
Learning to Branch in Mixed Integer Programming

Elias B. Khalil1, Pierre Le Bodic2, Le Song1, George Nemhauser2, Bistra Dilkina1

1School of Computational Science & Engineering
2School of Industrial & Systems Engineering

Georgia Institute of Technology
{ekhalil3, lebodic, song9, gn3, bdilkina6}@gatech.edu

Abstract
The design of strategies for branching in Mixed Integer
Programming (MIP) is guided by cycles of parameter tun-
ing and offline experimentation on an extremely heteroge-
neous testbed, using the average performance. Once devised,
these strategies (and their parameter settings) are essentially
input-agnostic. To address these issues, we propose a ma-
chine learning (ML) framework for variable branching in
MIP. Our method observes the decisions made by Strong
Branching (SB), a time-consuming strategy that produces
small search trees, collecting features that characterize the
candidate branching variables at each node of the tree. Based
on the collected data, we learn an easy-to-evaluate surrogate
function that mimics the SB strategy, by means of solving
a learning-to-rank problem, common in ML. The learned
ranking function is then used for branching. The learning is
instance-specific, and is performed on-the-fly while executing
a branch-and-bound search to solve the instance. Experiments
on benchmark instances indicate that our method produces
significantly smaller search trees than existing heuristics, and
is competitive with a state-of-the-art commercial solver.

Introduction
Recently, discrete optimization has been successfully lever-
aged to improve machine learning (ML) methodology (Roth
and Yih 2005; Bertsimas, King, and Mazumder 2015). We
will focus on the opposite direction of this fruitful cross-
fertilization. We explore ways to harness ML approaches
to improve the performance of branch-and-bound search for
Mixed Integer Linear Programming (MIP). ML techniques
have been successfully applied to a number of combinato-
rial search problems. For instance, UCT is a widely used
online learning algorithm for Monte Carlo tree search (Koc-
sis and Szepesvári 2006), neural nets are used to combine
heuristics in single-agent search (Samadi, Felner, and Scha-
effer 2008), and the EM algorithm is used for solving con-
straint satisfaction problems (Hsu et al. 2007). In the con-
text of MIP, some recent works propose ML techniques
for constructing a portfolio of good parameter configura-
tions for a MIP solver, and selecting the best configuration
for a given instance (Hutter et al. 2009; Kadioglu et al. ;
Xu et al. 2011). Alvarez et al. propose an ML approach to
load balancing in parallel branch-and-bound for MIP (2015).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Variable selection for branching is considered to be a
main component of modern MIP solvers (Linderoth and
Savelsbergh 1999; Achterberg and Wunderling 2013). As
part of the branch-and-bound algorithm for solving MIP
problems (Nemhauser and Wolsey 1988), nodes in a search
tree of partial assignments to variables must be expanded
into (two) child nodes by selecting one of the unassigned
variables and splitting its domain by adding additional con-
straints. Choosing good variables to branch on often leads to
a dramatic reduction in terms of the number of nodes needed
to solve an instance. In fact, a recent extensive computa-
tional study by researchers at IBM CPLEX, a leading com-
mercial MIP solver, shows that using a naive variable selec-
tion strategy degrades performance by a factor of more than
8, compared to modern strategies (Achterberg and Wunder-
ling 2013). However, in the same study, the authors note that
“the results show that some progress has been achieved in
branching variable selection since CPLEX 8.0 (2002 ver-
sion), but certainly no break-through” (p. 458).

Traditional branching strategies fall into two main classes:
Strong Branching (SB) approaches exhaustively test vari-
ables at each node, and choose the best one with respect
to closing the gap between the best bound and the current
best feasible solution value. Achterberg (2009) shows that
SB can result in 65% fewer search tree nodes on average,
compared to the state-of-the-art “hybrid branching” strategy.
However, this comes at an increase of up to 44% in computa-
tion time, as more time is spent per node. On the other hand,
Pseudocost (PC) branching strategies are engineered to imi-
tate SB using a fraction of the computational effort, typically
achieving a good trade-off between number of nodes and to-
tal time to solve a MIP. The design of such PC-based strate-
gies has mostly been based on human intuition and extensive
engineering, requiring significant manual tuning (initializa-
tion, statistical tests, tie-breaking, etc.). While that approach
is important and constructive, we depart from it and propose
to learn branching strategies directly from data.

