MaxSAT and then applies MaxSAT reason-
ing to improve the upper bound (Li and Quan 2010; Li, Fang,
and Xu 2013). For MWCP, an early branch and bound algo-
rithm was proposed in (Babel 1994). An improved branch
and bound algorithm based on error-correcting codes was
offered in (Östergård 2001), and the algorithm in (Yam-
aguchi and Masuda 2008) computes the upper bound based
on the longest path in a directed acyclic graph constructed
from the original graph. Very recently, Fang et. al. proposes
a MaxSAT-based algorithm for MWCP, and applies Top-k
failed literal detection for improving the upper bound (Fang
et al. 2014).

Although exact algorithms can guarantee the optimality
of their solutions, they may fail to solve hard instances
of large scale. For solving large sized instances, a popu-
lar approach is local search, which can find an approxi-
mate solution within reasonable time. There are numerous
local search algorithms for MCP (Singh and Gupta 2006;
Pullan and Hoos 2006; Pullan 2006; Guturu and Dantu 2008;
Wu and Hao 2013; Benlic and Hao 2013). Among these al-
gorithms, DLS (Pullan and Hoos 2006) is a milestone al-
gorithm which employs vertex penalties which are dynam-
ically adjusted during the search. DLS is further improved
into a two phase algorithm called Phased Local Search
(PLS) (Pullan 2006). In (Wu and Hao 2013), the proposed
tabu search algorithm is presented based on k-fixed penalty
strategy. (Benlic and Hao 2013) introduces a break out lo-
cal search for solving MCP. Also, MCP is closely related to
minimum vertex cover (MinVC) and maximum independent
set (MaxIS) problems, and algorithms for these two prob-
lems can be directly used to solve MCP.

Compared to MCP, there are relatively fewer heuristics
on MWCP. The reason may be that MWCP is more compli-
cated and thus difficult to solve, from the viewpoint of al-
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gorithm design. In (Bomze, Pelillo, and Stix 2000), a paral-
lel, distributed heuristic for approximating the MWCP based
on dynamics principles is developed and studied in vari-
ous branches of mathematical biology. Busygin (Busygin
2006) presents a new fast heuristic method using a non-
linear programming formulation for the MWCP. Pullan ex-
tends the Phased Local Search (PLS) algorithm to MWCP
(Pullan 2008). According to the literatures, the current best
local search algorithm for MWCP is called MN/NT (Wu,
Hao, and Glover 2012), which is a multi-neighborhood lo-
cal search algorithm whose key features include a combined
neighborhood and a dedicated tabu mechanism.

In this paper, we develop two local search algorithms
for MWCP. Firstly, we propose a new heuristic, which is
a variant of the configuration checking (CC) strategy. CC is
a recently proposed mechanism to avoid the cycling prob-
lem during local search, and has been successfully ap-
plied in a number of NP-hard problem, such as MinVC
(Cai, Su, and Sattar 2011), SAT (Cai and Su 2012; 2013;
André, Djamal, and Donia 2014), and MaxSAT (Luo et al.
2015). We follow this line of research by attempting to ap-
ply CC strategy to solve MWCP. However, a direct applica-
tion of CC strategy does not lead to a successful algorithm,
because the forbidding strength of CC is usually too weak
in the context of MWCP. We propose a new strategy called
Strong CC strategy (SCC for short), which is stricter than
CC and reduces more unnecessary search areas. Based on
SCC, we develop a local search algorithm called LSCC (Lo-
cal search with SCC). Experiments comparing LSCC with a
state-of-the-art local search algorithm MN/TS show its su-
periority on standard benchmarks DIMACS (Johnson and
Trick 1996) and BHOSLIB (Xu et al. 2005).

Moreover, to improve the performance on massive graphs,
we apply a low-complexity heuristic called Best from Mul-
tiple Selection (BMS) to select the swapping vertex pair
quickly and effectively. A very recent work (Cai 2015) pro-
posed a simple and fast local search algorithm called FastVC
for solving MinVC in massive graphs, which is based on two
low-complexity heuristics. Inspired by the success of BMS
in FastVC (Cai 2015), we also use the BMS heuristic, which
approximates the best-greedy swap heuristic (Wu, Hao, and
Glover 2012) and has a lower complexity. We also enhance
the BMS heuristic with the SCC strategy. Using the BMS
heuristic, we improve LSCC and the resulting algorithm is
called LSCC+BMS, and also improve MN/TS and obtain
MN/TS+BMS. Experiments show that LSCC+BMS outper-
forms MN/NT and its improved version MN/TS+BMS on a
broad range of massive real graphs (Rossi and Ahmed 2015).
We also conduct experiments to analyze the effectiveness of
the two proposed heuristics.

