
Linearized Alternating Direction Method with Penalization
for Nonconvex and Nonsmooth Optimization

Yiyang Wang,1 Risheng Liu,2 Xiaoliang Song,1 and Zhixun Su1,3

1 School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China
2 School of Software Technology, Dalian University of Technology, Dalian 116024, China

3 National Engineering Research Center of Digital Life, Guangzhou 510006, China
{ywerica, ericsong507}@gmail.com, {rsliu, zxsu}@dlut.edu.cn

Abstract

Being one of the most effective methods, Alternating
Direction Method (ADM) has been extensively studied
in numerical analysis for solving linearly constrained
convex program. However, there are few studies focus-
ing on the convergence property of ADM under non-
convex framework though it has already achieved well-
performance on applying to various nonconvex tasks.
In this paper, a linearized algorithm with penalization is
proposed on the basis of ADM for solving nonconvex
and nonsmooth optimization. We start from analyzing
the convergence property for the classical constrained
problem with two variables and then establish a similar
result for multi-block case. To demonstrate the effec-
tiveness of our proposed algorithm, experiments with
synthetic and real-world data have been conducted on
specific applications in signal and image processing.

1 Introduction

Though plenty of problems in machine learning and image
processing can be modeled as convex optimization (Candès
and Wakin 2008; Wright et al. 2010; Yang et al. 2009;
Liu et al. 2014), many recent applications like distributed
clustering, tensor factorization, dictionary learning and gra-
dient based minimization have shown the great success (Li-
avas and Sidiropoulos 2014; Bao et al. 2014; Xu et al. 2012;
Wang et al. 2014) and led to growing interest in nonconvex
and nonsmooth (NCNS) optimization.

Many of these problems, either convex or nonconvex can
be formulated/reformulated as a linearly constrained separa-
ble program with n blocks of variables:

min
xi,...,xn

Ψ(X) =
n∑

i=1

fi(xi), s.t.
n∑

i=1

Ai(xi) = c, (1)

where in this paper, variables {xi}ni=1, constant b can be
either vectors or matrices and we denote X = (x1, . . . ,xn)
for simplicity of discussion; {Ai}ni=1 are linear mappings
without additional restrictions; the objective function Ψ can
be either convex or nonconvex, smooth or nonsmooth which
satisfies the following two conditions:
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1. The fi’s are proper, lower semi-continuous functions with
inf fi > −∞ for ∀i and inf Ψ > −∞.

2. Ψ(X) is a coercive, Kurdyka-Łojasiewicz (KL) function1,
namely, limmin{‖xi‖:i=1,...,n}↑∞ Ψ(X) = +∞2.

Based on different choices of Ψ(X), problem (1) covers a
variety of problems. Signal representation based on �0 sparse
model is used as a technique for decomposing a signal into
an optimal superposition of bases (Chen and Donoho 1994),
which can be seen as a one-block nonconvex problem of (1).
Being as a basic but vital task, image denoising can be mod-
eled as sparse coding with �0-regularization (Bao et al. 2014;
Gregor and LeCun 2010), which is a special two-block case
of (1) that the objective function is a combination of a con-
vex function and a nonconvex one.

There have been extensive literatures in optimization and
numerical analysis on solving the problem (1) with the case
that all the fi’s are convex functions. For solving the convex
constrained problem, efficient algorithms like Alternating
Direction Method (ADM) (Lin, Liu, and Li 2013), Alternat-
ing Minimization Algorithm (Tseng 1991) and Accelerated
Proximal Gradient (Zuo and Lin 2011) have been widely
applied. A good summary of these methods can be found
in (Goldstein et al. 2014), but we in this paper only focus
on ADM since it has been extensively studied from smooth
and strongly convex function to nonsmooth convex function
(Boyd et al. 2011); from naive algorithm to its linearized ver-
sion (Lin, Liu, and Su 2011); from two-block case to multi-
block case (Chen et al. 2014) and have been proved to be
quite efficient by many application-driven tasks.