We develop a novel framework for data-driven, on-the-
fly design of variable selection strategies. By leveraging re-
search in supervised ranking, we aim to produce strategies
that gather the best of all properties: 1) using a small number
of search nodes, approaching the good performance of SB,
2) maintaining a low computation footprint as in PC, and 3)
selecting variables adaptively based on the properties of the

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

724

given instance. In the context of a single branch-and-bound
search, in a first phase, we observe the decisions made by
SB, and collect: features that characterize variables at each
node of the tree, and labels that discriminate among can-
didate branching variables. In a second phase, we learn an
easy-to-evaluate surrogate function that mimics SB, by solv-
ing a learning-to-rank problem common in ML (Liu 2009),
with the collected data being used for training. In a third
phase, the learned ranking function is used for branching.

Compared to recent machine learning methods for node
and variable selection in MIP (He, Daumé III, and Eis-
ner 2014; Alvarez, Louveaux, and Wehenkel 2014), our ap-
proach: 1) can be applied to instances on-the-fly, without an
upfront offline training phase on a large set of instances, and
2) consists of solving a ranking problem, as opposed to re-
gression or classification, which are less appropriate for vari-
able selection. Its on-the-fly nature has the benefit of being
instance-specific and of continuing the branch-and-bound
seamlessly, without losing work when switching between
learning and prediction. The ranking formulation is natural
for variable selection, since the reference strategy (SB) ef-
fectively ranks variables at a node by a score, and picks the
top-ranked variable, i.e. the score itself is not important.

We will show an instantiation of this framework using
CPLEX, a state-of-the-art commercial MIP solver. We use
a set of static and dynamic features computed for each can-
didate variable at a node, and SVM-based learning to esti-
mate a two-level ranking of good and bad variables based
on SB scores. Experiments on benchmark instances indicate
that our method produces significantly smaller search trees
than PC-based heuristics, and is competitive with CPLEX’s
default strategy in terms of number of nodes.

Background
Definition 1 (Mixed Integer Program) Given matrix A ∈
R

m×n, vectors b ∈ R
m and c ∈ R

n, and a subset I ⊆
{1, ..., n}, the mixed integer program MIP = (A, b, c, I) is:

z∗ = min{cTx|Ax � b, x ∈ R
n, xj ∈ Z ∀j ∈ I}

The vectors in the set XMIP = {x ∈ R
n|Ax � b, xj ∈

Z ∀j ∈ I} are called feasible solutions of the MIP. A fea-
sible solution x∗ ∈ XMIP is called optimal if its objective
value cTx∗ is equal to z∗.

Definition 2 (LP relaxation of a MIP) The linear pro-
gramming (LP) relaxation of a MIP is:

ž = min{cTx|Ax � b, x ∈ R
n}

When XMIP �= ∅, ž is a lower bound for z∗, i.e. ž � z∗.

Branch-and-Bound
Branch-and-Bound (Nemhauser and Wolsey 1988) keeps a
list of search nodes, each with a corresponding LP problem,
obtained by relaxing the integrality requirements on the vari-
ables in I that have not been fixed to an integer value at
an ancestor node. Let L denote the list of active nodes (i.e.
nodes that have not been pruned nor branched on). Let z̄ de-
note an upper bound on the optimum value z∗; initially, the
bound z̄ is set to ∞ or derived using heuristics that find an

initial feasible solution. A lower (or dual) bound is derived
by solving the LP relaxation of a MIP.

Two of the main decisions to be made during the algo-
rithm are node selection and variable selection. In the for-
mer, the goal is to select an active node Ni from L. Follow-
ing that, the LP relaxation at Ni is solved, and its solution
vector (if one exists) is x̌i with value ži. Ni is pruned if its
LP is infeasible, or if ži � z̄. If the LP solution x̌i is integer-
feasible, i.e. x̌i ∈ XMIP , and ži < z̄, then z∗ is updated to
ži, and x̌i is the new incumbent; the node is also pruned, as
no better feasible solution can exist in its subtree.