In the next section, we introduce some necessary back-
ground knowledge. After that, we propose the SCC strat-
egy for MWCP and present the LSCC algorithm, along with
related experiments. Then, we improve LSCC on massive
graphs with the BMS heuristic and obtain the LSCC+BMS
algorithm, along with experiments on massive graphs. Fi-
nally we make conclusions and outline the future work.

Preliminary

Given an undirected graph G=(V ,E) where V ={v1, v2, . . .,
vn} is the set of vertices and E={e1, e2, . . ., em} is the set
of edges. In graph G, each edge is a 2-element subset of
V . For an edge e={v,u}, we say that vertices u and v are
the endpoints of edge, and u is adjacent to v. A clique C of
G is a subset of V where each pair of vertices is adjacent.
The MCP problem is to find a clique with the most vertices.
When each vertex vi is associated with a positive integer
weight, MCP is extended to MWCP which asks for a clique
of the maximum total weight. Given a weighting function
w: V → Z+, the weight of a clique C is w(C)=

∑
v∈C w(v).

The neighborhood of a vertex v is N (v)={u ∈ V |(v,u)∈ E}.
For a vertex v, its age is defined as the number of steps since
the last time it changed its state (being selected or not).

Typically, local search algorithms for MWCP (as in MCP)
maintain a current clique C, and modify it iteratively by
three operators: Add, Drop and Swap. The operator Add
refers to adding a vertex into the clique C, providing that
the vertex is adjacent to all vertices in C. The operator Drop
refers to removing a vertex from C. The operator Swap ex-
changes one vertex u ∈ C with another vertex v /∈ C which
is adjacent to every vertex in C but u. Usually, the operator
Drop is considered only when Add and “good” Swap opera-
tions are impossible.

Review of Configuration Checking

Revisiting the same part of a search space is referred as the
cycling problem, which is a severe issue in local search.
Recently, Cai et. al proposed a strategy called configu-
ration checking (CC) (Cai, Su, and Sattar 2011), which
exploits the problem structure to reduce cycling in local
search. The CC strategy has been successfully used in lo-
cal search algorithms for combinatorial optimization prob-
lems such as MinVC (Cai, Su, and Sattar 2011) and Set
Covering (Wang et al. 2015), as well as constraint satis-
faction problems such as Satisfiability (Cai and Su 2013;
André, Djamal, and Donia 2014) and Maximum Satisfiabil-
ity (Luo et al. 2015).

Roughly speaking, for combinatorial problems whose
tasks are to find an optimal set of elements, the idea of
CC can be described as follows. For an element (such as
a vertex), if its configuration remains the same as the last
time it was removed out of the candidate set, then it is
forbidden to be added back into the candidate set. Typi-
cally, the configuration of a vertex refers to the state of its
neighbouring vertices. The CC strategy is usually imple-
mented with a Boolean array named confChange, where
confChange(v)=1 means v is allowed to be added to the
candidate solution and confChange(v)=0 means v is for-
bidden to be added to the candidate solution.

A straightforward CC strategy for MWCP can be easily
devised. In the beginning, confChange(v) is initialized as
1 for each vertex v, as each vertex is allowed to be selected
initially. During the search, when a vertex v is added to the
current clique, confChange(v′) is set to 1 for each vertex
v′ ∈ N(v). When a vertex v is removed out of the current
clique, confChange(v) is set to 0 and confChange(v′) is
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set to 1 for each vertex v′ ∈ N(v). For a swap step, where a
vertex v is removed from the current clique and vertex u is
added into the clique, then confChange(v) is set to 0 and
confChange(v′) is set to 1 for v′ ∈ N(v) ∪N(u).

Strong Configuration Checking

In this section, we discuss the drawbacks of the CC strategy
when it is applied to MWCP, and propose a new variant of
CC for MWCP (also MCP), which is referred to as Strong
Configuration Checking (SCC).

We observe that, in local search algorithms with the three
operators Add, Drop and Swap, the CC strategy would mis-
lead the search by allowing too many vertices to be added.
According to CC, confChange values of related vertices
are updated along with each operation. However, some in-
tuitive analyses suggest that it is not always advisable to set
the neighbouring vertices’ confChange values to 1 upon
each operation.

For the Add operation, the clique is being extended by a
vertex, and thus it is quite reasonable to allow the selected
vertex’s neighbors to be added by setting their confChange
values to 1. Indeed, those vertices are very encouraged to be
added into the clique.

The Drop operation indicates the algorithm meets a local
optimum and is rolling back by removing a vertex from the
clique. In this case, we believe the neighbouring vertices of
the removed vertex should not be encouraged to be added to
the clique.