Despite of the numerous methods for solving convex con-
strained problem, few studies are conducted on the non-
convex frameworks. Greedy methods, including Matching
Pursuit (MP) (Mallat and Zhang 1993), Orthogonal Match-
ing Pursuit (OMP) (Tropp and Gilbert 2007), Weak Match-
ing Pursuit (WMP) (Temlyakov 2011) are designed for the
�0 sparse approximation task due to the hopelessness of
a straightforward approach. Another common strategy for
solving nonconvex linearly constrained problem is to refor-
mulate it to an unconstrained optimization, e.g. penalizing

1We ignore the definition of KL inequality and KL function
(Bolte, Sabach, and Teboulle 2014) due to space limit.

2‖ · ‖ denotes the �2 norm of vector and the Frobenius norm of
matrix in here and after.
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the linear constraint of �0 sparse coding problem with a cer-
tain parameter and then it can be solved by Iterative Hard
Thresholding Algorithm (IHTA) (Bach et al. 2012). More-
over, (Bolte, Sabach, and Teboulle 2014) proposes a proxi-
mal alternating linearized minimization (PALM) for uncon-
strained optimization with objective function that satisfies
KL property. Follow that, (Xu and Yin 2014) extends the
PALM to Block Coordinate Descent and gives analysis on
its accelerated version. Very recently, (Wang, Xu, and Xu
2014) propose a Bregman modification of ADM for non-
convex constrained optimization with special assumptions
on objective functions and linear constraints.

In this paper, we aim to propose an algorithm based on lin-
earized ADM with penalization (LADMP) for solving gen-
eral nonconvex, nonsmooth problems. Our development and
analysis begin on the classical linearly constrained problem
with two variables and then straightforward to establish a
similar result for multi-block problems. Specifically, by in-
troducing an auxiliary variable, we penalize its bringing ad-
ditional constraint on the objective function with an increas-
ing parameter. For the linearly constraint optimization with
fixed penalization, we propose a method based on linearized
ADM for the purpose of avoiding the difficulties of solv-
ing subproblems. We prove that our LADMP converges to a
KKT point of the primal optimization. Furthermore, though
it seems like that the auxiliary variable brings double com-
putational cost to LADMP, we show detailed skills to re-
duce the complexity of LADMP less than linearized ADM
(LADM). We test LADMP on �0 sparse approximation task
with synthetic clean data and propose a speed-up strategy
for this special problem. In addition, an experiment on �0
sparse coding is conducted on real-world data for the appli-
cation of image denoising. The experimental results verify
the convergence property of LADMP and also indicate the
effectiveness of our proposed algorithm.

2 Preliminaries

We start the analysis of the classical linearly constrained op-
timization with two variables, denoting as x and y to sim-
plify the subsequent derivation (the same to f , g, A and B):

min
x,y

f(x) + g(y), s.t.A(x) + B(y) = c. (2)

Firstly, we briefly review the ADM and its linearized version
for convex optimization and then give some notations and
assumptions that will be used throughout the paper.

2.1 ADM and LADM for Convex Optimization

For the case that f and g in problem (2) are convex functions,
the optimal point of problem (2) can be obtained through
iteratively minimizing the augmented Lagrange function
Lβ(x,y,p) = f(x) + g(y) + 〈p,A(x) + B(y)− c〉 +
β
2 ‖A(x) + B(y)− c‖2 with the Lagrange multiplier p:

xk+1 ∈ argmin
x

Lβ(x,yk,pk),

yk+1 ∈ argmin
y

Lβ(xk+1,y,pk),

pk+1 = pk + β(A(xk+1) + B(yk+1)− c).

The ADM is appealing when A and B are identities (Yin
2010), however, for the case that A and B are not identities,
a common strategy is to introduce auxiliary variables to sub-
stitute x and y in the objective function. Though this strat-
egy ensures the closed-form solution of each subproblem,
it brings additional problem like high storage and compu-
tational cost and weak theoretical results (Lin, Liu, and Su
2011; Chen et al. 2014). Another simple but efficient strat-
egy to tackle this problem is to linearize the quadratic term
of Lβ(x,y,p). This linearized version of ADM is proved
to be effective for convex problem by applications (Lin, Liu,
and Su 2011), however, both of ADM and LADM can not be
used to nonconvex optimization directly due to the failure of
the Féjer monotonicity of iterates (Wang, Xu, and Xu 2014).