If the selected node is not pruned, then it must be ex-
panded into two child nodes. This is done by branching on
an integer variable that has a fractional value in x̌i, i.e. a vari-
able j ∈ I for which x̌i

j /∈ Z, where x̌i
j denotes the value of

variable j in the LP solution x̌i. The two child nodes N−
j and

N+
j are the result of branching on j downwards (xj � �x̌i

j	
in all descendants Nk) and upwards (xj �
x̌i

j� in all de-
scendants Nk). Variable selection deals with the problem of
selecting that variable j from a set of possible candidates.
Additional components of a MIP solver, such as cut genera-
tion and primal heuristics, are not discussed for simplicity.

In this work, we focus on learning a variable selection
strategy. A generic variable selection strategy can be de-
scribed as follows. Given a node Ni whose LP solution x̌i

is not integer-feasible, let Ci ⊆ {j ∈ I|x̌i
j /∈ Z} be the

set of branching candidates. For all candidates j ∈ Ci, cal-
culate a score sj ∈ R, and return an index j∗ ∈ Ci with
sj∗ = maxj∈Ci sj . Two standard approaches to comput-
ing the variable scores are briefly described next; we refer
to (Achterberg 2009) for more details.

Strong Branching (SB)

Typically, the measure for the quality of branching on a vari-
able xj is the improvement in the dual bound. Consider a
node N with LP value ž, LP solution x̌, and candidate vari-
able set C. The two children N−

j and N+
j , resulting from

branching on j downwards and upwards, have (feasible) LP
values ž−j and ž+j , respectively. If N−

j (N+
j) is infeasible,

ž−j (ž+j) is set to a very large value. The changes in objec-
tive value are then Δ−j = ž−j − ž and Δ+

j = ž+j − ž . To map
these two values to a single score, let ε be a small constant
(e.g. 10−6), then:

SBj = score
(
max{Δ−j , ε},max{Δ+

j , ε}
)

(1)

A product is typically used for scoring, i.e. score(a, b) =
a × b. SB attempts to find the variable with the maximum
score (1), by simulating the branching process for the candi-
date variables in C, and computing the scores as in (1).

While SB directly optimizes (1), it is computationally ex-
pensive: solving two LP problems for each candidate vari-
able using the simplex algorithm is often time-consuming.
The time spent per node ends up overshadowing the time
saved due to a smaller search tree. Simpler but faster heuris-
tics are hence preferred.

725

Pseudocost Branching (PC)
Pseudocosts are historical quantities aggregated for each
variable during the search. The upwards (downwards) PC
of a variable xj is the average unit objective gain taken over
upwards (downwards) branchings on xj in previous nodes;
we refer to this quantity as Ψ+

j (Ψ−j). Pseudocost branching
at node N with LP solution x̌ consists in computing values:

PCj = score
(
(x̌j − �x̌j)Ψ−j , (
x̌j� − x̌j)Ψ

+
j

)
(2)

and choosing the variable with the largest such value. As in
SB, the product is used to combine the downwards and up-
wards values. One standard way to initialize the pseudocost
values is by applying strong branching once for each integer
variable, at the first node at which it is fractional (Linderoth
and Savelsbergh 1999). We will refer to this PC strategy with
SB initialization as pseudocost branching (PC).

Overall, PC-based strategies are input-agnostic, since the
variable selection rule is always the same (branch on the
variable with largest PC score (2)), and is dependent on
extensive parameter tuning on instances that may be com-
pletely different in structure from the actual input. This is
the case for modern strategies such as reliability branch-
ing (Achterberg, Koch, and Martin 2005) and hybrid branch-
ing (Achterberg and Berthold 2009). Additionally, experi-
ments show that PC-based strategies are still far from match-
ing the node-efficiency of SB, requiring 65% more nodes
than the latter, on average (Table 5.1 in (Achterberg 2009)).

Overview of our Framework
We now introduce a framework for learning to branch in
MIP. Our intuition is that by observing and recording the
rankings induced by SB, we can learn a function of the vari-
ables’ features that will rank them in a similar way, without
the need for the expensive SB computations. Given a MIP
instance and some parameters, we proceed in three phases:

1. Data collection: for a limited number of nodes θ, SB is
used as a branching strategy. At each node, the computed
SB scores are used to assign labels to the candidate vari-
ables; and corresponding variable features are also ex-
tracted. All information is compiled in a training dataset.

2. Model learning: the dataset is fed into a learning-to-rank
algorithm that outputs a vector of weights for the features,
such that some loss function is minimized over the train-
ing dataset.