The Swap operation usually serves as a form of diversi-
fication, by leading the search switch to another clique near
the current one. Since we are not of certain that the Swap
step is leading the search towards a better clique, in our al-
gorithm, we adopt a conservative strategy — not encourag-
ing more neighbouring vertices of the swapped vertices, but
only those with confChange value already being 1.

Based on the above considerations, we modify CC into
a more restrictive version, which is called Strong Config-
uration Checking (SCC). This heuristic is specified by the
following four rules.

SCC-InitialRule. In the beginning of the search proce-
dure, confChange(v) is set to 1 for each vertex v.

SCC-AddRule. When v is added into the current clique,
confChange(v′) is set to 1 for each v′ ∈ N(v).

SCC-DropRule. When a vertex v is removed from the
current clique, confChange(v) is switched to 0.

SCC-SwapRule. When u is removed from the current
clique and v is added into this clique, confChange(u) is
switched to 0.

In a nut shell, SCC only allows a vertex v to be added
to the current clique when some of v’s neighbors have been
added since v’s last removal, while CC allows the adding of
v when some of v’s neighbors have been either added or re-
moved. The CC strategy usually works well with weighting
techniques, so the missing of weighting techniques in our
algorithm may be a reason for the failure of the original CC
strategy. We also note that there is a concept called promis-
ing variable in SAT (Li and Huang 2005), which allows a
variable to be flipped if its score becomes positive because

Algorithm 1: LSCC (G, cutoff)
Input: graph G = (V,E,w), the cutoff time
Output: A maximum weight clique C of G
C∗ := ∅1

while elapsed time < cutoff do2

initialize confChange;3

C := InitGreedyConstruction();4

Clocalbest := C;5

for step = 0;step < L;step++ do6

v := a vertex in AddSet with the biggest Δadd and7

confChange(v) = 1, breaking ties in favor of the
oldest one;
(u, u′) := a vertex pair in SwapSet such that8

confChange(u′) = 1 with the biggest Δswap,
breaking ties in favor of the oldest one;
if AddSet �= ∅ then9

C := (Δadd > Δswap)? (C ∪ {v}):10

(C \ {u} ∪ {u′}) ;
else11

x := a vertex in C with the biggest Δdrop,12

breaking ties in favor of the oldest one;
C := (Δdrop > Δswap)? (C \ {x}):13

(C \ {u} ∪ {u′});
update confChange according to SCC rules;14

if w(C) > w(Clocalbest) then Clocalbest := C;15

if w(Clocalbest) > w(C∗) then C∗ := Clocalbest;16

return C∗;17

of the flips of its neighboring variables. This concept is in
some sense similar to CC strategies including SCC.

The LSCC Algorithm

Based on the SCC heuristic, we develop a local search algo-
rithm named LSCC (Local search with SCC). LSCC works
with the three operators Add, Swap and Drop. We maintain
a set for the Add and Swap operators respectively. With the
current clique denoted by C, the two sets are defined as fol-
lows. The set for the Drop operator is simply C.
AddSet = {v|v /∈ C, v ∈ N(u) for ∀u ∈ C}
SwapSet = {(u, v))|u ∈ C, v /∈ C, v ∈ N(y) for ∀y ∈

C \ {u}}
We use Δadd, Δswap and Δdrop to denote the change on

the value of w(C) for operation Add, Drop, and Swap re-
spectively. Obviously, we can calculate them according to
the following equations.

• for a vertex v ∈ AddSet, Δadd(v) = w(v);
• for a vertex u ∈ C, Δdrop(u) = −w(u);
• for a vertex pair (u, v) ∈SwapSet, Δswap(u, v) = w(v)−

w(u).

In our algorithm, the vertices of the operations are explicit
from the context and thus omitted.

The pseudo code of LSCC is outlined in Algorithm 1, as
described below. In the beginning, LSCC initializes the best
found maximum clique C∗ as an empty set. There is an outer
loop (lines 2-16) and an inner loop (lines 6-15). In each inner
loop (step < L), LSCC searches for a local optimal clique

807



denoted as Clocalbest. After each inner loop, if w(Clocalbest)
is larger than w(C∗), C∗ is updated by Clocalbest (line 16).
Finally, LSCC returns C∗ when the algorithm reaches a time
limit.

Before each inner loop, LSCC constructs an initial candi-
date solution C greedily by iteratively selecting a vertex that
is adjacent to all vertices in C until no such vertex exists,
with ties broken randomly (line 4). The greedy initializa-
tion process is very simple and remains effective for mas-
sive graphs. Also, with the random tie-breaking mechanism,
the procedure is able to find diversified initial solutions in
different rounds. Then, Clocalbest is initialized as C (line 5).