2.2 Notations and Assumptions

1. We in this paper denote the variable w = (x,y, z,p),
ŵ = (w, r) with variable r satisfies rlk = zl−1

k ; then
denote dxl,l+1

k = ‖xl+1
k − xl

k‖, dyl,l+1
k = ‖yl+1

k − yl
k‖,

dzl,l+1
k = ‖zl+1

k −zlk‖ and dpl,l+1
k = ‖pl+1

k −pl
k‖. With

α0
k = 2(η3k)

2/βk, L̂k
βk
(ŵ) = Lk

βk
(w) + α0

k‖z− r‖2.

2. The sequence {wl
k}l∈N generated by LADMP is bounded

and the primal problem (2) has a stable point.

3. Parameter βk satisfies βkη
3
k > 4(η3k + 2μk)

2 + 4(η3k)
2;

η1k, η2k satisfy η1k > LA
k , η2k > LB

k where LA
k , LB

k are
the Lipschitz constants of the partial gradients of function
βk

2 ‖A(x) + B(y)− c‖2 with respect to x and y.

3 LADMP for NCNS Problem

Instead of solving the primal problem (2), we deal with an
equivalent problem by introducing an auxiliary variable z as

min
x,y,z

f(x) + g(y),

s.t. Ã(x) + B̃(y) + T (z) = c̃,

R(z) = 0,

(3)

where the notations are Ã = [A;O], B̃ = [O;B], c̃ = [c;0],
T = [I,O;O,−I] and R = [I,−I], where 0 denotes a
constant with all-zero elements, O denotes zero mapping
and I denotes identity mapping. It is easy to check that the
reformulated problem (3) is equivalent to the primal prob-
lem (2), then our proposed algorithm is proposed directly on
solving the problem (3).

3.1 The Proposed Algorithm

We penalize the square of the last constraint violation to the
objective function with penalty parameter μ > 0 as

min
x,y,z

f(x) + g(y) +
μ

2
‖R(z)‖2,

s.t. Ã(x) + B̃(y) + T (z) = c̃.
(4)

By driving μ to ∞, we consider a sequence of {μk}k∈N

with μk ↑ ∞ as k ↑ ∞, and to seek the approximate mini-
mizer (xk,yk, zk) of (4) for each fixed μk. Then, a proximal
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method based on LADM is proposed for each constrained
problem (4) with fixed μk.

To be specific, by writing down the augmented Lagrange
function Lk

βk
(w) = f(x)+g(y)+ μk

2 ‖R(z)‖2+ βk

2 ‖Ã(x)+

B̃(y) + T (z)− c̃+ 1
βk

p‖2 − 1
2βk

‖p‖2 of problem (4) with
fixed μk, then wk is obtained by solving the following sub-
problems iteratively with initial point w0

k = wk−1:

xl+1
k ∈ argmin

x
f(x) +

η1k
2
‖x− ul

k‖2,

yl+1
k ∈ argmin

y
g(y) +

η2k
2
‖y − vl

k‖2,

zl+1
k =argmin

z

βk

2
‖h(xl+1

k ,yl+1
k , z,pl

k)‖2

+
μk

2
‖R(z)‖2 + η3k

2
‖z− zlk‖2,

pl+1
k =βkh(x

l+1
k ,yl+1

k , zl+1
k ,pl

k),

(5)

where h(x,y, z,p) = Ã(x) + B̃(y) + T (z) + 1
βk

p − c̃ is

denoted for simplicity; ul
k = xl

k − βk

η1
k
Ã∗h(xl

k,y
l
k, z

l
k,p

l
k)

and vl
k = yl

k−
βk

η2
k
B̃∗h(xl+1

k ,yl
k, z

l
k,p

l
k). The iteration stops

and the wk+1 is obtained when reaching

‖∇zL
k
βk
(wl+1

k )‖ ≤ τk, (6)

where τk → 0 is a nonnegative tolerance to ensure that the
minimization is carried out more accurately as the iterations
progress. We summarize the proposed LADMP in Alg. 1 and
give the convergence analysis in the following section.