3. ML-based branching: SB is no longer used, and the
learned weight vector is used to score variables, branching
on the one with maximum score until termination.

We highlight how the proposed method satisfies three de-
sirable properties, before confirming so experimentally.

1. Node-efficiency: the learned ranking model uses SB
scores and node-specific variable features as training data,
and is thus expected to imitate the SB choices more
closely than PC, yielding smaller search trees.

2. Time-efficiency: SB is used in the first phase only, typ-
ically for a few hundred nodes. The time required for

learning (second phase) is small, and the third phase is
dominated by feature computations, which are designed
to be much cheaper than solving the LPs as does SB.

3. Adaptiveness: the learned ranking model is instance-
specific, as it assigns different weights to features depend-
ing on the collected data.
Next, we describe each of the phases in more detail.

Data Collection
In this first phase, we aim to construct a training dataset from
which we can learn a model that mimics SB’s ranking. As
such, the branch-and-bound algorithm is run with SB as the
variable selection strategy, for a fixed number of nodes θ. If a
node is fathomed (e.g. for infeasibility) during this phase, it
does not count towards θ. At each node Ni, SB is run on a set
of candidate variables Ci, where |Ci| � κ, and κ is typically
in the range 10–20 in SB implementations (e.g. CPLEX).
The variables in Ci are chosen among the fractional integer
variables in the node’s LP solution in standard ways (e.g.
sorting by PC score (Achterberg, Koch, and Martin 2005)).

The training data then comprises:
– a set of search tree nodes N = {N1, ..., Nθ};
– a set of candidate variables Ci for a given node Ni ∈ N ;
– labels yi = {yij ∈ Ω|j ∈ Ci} for the candidate variables

at each node i, where Ω is the domain of the labels;
– a feature map Φ : X × N → [0, 1]p, where X =
{x1, ..., xn}. Φ(xj , Ni) describes variable xj at node Ni

with p features.
Notice how the same variable xj may appear in both Ci

and Ck for i �= k, yet with different labels and feature val-
ues. This is a result of the choice of feature map Φ, which
maps a variable at the node in question to features, capturing
different contexts encountered during the search.

The specification and representation of the labels and fea-
tures is a core issue when modeling a problem using ma-
chine learning. We present intuitive, simple guidelines for
doing so in the context of branching.

Labels
A label is a value assigned to each variable in Ci, such that
better variables w.r.t. to the SB score have larger labels. We
consider the SB score to be a sort of “gold standard” for
scoring variables, hence labels based on such a score are a
good target for learning.

We propose a simple and intuitive binary labeling
scheme, i.e. Ω = {0, 1}. Let SBi denote the vector of
SB scores for variables in Ci of node Ni, and SBi

∗ =
maxj∈Ci{SBi

j}. A label yij is computed by transforming the
corresponding SB score SBi

j as follows:

yij =

{
1, if SBi

j � (1− α) · SBi
∗

0, otherwise
(3)

where α ∈ [0, 1] is the fraction of the maximum SB score
that a variable should have in order to get a ‘1’ label. For in-
stance, when α = 0.2, variables whose SB scores are within
20% of the maximum score are assigned a label of ‘1’.

726

The labels resulting from the transformation in (3) empha-
size our focus on the best variables w.r.t. SB, and are com-
patible with learning-to-rank formulations, as we will see
in later sections. While other labeling schemes are possible
(e.g. grading on a scale of 1 to 5), we prefer the simple bi-
nary labels for the purposes of this work. Note that although
our labels are 0/1, our setting is that of bipartite ranking
(i.e. ranking with 0/1 labels), and not binary classification.
Having a binary labeling scheme, as opposed to using a full
ranking among all candidate variables, helps to avoid learn-
ing to correctly rank variables with low SB scores relative to
each other, a task that is irrelevant to making a good branch-
ing choice. In addition, instead of assigning only the variable
with maximum SB score a label of ‘1’ and all others a label
of ‘0’, our labeling scheme has a relaxed definition of “top”
branching variable. This captures the fact that at some search
nodes several candidate variables will have high SB scores,
and will likely be good branching candidates.