In each inner loop, LSCC chooses one operator to modify
the current clique C. It first selects a vertex v ∈ AddSet
with the biggest Δadd and confChange(v)=1 (line 7),
and selects a swapping pair (u, u′) ∈ SwapSet such that
confChange(u′)=1 with the biggest Δswap (line 8).1 Both
ties are broken by preferring the oldest one. If an Add op-
eration is possible, LSCC compares Δadd and Δswap, and
chooses the operation with the bigger benefit to perform
(lines 9-10). On the contrary, if AddSet is empty, which
means no Add operation is possible, then LSCC performs
either a Swap or Drop operation. It picks a vertex x ∈ C
with the biggest Δdrop (i.e. the smallest weight) (line 12),
and then compares Δswap and Δdrop and chooses the oper-
ation with the bigger benefit to perform (line 13).

After each operation, the values of confChange are up-
dated according to the corresponding SCC rules (line 14),
and if w(C) is larger than w(Clocalbest), Clocalbest is up-
dated by C (line 15).

Evaluation of LSCC on Standard Benchmarks

We carry out extensive experiments to evaluate the perfor-
mance of the LSCC algorithm for MWCP on two standard
benchmarks, including DIMACS and BHOSLIB. DIMACS
benchmarks are from the Second DIMACS Implementa-
tion Challenge (Johnson and Trick 1996) including prob-
lems from real applications and randomly generated graphs.
BHOSLIB instances are generated randomly based on the
model RB at the phase transition area (Xu et al. 2005). These
instances are originally unweighted, and to obtain the corre-
sponding MWCP instances, we use the same method as in
(Pullan 2008; Wu, Hao, and Glover 2012). For the ith vertex
vi, w(vi)=(i mod 200)+1.

For comparison, we choose MN/TS (Wu, Hao, and Glover
2012) to represent a state-of-the-art algorithm for solving
MWCP. MN/TS is open-source and implemented in C++.
Our algorithm LSCC is also implemented in C++. Both of
two algorithms are compiled by g++ 4.6.2 with the −O2 op-
tion. For the search depth L, MN/TS and LSCC set L=4000
for all instances. MN/TS employs a tabu heuristic and the
tabu tenure TL is set to 7 as in (Wu, Hao, and Glover 2012).

In order to demonstrate the effectiveness of the SCC
heuristic, we also compare LSCC with its variant LCC (Lo-
cal search with CC) which utilizes the original CC strategy

1When the AddSet (or SwapSet) set is empty, the returned
vertex (or vertex pair) is denoted by -1 (or (-1,-1)), and the corre-
sponding Δ value is set to −∞.

Instance MN/TS LCC LSCC δmax(δavg)
wmax(wavg) wmax(wavg) wmax(wavg)

C2000.9 10999 (10948.5) 10267(9948) 10999 (10922.6) 0(-25.9)
p hat1500-3 10321(10314.4) 10321(10130.1) 10321(10321) 0(6.6)
MANN a27 12281(12270.6) 12275(12268.8) 12283(12283) 2(12.4)
MANN a45 34192(34167) 34183(34175.9) 34254(34242.1) 62(75.1)
MANN a81 111128(111074.6) 111135(111084.8) 111135(111118.1) 7(10.2)
frb56-25-1 5916(5815.6) 5669(5588.1) 5916(5825.7) 0(10.1)
frb56-25-2 5872(5790.8) 5589(5550.7) 5886(5813.7) 14(22.9)
frb56-25-3 5859(5780.4) 5689(5545.7) 5859(5777.6) 0(-2.8)
frb56-25-4 5892(5818.9) 5712(5311.7) 5892(5821.1) 0(2.2)
frb56-25-5 5839(5750.9) 5597(5536.9) 5839(5754.2) 0(3.3)
frb59-26-1 6591(6516) 6318(6108.9) 6591(6538.3) 0(22.3)
frb59-26-2 6645(6542.8) 6320(6190.1) 6645(6546.9) 0(4.1)
frb59-26-3 6608(6579.5) 6178(6105.5) 6608(6505.7) 0(-73.8)
frb59-26-4 6592(6463.7) 6246(6076.2) 6592(6488.6) 0(24.9)
frb59-26-5 6584(6491) 6269(6100.2) 6584(6512.6) 0(21.6)

Table 1: Experiment results of MN/TS, LCC, and LSCC on
DIMACS and BHOSLIB benchmarks.
DIMACS instances for which MN/TS and LSCC find the same
quality cliques very quickly are not reported. A positive δmax or
δavg indicates LSCC finds better quality clique than MN/TS.