Algorithm 1 Solving problem (3) by LADMP
1: Given μ0 > 0, ν > 1, sequence {τk} > 0 with τk ↓ 0.
2: Initialize variables w0.
3: repeat
4: Given appropriate parameters η1k, η2k, η3k and βk.
5: Set starting point w0

k as wk−1.
6: while ‖∇zL

k
βk
(wl+1

k )‖ > τk do

7: Compute wl+1
k by Eq. (5).

8: end while
9: Set wk+1 as wl+1

k .
10: Update μk+1 = νμk.
11: until converges.

3.2 Convergence Analysis of LADMP

The methodology that describes the main steps to achieve
convergence analysis of LADMP can be split into two parts.
Firstly, it is necessary to prove the accessibility of the stop-
ping criterion (6). Secondly, we prove that a limit point w∗
of sequence {wk}k∈N is a KKT point of problem (3).

Accessibility of the Stopping Criterion With the de-
crease of τk, the minimization is carried out more accurately
so that wk is nearly the optimal point of problem (4) with
fixed μk. Therefore, instead of proving the accessibility of

the stopping criterion, we prove the convergence property of
our algorithm for solving problem (4) with fixed μk.

Before proving the main theorem, we first provide a key
lemma of the proposed algorithm, i.e. the sufficient descent
property and lower boundedness of the subgradient of the it-
erates gap which are two quite standard requirements shared
by essentially most descent algorithms (Attouch et al. 2010).
Lemma 1 Suppose that the assumptions in the Preliminar-
ies hold, {ŵl

k}l∈N is a sequence generated by LADMP for
the problem (4) with fixed μk , then there exist positive inte-
gers γ1

k and γ2
k such that the following two assertions hold:

1. (Sufficient Descent Property)

L̂k
βk
(ŵl

k)− L̂k
βk
(ŵl+1

k )

≥γ1
k((dx

l,l+1
k )2 + (dyl,l+1

k )2 + (dzl,l+1
k )2).

2. (Lower Boundedness of Subgradient)3

dist(0, ∂L̂k
βk
(ŵl

k))

≤γ2
k(dx

l−1,l
k + dyl−1,l

k + dzl−1,l
k + dzl−2,l−1

k ).

Lemma 1 can be straightforward proved in a similar way
as the previous works (Bolte, Sabach, and Teboulle 2014;
Bao et al. 2014; Xu and Yin 2014; Wang, Xu, and Xu 2014),
however, we ignore the detailed proof due to the space limit.
Then with this vital lemma, we can prove the global con-
vergence property of LADMP for solving problem (4) with
fixed μk, as stated in the following theorem.
Theorem 2 Suppose that {ŵl

k}l∈N be a sequence generated
by LADMP with the assumptions in the Preliminaries hold.
With the help of the KL property, we can get the following
inequality that there exists a positive integer M such that

dxl−1,l
k + dyl−1,l

k + dzl−1,l
k + dzl−2,l−1

k +M �l,l+1
k

≥3(dxl,l+1
k + dyl,l+1

k + dzl,l+1
k ),

(7)
where for any l ≥ N1,

∑N2

l=N1
�l,l+1

k < ∞. In addition,
{wl

k}l∈N is a Cauchy sequence that converges to a KKT
point of the problem (4) with fixed μk.
Proof Let ω(w0

k) be the set of the limit points of {wl
k}l∈N

generated by LADMP from initial point w0
k. Then L̂k

βk
(ŵ)

has the uniformized KL property from the analysis of the
previous work (Bolte, Sabach, and Teboulle 2014; Xu and
Yin 2014; Wang, Xu, and Xu 2014) on ω(w0

k), that is, there
exists function φ corresponding to KL property and N1 ∈ N

such that for any l ≥ N1:

dist(0, ∂L̂k
βk
(ŵl

k)) �l,l+1
k ≥ L̂k

βk
(ŵl

k)− L̂k
βk
(ŵl+1

k ).

Then by bringing in the conclusions in Lemma 1, we can
easily get the inequality (7) with M = 27γ2

k/4γ
1
k .