Features
We compute a feature vector that describes a variable’s state
with respect to the node. The features can be split into two
sets: atomic features are computed based on the node LP
and candidate variable, whereas interaction features are the
result of a product of two atomic features. The final feature
vector can be seen as an explicit feature mapping, equivalent
to the degree-2 polynomial kernel K(y, z) = (yT z+1)2, in
the space of atomic features.

The 72 atomic features are summarized in Table 1. They
consist of counts and statistics (all or some of: mean, stan-
dard deviation (stdev.), minimum, maximum) capturing a
variable’s structural role within the node LP, as well as its
historical performance. The atomic features are either static
or dynamic. Static features are pre-computed once at the root
node, and do not depend on the specific node LP.

For each feature, we normalize its values to the range
[0, 1] across the candidate variables at each node. This type
of normalization is referred to as query-based normalization
in the IR literature (Liu et al. 2007). This produces an addi-
tional layer of dynamism, as the final value of a feature for
a given variable depends on the set of candidate variables
being considered at that node. For example, this results in
static features of a variable taking on different normalized
values across different nodes.

All atomic features can either be accessed through the
solver API in O(1), or computed in O(nnz(A)), i.e. in time
linear in the number of non-zero elements of the coefficient
matrix A, which makes data collection efficient.

Learning a Variable Ranking Function
Given the training data, we would like to learn a linear
function of the features f : R

p → R, f(Φ(xj , Ni)) =
wTΦ(xj , Ni) that minimizes a loss function over the train-
ing data. In ML terms, this problem is one of empirical risk
minimization.

We define ŷi ∈ R
κ to be the vector of values result-

ing from applying f to every variable in Ci, i.e. ŷij =

f(Φ(xj , Ni)). Formally, the learning problem can be writ-
ten as that of finding:

w∗ = argmin
w∈Rp

∑
Ni∈N

�(yi, ŷi) + λ‖w‖22 (4)

The (structured) loss function � : Rκ × R
κ → R measures

the loss resulting from ranking the variables at a node Ni

according to ŷi, as opposed to the true labels yi, and λ > 0
is a regularization parameter that helps to avoid overfitting.

Fortunately, this problem has been studied in the context
of web search, where a system is given a set of queries,
and must rank a set of documents by order of relevance.
We leverage existing research in information retrieval (IR)
to address our problem (4). Specifically, our choice of the
loss function �(.) is based on pairwise loss, a common IR
measure (Joachims 2002; Liu 2009).

A Pairwise Ranking Formulation
For a node Ni, consider the set of pairs: Pi ={
(xj , xk) | j, k ∈ Ci and yij > yik

}
. Each pair in any set

Pi includes two variables at node Ni: one with label 1, and
another with label 0. In order to rank variables similarly to
how SB ranks them, we could learn an f that violates as few
as possible of the following pairwise ordering constraints:

∀i ∈ {1, ..., θ} : ∀(xj , xk) ∈ Pi : ŷ
i
j > ŷik (5)

Violating a constraint in (5) is equivalent to learning a model
for which ŷij � ŷik for some node Ni and variables xj , xk: a
variable with label yik = 0 is ranked the same or higher than
one with label yij = 1. Minimizing such violations means
that the model is more likely to rank good variables higher
than bad ones, which is our goal in variable selection. Note
that other formulations for the bipartite ranking problem are
also possible, e.g. (Rudin 2009), but the one we adopt is sim-
ple, can be optimized efficiently, and works well in practice.

While minimizing the number of violated constraints
in (5) is NP-hard, Joachims (2002) proposed a Support Vec-
tor Machine (SVM) approach that optimizes an upper bound
on that number. SVMrank is an efficient open-source pack-
age that implements that algorithm with the appropriate loss
function � (Joachims 2006). We use SVMrank with a cost-
sensitive loss, weighting each term in the sum in (4) by
1/|Pi| (parameter “-l 2”). This variant is more suitable, as it
reduces the bias towards nodes with more “good” variables.

Branching with the Learned Function
After θ nodes have been processed, and the vector w has
been learned, we switch from SB to the function f as vari-
able selection strategy. At each new node Ni, we com-
pute the feature vector Φ(xj , Ni) for each variable j ∈ Ci,
and branch on the variable j∗ with maximum score sj∗ =
maxj∈Ci sj , where sj = f(Φ(xj , Ni)). The complexity of
this procedure is O(nnz(A) + p · κ), where the first term
is due to the computation of features, and the second is due
to feature normalization and scoring by dot product (using p
features and at most κ candidate variables per node). Com-
pared to SB, which requires many dual simplex iterations,
experiments show that our approach is much more efficient.