(as introduced in Section 2.1) instead of SCC.
All the experiments were run on Ubuntu Linux, with 3.1

GHZ CPU and 8GB memory. For each instance, each al-
gorithm is performed 100 independent runs with different
random seeds, where each run is terminated upon reaching
a given time limit (1000 seconds). For each instance, wmax

is the weight of the maximum clique found, and wavg is the
average weight over the 100 runs. We also report the dif-
ference δmax and δavg between the maximum and average
weight values of clique found by LSCC and MN/TS.

Experiment results on the DIMACS are shown in Table
1. Most DIMACS instances are so easy that MN/TS and
LSCC find the same quality cliques very quickly, and thus
are not report. The results show that LSCC find better quality
cliques than MN/TS and LCC on DIMACS instances. Par-
ticularly, LSCC obtains new best solutions for MANN a27,
MANN a45, and MANN a81. LSCC is consistently supe-
rior on the MANN domain. For p hat1500-3, LSCC is the
only algorithm that finds a 10321-sized clique consistently
in 100% runs. Finally, we note that LSCC succeeds in find-
ing the best known solution for all DIMACS instances, indi-
cating its robustness.

The results of BHOSLIB instances are also shown in Ta-
ble 1. For focusing on hard instances, we only present two
groups of the largest-sized instances, which are much more
difficult than other small instances. The results illustrate
that LSCC outperforms MN/TS for these instances. More-
over, LSCC improves the maximum clique of one instance
frb56-25-2. For instances where both algorithms find the
same quality maximum weight clique, the averaged weight
of cliques found by LSCC is larger than that of MN/TS, ex-
cept for frb56-25-3 and frb59-26-3. Finally, the comparison
between LSCC and LCC also confirms the effectiveness of
the SCC heuristic.
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Algorithm 2: the BMS heuristic

pick a random vertex pair (v,v′)∈ SwapSet with1

confChange (v′)=1;
Δ∗

swap := Δswap(v, v
′);2

for i = 0;i < k;i++ do3

pick a random vertex pair (u,u′)∈ SwapSet with4

confChange(u′)=1;
if (Δswap(u, u

′) > Δ∗
swap)||(Δswap(u, u

′) =5

Δ∗
swap&age(u′) < age(v′)) then

(v,v′):=(u,u′);6

Δ∗
swap := Δswap(u, u

′);7

return (v,v′);8

Improving LSCC for Massive Graphs

Although LSCC performs quite well on standard bench-
marks, it is not so effective on massive graphs. In this sec-
tion, we employ a heuristic called Best from Multiple Se-
lection (BMS) to improve LSCC, resulting in an improved
algorithm called LSCC+BMS. We show the efficiency of
LSCC+BMS and the effectiveness of the underlying heuris-
tics by experiments on a broad range of massive graphs.

The BMS Heuristic and LSCC+BMS Algorithm

In LSCC, we use the best-picking heuristic to choose a
swapping vertex pair of the best benefit (w.r.t. Δswap) from
the SwapSet to swap. With a suitable criterion, this kind
heuristic could guide the search towards the most promising
area, and is thus commonly adopted in local search algo-
rithms (Wu, Hao, and Glover 2012; Cai et al. 2013). Such
best-picking heuristics are suitable for most cases, but work
not well in massive graphs where the SwapSet is usually
very large and finding a best pair not only wastes a lot of
time but also cannot guarantee that this move is the best one
for the quality of solution.

Based on the considerations above, we apply a fast and ef-
fective heuristic named Best from Multiple Selection (BMS)
for choosing a vertex pair from SwapSet, which costs little
time while at the same time can pick a pair of good qual-
ity. The BMS heuristic strikes a good balance between the
quality of the vertex pair and the time complexity. A formal
description of the BMS heuristic is shown in Algorithm 2.

Basically, the BMS heuristic chooses k swapping pairs
(v,v′) randomly, and then returns the best swapping pair
w.r.t. the value of Δswap, where k is a parameter. A trick for
accelerating BMS is to pick the best pair when |SwapSet| <
k. Moreover, we use the SCC strategy to help BMS exclude
some unreasonable vertex pairs.

There are two differences between the BMS heuristic in
our algorithm and the original on in (Cai 2015). First, the
BMS heuristic in FastVC is used to select a vertex to drop,
while BMS in our algorithm is used to choose a swapping
vertex pair. Secondly and more importantly, we combine
the configuration checking technique in the BMS heuris-
tic to prune some “not promising” candidates, while BMS
in FastVC does not have any mechanism to exclude not
promising candidates.

We use the BMS heuristic to improve the LSCC algo-
rithm, simply by replacing the best-picking heuristic (i.e.,
line 8 in Algorithm 1) for choosing the swapping vertex
pair with the BMS heuristic. The resulting algorithm is thus
called LSCC+BMS.