Then we summarize the inequality (7) from N1 to any
N2 > N1 which yields that∑N2

l=N1

2dxl,l+1
k + 2dyl,l+1

k + dzl,l+1
k

≤C +Mφ(L̂k
βk
(ŵN1

k )− L̂k
βk
(ŵ∗

k)),

3For any subset S ⊂ R
d and any point u ∈ R

d, dist(u,S) :=
inf{‖v − u‖ : v ∈ S}, when S = ∅, we have dist(u,S) = ∞.

800



where C is a constant less than infinite and is not affected
by the value of l. Since N2 is chosen arbitrarily, this easily
shows that {xl

k,y
l
k, z

l
k}l∈N has finite length:

∞∑
l=0

dxl,l+1
k + dyl,l+1

k + dzl,l+1
k < +∞. (8)

Due to the penalization strategy of the LADMP, we can in-
dicates that

∑∞
l=0 dp

l,l+1
k < +∞ (an intermediate proof of

the Sufficient Descent Property in Lemma 1), which together
with Eq. (8) implies that {wl

k}l∈N is a Cauchy sequence and
in addition converges to a KKT point though writing down
the first order optimality condition of each subproblem.

Remark 3 The Theorem 2 above ensures that the sequence
{wl

k}l∈N generated by LADMP converges to a KKT point of
the problem (4) with fixed μk, which indicates the accessibil-
ity of the stopping criterion (6) with the decreasing of τk. In
addition, it is natural to get the assertion that for the linearly
constrained optimization in a similar form of (4), solving it
through (5) ensures the convergence of the algorithm itself.

Main Convergence Theorem of LADMP After getting
the sequence {wk}k∈N where each wk is an approximate
solution of problem (4) with fixed μk. Then we have that
any limit point of {wk}k∈N is a KKT point for the problem
(3) from the following theorem.

Theorem 4 Suppose {wk}k∈N be a sequence generated by
LADMP with the assumptions in the Preliminaries hold,
then we can conclude that a limit point w∗ of {wk}k∈N is a
KKT point of the problem (3).

Proof With the assumptions in the Preliminaries, {wk}k∈N

has a convergent subsequence {wkj
}j∈N with wkj

→ w∗ as
j ↑ ∞. On the other hand, we can obtain from the stopping
criterion (6) that

‖μkR∗R(zk+1) + T ∗(pk+1) + βkT ∗(d̃k+1)‖ ≤ τk, (9)

where d̃k+1 = Ã(xk+1) + B̃(yk+1) + T (zk+1) − c̃. Then
with the triangle inequality we reformulate Eq. (9) as

‖R∗R(zk+1)‖ ≤ 1

μk
(τk+‖T ∗(pk+1)‖+‖βkT ∗(d̃k+1)‖).

Since {wk}k∈N is bounded, then there exists an integer M0

such that ‖T ∗(pk+1)‖ + ‖βkT ∗(d̃k+1)‖ ≤ M0. When we
take limits as k ↑ ∞, the bracketed term on the right-hand-
side approaches M0 since τk ↓ 0. In addition, the right-
hand-side term approaches to zero since μk ↑ ∞ as k ↑ ∞.
From the corresponding limit on the left-hand-side, we ob-
tain R∗R(z∗) = 0. Therefore, we have R(z∗) = 0. since
the mapping R is linearly independent. On the other hand, it
is an explicit expression of KKT point in Theorem 2 that

−∂f(x∗) ∈ Ã∗(p∗), μkR∗R(z∗) + T ∗(p∗) = 0,

−∂g(y∗) ∈ B̃∗(p∗), Ã(x∗) + B̃(y∗) + T (z∗)− c̃ = 0,

which together with R(z∗) = 0. ensures the desired asser-
tion that w∗ is a KKT point of the problem (3). �

Remark 5 For nonconvex nonsmooth problems, converging
to KKT point is so far the best result (Bolte, Sabach, and
Teboulle 2014; Wang, Xu, and Xu 2014; Yuan and Ghanem
2013) identified by researchers as far as we know. It should
be emphasized that a KKT point of nonconvex problem could
be a local minimizer for the problem under some condi-
tions, e.g. the second-order sufficient conditions (Nocedal
and Wright 2006). Moreover, converging to a KKT point for
nonconvex problem is significant as a reference for the op-
timal point and seems to be acceptable in various applica-
tions.