727

Feature Description Count Reference

Static Features (18)

Objective function coeffs. Value of the coefficient (raw, positive only, negative only) 3
Num. constraints Number of constraints that the variable participates in (with a non-zero coefficient) 1

Stats. for constraint degrees
The degree of a constraint is the number of variables that participate in it. A variable may participate in
multiple constraints, and statistics over those constraints’ degrees are used. The constraint degree is
computed on the root LP (mean, stdev., min, max)

4

Stats. for constraint coeffs. A variable’s positive (negative) coefficients in the constraints it participates in (count, mean, stdev., min,
max) 10

Dynamic Features (54)

Slack and ceil distances min{x̌i
j − �x̌i

j	,
x̌i
j� − x̌i

j} and
x̌i
j� − x̌i

j 2

Pseudocosts Upwards and downwards values, and their corresponding ratio, sum and product, weighted by the
fractionality of xj

5 (Achterberg
2009)

Infeasibility statistics Number and fraction of nodes for which applying SB to variable xj led to one (two) infeasible children
(during data collection) 4

Stats. for constraint degrees A dynamic variant of the static version above. Here, the constraint degrees are on the current node’s LP.
The ratios of the static mean, maximum and minimum to their dynamic counterparts are also features 7

Min/max for ratios of
constraint coeffs. to RHS Minimum and maximum ratios across positive and negative right-hand-sides (RHS) 4

(Alvarez,
Louveaux, and
Wehenkel 2014)

Min/max for one-to-all
coefficient ratios

The statistics are over the ratios of a variable’s coefficient, to the sum over all other variables’ coefficients,
for a given constraint. Four versions of these ratios are considered: positive (negative) coefficient to sum of
positive (negative) coefficients

8
(Alvarez,
Louveaux, and
Wehenkel 2014)

Stats. for active constraint
coefficients

An active constraint at a node LP is one which is binding with equality at the optimum. We consider 4
weighting schemes for an active constraint: unit weight, inverse of the sum of the coefficients of all
variables in constraint, inverse of the sum of the coefficients of only candidate variables in constraint, dual
cost of the constraint. Given the absolute value of the coefficients of xj in the active constraints, we
compute the sum, mean, stdev., max. and min. of those values, for each of the weighting schemes. We also
compute the weighted number of active constraints that xj is in, with the same 4 weightings

24 (Patel and
Chinneck 2007)

Table 1: Description of the atomic features.

Experimental Results
Setup. We use the C API of IBM ILOG CPLEX 12.6.1
to implement various strategies using control callbacks, in
single-thread mode. To evaluate the performance of any vari-
able selection strategy A, the strategy is run on a set of in-
stances with a time cut-off of tmax seconds. An instance I is
solved by strategy A if and only if the run terminates within
the tolerance gaps (we use default CPLEX values). If an in-
stance I is not solved by the time cut-off, it is referred to
as unsolved. All experiments were run on a cluster of four
64-core machines with AMD 2.4 GHz processors and 264
GB of memory; each run was limited to 2 GB of memory,
and no run failed for memory reasons.

To isolate the effects of changing the variable selection
strategy, we provide the optimal value as upper cutoff
to CPLEX before the start of the search. This measure
reduces the effect of node selection on the search, as the
primal bound is given by the upper cutoff, and the order
in which nodes are expanded has little impact on the tree
itself. Additionally, cuts are allowed at the root only, and
primal heuristics are disabled. These measures are common
in branching studies (Linderoth and Savelsbergh 1999;
Fischetti and Monaci 2012; Karzan, Nemhauser, and
Savelsbergh 2009), since they eliminate the interference
between variable selection and other components of the
solver, such as node selection. This also reduces perfor-
mance variability, which we discuss in the next section.

Instances. We use the “Benchmark” set from MIPLIB2010
as our test set; we refer to (Koch et al. 2011) for details. This

set was designed to span a variety of problem classes, appli-
cations, dimensions, levels of difficulty, etc., and is routinely
used for evaluating branching strategies. The “Benchmark”
set consists of 87 instances that can be solved by at least one
commercial solver within 2 hours on a high-end PC. Note
that since we turn off multi-threading and cuts beyond the
root, we cannot expect to solve all instances within 2 hours.
Hence, we set the time cut-off tmax to 5 hours (18,000 sec-
onds). Three infeasible instances are excluded.