Experiments on Massive Graphs

We evaluate LSCC+BMS on real-world massive graphs
from Network Data Repository online (Rossi and Ahmed
2015), which have recently been used in testing the per-
formance of local search methods and parallel algorithms
(Rosin 2014; Rossi et al. 2014; Cai 2015). For the sake of
space, we do not report the results on graphs with less than
1000 vertices, for which both algorithms find the same qual-
ity solutions quickly.

Note that MN/TS fails to find a clique for many of the
massive graphs, mainly due to its memory-expensive data
structure and high-complexity heuristics. For more interest-
ing comparison, we improve MN/TS by better data struc-
ture as well as the BMS heuristic, so that it can also handle
massive graphs well. The resulting algorithm is termed as
MN/TS+BMS. For the BMS heuristic in both LSCC+BMS
and MN/TS+BMS, we set the k parameter to 100, according
to some preliminary experiments.

The experiment settings are the same as in the preced-
ing section. In this experiment, δmax and δavg denote the
difference between the maximum and average weight val-
ues of clique found by LSCC+BMS and MN/TS+BMS.
Also, there are a considerable portion of instances for which
LSCC+BMS and MN/TS+BMS find the same quality clique
in all runs, that is, δmax(δavg) = 0(0). For these instances,
we report another statistics δtime, which represents that the
difference of run time between LSCC+BMS and MNTS. For
instances where MN/TS fails to find a clique within the time
limit, the column for MN/TS is marked as “n/a”.

The results on massive graphs are summarized in Table
2, where a positive δmax or δavg indicates LSCC+BMS
finds better quality clique than MN/TS+BMS. MN/TS
is essentially worse than the other two algorithms, and
we focus on the comparison between MN/TS+BMS and
LSCC+BMS. Overall, LSCC+BMS finds better solutions
than MN/TS+BMS on these massive graphs. Specially, we
observe that LSCC+BMS finds cliques that MN/TS+BMS
cannot reach for 17 graphs, and for another 20 graphs where
they both can find the same quality cliques, LSCC+BMS
does so with a better average solution quality. For the re-
maining 49 instances, the two algorithms find solutions of
the same quality consistently. For 40 out of these 49 in-
stances, LSCC+BMS is faster than MN/TS+BMS. The av-
eraged run time of LSCC+BMS over these 49 instances is
only half that of MN/TS+BMS.

The Effectiveness of SCC and BMS

To study the effectiveness of SCC and BMS heuristics,
we compare LSCC+BMS with LSCC and LCC. Note that
LSCC works with SCC and without BMS, and LCC works
with the original CC strategy. Table 3 shows LSCC finds
better solutions than LCC, which illustrates the effective-
ness of SCC on massive graphs. Thanks to the BMS strategy,
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Instance
MN/TS MN/TS+BMS LSCC+BMS

δtimewmax wmax wmax δmax
(wavg ) (wavg ) (wavg ) (δavg )

bio-dmela 805(805) 805(805) 805(805) 0(0) 0
bio-yeast 629(629) 629(629) 629(629) 0(0) 0.42

ca-AstroPh 5338(5338) 5338(5338) 5338(5338) 0(0) 46.14

ca-citeseer n/a 8838(8838) 8838(8838) 0(0) 133.22

ca-coauthors-dblp n/a 37884(28196) 37884(34622) 0(6426)
ca-CondMat n/a 2887(2887) 2887(2887) 0(0) 24.1

ca-CSphd 489(489) 489(489) 489(489) 0(0) 0.1

ca-dblp-2010 n/a 7575(7087.9) 7575(7479.8) 0(391.9)
ca-dblp-2012 n/a 14108(10197) 14108(14108) 0(3911)
ca-Erdos992 958(958) 958(958) 958(958) 0(0) 0.19

ca-GrQc 4279(4279) 4279(4279) 4279(4279) 0(0) 0.27

ca-HepPh 24533(24533) 24533(24533) 24533(24533) 0(0) 0.59

ca-hollywood-09 n/a 222720(121846)222720(211311) 0(89465)
ca-MathSciNet n/a 2792(2374.3) 2792(2543) 0(168.7)
ia-email-EU n/a 1350(1350) 1350(1350) 0(0) -0.36
ia-email-univ 1473(1473) 1473(1473) 1473(1473) 0(0) 0.05

ia-enron-large n/a 2490(2490) 2490(2490) 0(0) -2.54
ia-fb-messages 791(791) 791(791) 791(791) 0(0) 0.01

ia-reality 374(374) 374(374) 374(374) 0(0) 0.56

ia-wiki-Talk n/a 1884(1884) 1884(1884) 0(0) -1.19
inf-power 888(888) 888(888) 888(888) 0(0) 0.51