3.3 Extension to Multi-block Problem

Different from the conclusion that direct extension of the
ADM for multi-block convex optimization is not necessar-
ily convergent (Chen et al. 2014). The convergence analysis
of multi-block, nonconvex and nonsmooth optimization is a
straightforward extension of the problem with two variables.

Consider the multi-block, nonconvex and nonsmooth op-
timization with linearly constraint described as problem (1),
we solve the following equivalent problem by introducing
an auxiliary variable z and penalize the bring constraint on
the objective function with μ:

min
x1,...,xn,z

n∑
i=1

fi(xi) +
μ

2
‖R(z)‖2,

s.t.
n∑

i=1

Ãi(xi) + T (z) = c̃,

(10)

where for i = 1, . . . , n− 1, Ãi = [Ai;O]; ÃN = [O;AN ].
R, T and c̃ are defined in a similar way of two-block case.

Solve the problem (10) by our proposed LADMP, it is
the same with two-block case that the penalize parameter
μk ↑ ∞ and the stopping criterion τk ↓ 0 as k ↑ ∞. Ob-
viously, the assumption of the parameters should be mod-
ified for multi-block case, but the methodology of proving
the convergence is a straightforward extension of Theorem
2 and Theorem 4. Hence we in this paper ignore the detailed
proof for multi-block problem due to space limit.

3.4 Discussion of Implementation Details

We in this section show implementation details when ap-
plying LADMP for nonconvex and nonsmooth optimization
with linearly constraint. With these well designed tips, our
LADMP becomes easier to apply and its computational cost
turns smaller than the conventional LADM.

Alternative Condition Our convergence analysis is con-
ducted under the stopping criterion (6), which is indispens-
able to the main theorem of LADMP. However, this stopping
criterion may not be easily confirmed and can be replaced by
another practical termination condition as follows:

max{ ‖xl+1
k − xl

k‖
max{1, ‖xl

k‖}
,
‖yl+1

k − yl
k‖

max{1, ‖yl
k‖}

} < τk. (11)

This alternative condition is equivalent to the stopping crite-
rion (6) while at the same time much easier to be checked.
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Figure 1: Convergence property on (a) the accuracy of the
recovery signal generated by our proposed LADMP and (b)
the recovery error on iterations compared with LADM.

Hence, the new condition does not affect the convergence
analysis so that we suggest using the (11) rather than the
stopping criterion (6) in practice.

Computational Cost For the convenience of discussion,
we consider the two-block problem with x ∈ R

m, y ∈ R
n,

linear mappings A and B are matrices A ∈ R
t×m, B ∈

R
t×n. Though it seems like that our LADMP brings double

complexity due to the introduction of auxiliary variable z,
the special properties that Ã�Ã = [A�A;0], Ã�B̃ = 0,
B̃�B̃ = [0;B�B] and B̃�Ã = 0 help simplify the com-
putation. On the other hand, the subproblem of z seems like
that there is a necessary to compute the inverse matrix of
μkR

�R+ (βk + η3k)I, where I denotes the identity matrix.
However, its inverse matrix can be explicitly represented as
[c1kI, c

2
kI; c

2
kI, c

1
kI], where c1k = (μk+βk+η3k)/((μk+βk+

η3k)
2−μ2

k) and c2k = μk/((μk+βk+η3k)
2−μ2

k). With these
simplifications, the complexity of LADMP is O(3mt+3nt)
which is less than O(3mt+4nt) of LADM at each iteration.

4 Experimental Results

Though there are many tasks in machine learning and im-
age processing that can be formulated/reformulated to prob-
lem (1), we consider to apply LADMP to the applications of
signal representation and image denoising. For signal rep-
resentation, the input signals are represented using a sparse
linear combination of basis vectors which is popular for ex-
tracting semantic features. On the other hand, as a special
kind of signal, images are widespread in daily life and im-
age denoising is a basic but vital task in image processing.
All the algorithms, including comparative methods are im-
plemented by Matlab R2013b and are tested on a PC with 8
GB of RAM and Intel Core i5-4200M CPU.