For each of the 84 instances we consider, we
run every strategy with 10 different random seeds,
for every variable selection strategy. Recent stud-
ies have shown that MIP solvers can be very sen-
sitive to seemingly performance-neutral perturba-
tions to their inputs (Lodi and Tramontani 2013;
Achterberg and Wunderling 2013). Therefore, runs
with different seeds are necessary for obtaining meaningful
results. In CPLEX, such perturbations can be induced by
changing CPLEX’s internal random seed via its C API.

Branching strategies. We experiment with five strategies.
CPLEX-D is the strategy that branches on the variable cho-
sen by the solver with its default variable selection rule (as
set by CPX PARAM VARSEL); this is done within a call-
back, as for all other strategies. Up until 2013, CPLEX de-
velopers report that the default selection rule is “a version of
hybrid branching” (Achterberg and Wunderling 2013). SB
refers to Strong Branching, while PC refers to pseudocost
branching with SB initialization of the PC values (Linderoth
and Savelsbergh 1999). SB+PC is a hybrid of SB for the first

728

CPLEX-D SB PC SB+PC SB+ML

Unsolved
Instances

All (523) 11 129 66 63 52
Easy (255) 0 12 15 14 13
Medium (120) 2 43 22 22 17
Hard (148) 9 74 29 27 22

Num. Nodes

All (523) 46,633 33,072 92,662 70,455 59,223
Easy (255) 3,255 3,610 7,931 5,224 5,124
Medium (120) 173,417 121,923 395,199 288,916 234,093
Hard (148) 1,570,891 519,878 1,971,333 1,979,660 1,314,263

Total Time

All (523) 499 2,263 960 1,093 1,059
Easy (255) 111 602 243 361 382
Medium (120) 1,123 6,169 2,493 1,892 1,776
Hard (148) 3,421 9,803 4,705 4,718 4,039

Table 2: Summary of experimental results. “Unsolved instances” are counts, “Num. nodes” and “Total time” (in seconds) are
shifted geometric means over instances with shifts 10 and 1, respectively. Lower is better, and the best value in each row among
PC, SB+PC and SB+ML is in bold.

θ = 500 nodes, and PC afterwards; a similar strategy ap-
pears in (Fischetti and Monaci 2012). SB+ML is our pro-
posed method with θ = 500. We use α = 0.2 and SVMrank

with a trade-off parameter C = 0.1 between training er-
ror and margin (λ in (4) is a function of C). We varied
α ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and C ∈ {0.001, 0.01, 0.1, 1}
(0.01 is the default in SVMrank), and found that SB+ML per-
forms similarly. For SB, SB+PC and SB+ML, κ is set to 10,
and all SB calls are limited to 50 dual simplex iterations, as
in (Fischetti and Monaci 2012).

We do not know what additional embellishments CPLEX
uses, and report results for its default strategy as CPLEX-D.
Even when CPLEX’s default strategy is roughly known,
callback implementations are much less node (and time)
efficient; see Table 4 in (Fischetti and Monaci 2012) for an
example. Hence, the main comparisons of our strategy are
to PC and SB+PC. Most related to SB+ML is SB+PC, since
both strategies share the same exact search tree up to θ
nodes, then diverge by branching according to the variables
selected by the learned ranking model and PC, respectively.
Note that any extra information that CPLEX uses internally
to score variables can be incorporated into our framework
as features or labels, as can reliability branching scores, etc.

Results. We consider three metrics for evaluating branching
strategies: the number of unsolved instances, the number of
nodes to solve the instance and the total time to solve the
instance. Since our hypothesis is that our strategy SB+ML
is better at variable selection, the main criterion for com-
parison is the number of nodes. The case for focusing on
nodes versus time in benchmarking branching methods is
discussed in depth in (Hooker 1995). Total time is also im-
portant, and we have accordingly optimized our implemen-
tation of SB+ML to some extent. However, we believe that
the time-efficiency of SB+ML may be improved, for exam-
ple with access to CPLEX’s internal data structures.