inf-roadNet-CA n/a 597(594.5) 752(613.4) 155(18.9)
inf-roadNet-PA n/a 597(596.5) 599(599) 2(2.5)
rec-amazon n/a 942(942) 942(942) 0(0) 7.63

sc-ldoor n/a 4018(3836.1) 4081(3936.4) 63(100.3)
sc-msdoor n/a 4088(3959.4) 4088(4043.9) 0(84.5)
sc-nasasrb n/a 4548(4441) 4548(4548) 0(107)
sc-pkustk11 n/a 5091(4769.8) 5298(5298) 207(528.2)
sc-pkustk13 n/a 5853(5565.4) 5928(5874.6) 75(309.2)
sc-pwtk n/a 4548(4372) 4620(4603.2) 72(231.2)
sc-shipsec1 n/a 3255(3100.4) 3540(3381.5) 285(281.1)
sc-shipsec5 n/a 4500(4338.8) 4524(4445.4) 24(106.6)
soc-BlogCatalog n/a 4803(4803) 4803(4803) 0(0) 35.90

soc-brightkite n/a 3672(3653.8) 3672(3655.7) 0(1.9)
soc-buzznet n/a 2981(2981) 2981(2981) 0(0) 22.86

soc-delicious n/a 1547(1523.3) 1547(1543.5) 0(20.2)
soc-digg n/a 4675(4675) 5303(4800.6) 628(125.6)
soc-douban n/a 1682(1682) 1682(1682) 0(0) 19.35

soc-epinions n/a 1657(1657) 1657(1657) 0(0) 27.48

soc-flickr n/a 7050(6998.1) 7083(7083) 33(84.9)
soc-flixster n/a 3805(3036.4) 3805(3500.9) 0(464.5)
soc-FourSquare n/a 3064(3043.6) 3064(3053.6) 0(10)
soc-gowalla n/a 2335(2209) 2335(2291.8) 0(82.8)
soc-lastfm n/a 1773(1773) 1773(1773) 0(0) 65.84

soc-livejournal n/a 2521(2050.4) 3120(2327.7) 599(277.3)
soc-LiveMocha n/a 1784(1784) 1784(1784) 0(0) -4.97
soc-pokec n/a 2341(1984.3) 3191(2075.3) 850(91)
soc-slashdot n/a 2811(2811) 2811(2811) 0(0) -21.24
soc-twitter-follows n/a 808(785.1) 808(808) 0(22.9)
soc-youtube n/a 1961(1961) 1961(1961) 0(0) -18.63
soc-youtube-snap n/a 1787(1787) 1787(1787) 0(0) -51.79
socfb-A-anon n/a 2576(2096.5) 2777(2196.4) 201(99.9)
socfb-B-anon n/a 2513(1986.9) 2537(2071.3) 24(84.4)
socfb-Berkeley13 n/a 4906(4906) 4906(4906) 0(0) 7.24

socfb-CMU 4141(4141) 4141(4141) 4141(4141) 0(0) 1.11

socfb-Duke14 3694(3694) 3694(3694) 3694(3694) 0(0) 12.25

socfb-Indiana n/a 5412(5412) 5412(5412) 0(0) 29.67

socfb-MIT 3658(3658) 3658(3658) 3658(3658) 0(0) 0.74

socfb-OR n/a 3523(3523) 3523(3523) 0(0) 120.2

socfb-Penn94 n/a 4738(4709.3) 4738(4738) 0(28.7)
socfb-Stanford3 5769(5769) 5769(5769) 5769(5769) 0(0) 10.52

socfb-Texas84 n/a 5546(5524.5) 5546(5546) 0(21.5)
socfb-UCLA n/a 5595(5595) 5595(5595) 0(0) 26.42

socfb-UConn 5733(5733) 5733(5733) 5733(5733) 0(0) 2.24

socfb-UCSB37 5669(5669) 5669(5669) 5669(5669) 0(0) 46.66

socfb-UF n/a 6043(6021) 6043(6043) 0(22)
socfb-UIllinois n/a 5730(5721.6) 5730(5730) 0(8.4)
socfb-Wisconsin87 n/a 4239(4239) 4239(4239) 0(0) 27.29

tech-as-caida2007 n/a 1869(1869) 1869(1869) 0(0) -0.41
tech-as-skitter n/a 5527(4387) 5703(5271.8) 176(884.8)
tech-internet-as n/a 1692(1692) 1692(1692) 0(0) -0.38
tech-p2p-gnutella n/a 703(675.8) 703(703) 0(27.2)
tech-RL-caida n/a 1861(1861) 1861(1861) 0(0) 26.25