4.1 Signal Representation

Signal representation aims to construct succinct representa-
tions of the input signal, i.e. a linear combination of only a
few atoms of the dictionary bases. It can be typically formu-
lated as the following optimization:

min
x

‖x‖0, s.t. Ax = c, (12)

s/λ Methods Time(s) Error

1024/
2× 106

MP 0.101 1.068× 10−4

WMP 0.114 1.068× 10−4

OMP 0.094 4.657× 10−30

LADMP 0.392 1.361× 10−7

F-LADMP 0.305 1.492× 10−30

2048/
1.5×107

MP 0.808 1.051× 10−4

WMP 0.535 1.050× 10−4

OMP 0.816 6.206× 10−30

LADMP 1.01 1.227× 10−7

F-LADMP 0.846 3.735× 10−30

4096/
1× 108

MP 4.498 1.157× 10−4

WMP 4.511 1.157× 10−4

OMP 4.786 7.16× 10−5

LADMP 4.030 1.978× 10−6

F-LADMP 3.182 8.045× 10−7

8192/
1× 109

MP 35.686 1.220× 10−4

WMP 35.702 1.220× 10−4

OMP 44.841 6.664× 10−5

LADMP 15.917 1.415× 10−6

F-LADMP 11.117 9.837× 10−30

16384/
7× 109

MP 212.701 1.133× 10−4

WMP 217.707 1.133× 10−4

OMP 415.069 6.77× 10−5

LADMP 62.089 1.107× 10−6

F-LADMP 47.161 3.056× 10−8

Table 1: Comparison of running time (in seconds) and re-
covery error of different methods for solving signal repre-
sentation problem.

where A ∈ R
t×s is the bases combined dictionary and c

is the input signal. The problem (12) is a one-block case of
(1) so that it can be solved by the LADMP. In addition, we
choose greedy methods, including MP (Mallat and Zhang
1993), OMP (Tropp and Gilbert 2007), WMP (Temlyakov
2011) for comparison and verify the convergence property of
our LADMP with the comparison of the traditional LADM.

In this paper, the synthetic signals used for comparison are
designed as: A is a Gaussian random matrix with the sizes
s = 1024, 2048, 4096, 8192, 16384 and t = s/2. The ideal
signal x is randomly generated using the same strategy of (Li
and Osher 2009) and its sparsity is set as the nearest integer
of t/20. In order to see the relationship between data and
parameters, we add a parameter λ to the objective function,
which is set differently with different data sizes (see Table
1). Other parameters of LADMP are empirically set as: μ0 =
0.17, ν = 0.1, η1k = 10−5, η2k = μk × 10−5 and all the
algorithms are stopped when ‖xk+1 − xk‖/‖xk‖ < 10−7.

Given A and c, we can represent the signal x̂ by different
algorithms. The relative recovery error ‖x̂−x‖/‖x‖ is used
to measure the performance of representation. The reported
error listed in Table 1 is a mean error of 20 trials. In addition,
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we also list the running time of each algorithm to show the
time consuming problem. Then, we can easily see from the
Table 1 that when the data size is small (s = 1024, 2048),
LADMP performs comparative with the best-performed al-
gorithm. However, LADMP outperforms the other methods
on both accuracy and efficiency when meeting big data size.

We choose a sample with s = 8192 to show the conver-
gence property of our proposed algorithm. Fig. 1(a) gives
a visual example on the accuracy of the algorithm. On the
other hand, we draw the differences of x between iterations,
i.e. log10(‖xk+1 − xk‖/‖xk‖) in Fig. 1(b). To better de-
scribe the effectiveness of the proposed algorithm, we com-
pare the convergence curve of LADMP with the one gener-
ated by LADM. It can be seen from the figure that applying
LADM to problem (12) directly sometimes does not con-
verge.

Furthermore, a speed-up strategy is tailored specifically
to solve this signal representation problem (12). Inspired by
the strategy of OMP that after getting the support set of
the non-zero values, the value of the recovery signal can
be easily computed by plain Least Squares. On the other
hand, we found that in the early several steps, LADMP can
always detect the correct support of the solution; we use
the same strategy of OMP to speed up the algorithm. Em-
pirically speaking, LADMP finds the correct support when
‖xk+1 − xk‖/‖xk‖ < 10−4, which is the stopping crite-
ria of the fast version of LADMP (F-LADMP). Thanks to
the correctness of finding the support set of the solution, the
recovery errors are extremely small when using F-LADMP.
From Table 1, it shows that F-LADMP performs better than
LADMP on both speed and recovery performance.

4.2 Image Denoising

Being as an important method for image denoising, sparse
coding based models require solving a class of challenging
nonconvex and nonsmooth optimization problems and we in
this paper use the one with fundamental form:

min
x,y

‖x‖0 +
γ

2
‖y‖2, s.t. Ax+ y = c, (13)

where A denotes dictionary, y denotes the corrupted noise
in the observed image c. We apply LADMP to problem (13)
and compare the performance with IHTA which reformu-
lates the primal problem (13) into unconstrained optimiza-
tion. The convergence property of IHTA is proved by adding
proximal term under proper parameters (Bach et al. 2012).

Similar to the experiment of signal representation, a pa-
rameter λ is multiplied on the regular term of the objective
function to help coding. All the parameters of LADMP are
set as: λ = 1.0, γ = 0.4, μ0 = 0.2, η1k = 10−5 and η2k = μk

for dealing with all the images. We list the running time and
PSNR values of LADMP and IHTA in Table 2. The added
noises in Table 2 are Gaussian randomly noises with level
σs = 20. Compared with IHTA, LADMP performs better
on removing noises from the images which may result from
the approximate solutions obtained through penalizing the
constraint with certain parameter. In addition, an example is
given in Fig. 2 to show the image denoising performance.

Image Method Time(s) PSNR

Barbara
IHTA 77.009 28.053
LADMP 62.636 28.814

Liftingbody
IHTA 61.336 31.653
LADMP 60.764 32.199

Pepper
IHTA 73.153 27.658
LADMP 53.342 28.728

Child
IHTA 69.832 29.347
LADMP 61.062 29.977

Table 2: Comparison of the running time (in seconds) and
PSNRs for image denoising.

(a) Noisy image (b) IHTA (c) LADMP

Figure 2: An example on the recovery image. (a) noisy im-
age with noisy level σs = 30, recovery image by (b) IHTA
with PSNR: 30.201 and (c) LADMP with PSNR: 31.443.

As explained in the previous sections, there is no evidence
of the convergence property for directly applying LADM
to nonconvex and nonsmooth problem. Hence we conduct
another experiment on the comparison of the algorithm it-
self between directly applying LADM and our proposed
LADMP to solve the problem (13). In Fig. 3(a), the conver-
gence curve indicates that our LADMP algorithm converges
to an optimal point (‖xk+1 − xk‖/‖xk‖ < 10−5) while
at the same time the LADM does not converge within the
maximum iteration steps (300). In addition, Fig. 3(b) shows
the change of PSNR values during iterations which demon-
strate the stable and effective performance of our proposed
LADMP. point (‖xk+1 − xk‖/‖xk‖ < 10−5) while at the
same time the LADM does not converge within the maxi-
mum iteration steps (300).

5 Conclusion

We first propose LADMP based on ADM for a general non-
convex and nonsmooth optimization. By introducing an aux-
iliary variable and penalize its bringing constraint to the ob-
jective function, we prove that any limit point of our pro-
posed algorithm is a KKT point of the primal problem. In
addition, our algorithm is a linearized method that avoids
the difficulties of solving subproblems. We start the conver-
gence analysis of LADMP from two-block case and then
establish a similar convergence result for multi-block case.
Experiments on signal representation and image denoising
have shown the effectiveness of our proposed algorithm.
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Figure 3: Comparisons between LADM and the proposed
LADMP algorithm on both (a) convergence performance
and (b) the change of PSNR values during iterations.
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