tech-routers-rf 1460 1460(1460) 1460(1460) 0(0) 0.12

tech-WHOIS 6154(6154) 6154(6154) 6154(6154) 0(0) 19.60

web-arabic-2005 n/a 10558(10529) 10558(10558) 0(29)
web-BerkStan 3249(3249) 3249(3249) 3249(3249) 0(0) 2.2

web-edu 2077(2077) 2077(2077) 2077(2077) 0(0) 5.06

web-google 1749(1749) 1749(1749) 1749(1749) 0(0) 0.1

web-indochina-2004 6997(6997) 6997(6997) 6997(6997) 0(0) 8.58

web-it-2004 n/a 43842(36402) 45477(45313) 1635(8911)
web-sk-2005 n/a 11925(10775) 11925(11925) 0(1150)
web-spam 2503(2503) 2503(2503) 2503(2503) 0(0) 3.4

web-uk-2005 n/a 54850(54850) 54850(54850) 0(0) 467.52

web-webbase-2001 3574(3574) 3574(3574) 3574(3574) 0(0) 110.69

web-wikipedia2009 n/a 1997(1582.3) 3455(2451) 1458(868.7)

Table 2: Experiment results on the massive graphs.

Instance LCC LSCC LSCC+BMS
wmax(wavg) wmax(wavg) wmax(wavg)

ca-coauthors-dblp 31925(25484.4) 37884(34425.8) 37884(34622.6)
ca-dblp-2010 7575(6966.8) 7575(7439.8) 7575(7479.8)
ca-hollywood-2009 222720(90209.1) 222720(199902.8) 222720(211311.4)
ca-MathSciNet 2611(1991) 2611(2393.1) 2792(2543)
inf-roadNet-CA 594(574.9) 597(597) 752(613.4)
inf-roadNet-PA 597(579.3) 597(597) 599(599)
sc-ldoor 4060(3733.7) 4074(3922.5) 4081(3936.4)
sc-msdoor 3941(3749.9) 4074(4036.7) 4088(4043.9)
sc-pkustk11 5298(4741.9) 5298(5090.5) 5298(5298)
sc-pkustk13 5853(5662.8) 5928(5864.1) 5928(5874.6)
sc-shipsec1 3540(3116.8) 3540(3373.2) 3540(3381.5)
sc-shipsec5 4440(4041.8) 4500(4444.8) 4524(4445.4)
socfb-B-anon 1907(1521.7) 2470(1993.2) 2537(2071.3)
soc-delicious 1466(1446.5) 1547(1542.8) 1547(1543.5)
soc-digg 4429(4240.3) 4675(4675) 5303(4800.6)
soc-flickr 6717(6138.1) 7083(7058.1) 7083(7083)
soc-flixster 3311(2184.3) 3805(3162.3) 3805(3500.9)
soc-FourSquare 3038(2982.5) 3064(3024.7) 3064(3053.6)
soc-lastfm 1695(1599.9) 1773(1769.4) 1773(1773)
soc-pokec 1960(1619.3) 3191(2020.2) 3191(2075.3)
soc-youtube-snap 1787(1571.9) 1787(1744.2) 1787(1787)
tech-as-skitter 5506(4302.4) 5703(5258.2) 5703(5271.8)
web-arabic-2005 10445(10445) 10558(10546.7) 10558(10558)
web-wikipedia2009 1879(1087.3) 1997(1378.9) 3455(2451)

Table 3: Comparing LCC, LSCC and LSCC+BMS on typi-
cal massive graphs

LSCC+BMS acquires better cliques than LSCC in terms of
both wmax and wavg .

Conclusion

We developed two local search algorithms for the Maximum
Weight Clique problem (MWCP). We first propose a variant
of the configuration checking (CC) strategy, called Strong
Configuration Checking (SCC), which is used in develop-
ing a local search algorithm named LSCC. Experiments on
standard benchmarks show its superiority over the current
best local search algorithm for MWCP namely the MN/TS
algorithm.

We further improve LSCC for massive graphs by ap-
plying a cost effective heuristic for choosing the swapping
vertex pair, namely Best from Multiple Selection (BMS),
and obtain the LSCC+BMS algorithm. We also use BMS
to improve the MN/TS algorithm. Experimental results on
massive graphs show that the BMS heuristic significantly
improves the performance of the algorithms on massive
graphs, and that LSCC+BMS significantly performs better
than MN/TS+BMS. We also carry out extensive experiments
to analyze the effectiveness of the SCC and BMS heuristics.

In the future, we plan to further study variants of CC in the
context of MWCP and MCP, and to exploit other properties
of vertices such as subscore (Cai and Su 2013), to improve
the algorithms. For massive graphs, it is interesting to design
low-complexity heuristics to improve the Add and Drop op-
erations in local search algorithms for MWCP.
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