An instance with a different random seed is consid-
ered as a separate instance; this was suggested first by

Danna (2008). Results for averages over seeds (per instance)
are consistent with what we present here, but are not in-
cluded due to space constraints. Of the 840 instances con-
sidered, we exclude: 184 instances solved by all strategies
in 1,000 nodes (too easy), 82 instances not solved by any
strategy in 5 hours (too hard), 3 instances that are flagged as
infeasible by at least one strategy, and 48 instances for which
CPLEX aborted. For Table 2, “All” refers to all instances
considered, “Easy” and “Medium” refer to instances solved
by CPLEX-D in less than 50,000 and 500,000 nodes, respec-
tively; otherwise, an instance is classified as “Hard”. When
a strategy does not solve an instance, tmax is reported as
the total time, and the number of nodes at termination is re-
ported as the number of nodes. Note that this may be biased
towards strategies that are slower, processing fewer nodes
and solving fewer instances. This issue is inherent to MIP
benchmarking (Achterberg and Wunderling 2013), and we
will address it in Tables 3 and 4. Similar experimental pro-
cedures are used in recent work on branching (Fischetti and
Monaci 2012; Karzan, Nemhauser, and Savelsbergh 2009).

Table 2 shows that SB+ML solves more instances than
both PC and SB+PC. Most notably, SB+ML clearly outper-
forms PC and SB+PC, requiring respectively around 36% and
16% fewer nodes on average (“All” set). Currently, SB+ML
spends, on average, 18 milliseconds (ms) per node, while
SB, PC and SB+PC spend 68, 10 and 15 ms, respectively. Al-
though SB+ML spends more time per node than SB+PC due
to feature computations, it incurs a comparable total time, as
it saves in the number of nodes. Compared to PC, our method
is slower by 10% on average over all instances, but is 28%
and 14% faster for instances in “Medium” and “Hard”, re-
spectively. A more optimized implementation of the feature
computations of SB+ML is likely to make it faster than com-
petitors for the “Easy” set too. It is clear that SB is not ap-
plicable, as it requires twice as much total time as the three
competing methods, and times out on many more instances.

Table 3 addresses the bias in averaging over the number
of nodes on unsolved instances in Table 2. Here, we con-

729

CPLEX-D SB PC SB+PC SB+ML
CPLEX-D 1.39 (389) 0.64 (449) 0.84 (452) 0.97 (463)

SB 0.72 (389) 0.47 (389) 0.61 (388) 0.76 (389)
PC 1.56 (449) 2.11 (389) 1.34 (445) 1.59 (450)

SB+PC 1.20 (452) 1.63 (388) 0.75 (445) 1.22 (454)
SB+ML 1.03 (463) 1.32 (389) 0.63 (450) 0.82 (454)

Table 3: Ratios for the shifted geometric means (shift 10) over nodes on instances solved by both strategies. The first value in a
cell in row A and column B is the ratio of the average number of nodes used by A to that of B. The second value is the number
of instances solved by both A and B.

CPLEX-D SB PC SB+PC
CPLEX-D

SB 5/264/0/125/123
PC 8/164/0/285/63 68/63/0/326/5

SB+PC 8/227/0/225/60 72/66/7/315/6 15/320/0/125/12
SB+ML 8/267/0/196/49 82/96/7/286/5 21/355/0/95/7 17/300/58/96/6

Table 4: Win-tie-loss matrix for the number of nodes. A quintuple in a cell in row A and column B has: the number of absolute
wins, wins, ties, losses and absolute losses for A against B, w.r.t. the number of nodes.

sider only instances solved by both strategies, for every pair
of strategies, and compute shifted geometric means on that
subset of the instances. The node ratios shown in Table 3
are in line with the previous two tables. SB+ML needs 37%
and 18% fewer nodes than PC and SB+PC, respectively, and
only 3% more nodes than CPLEX-D. Interestingly, SB+ML
requires 32% more nodes than SB, while CPLEX-D requires
39%; PC and SB+PC are dramatically worse.

Table 4 shows win-tie-loss counts for each pair of
strategies, comparing the number of nodes needed to solve
an instance head-to-head, and avoiding the averaging used
in the two previous tables. An absolute win for strategy A
over B on instance I is recorded iff A solves I whereas B
does not; a win occurs when both A and B solve I, and A
does so in strictly fewer nodes than B; absolute loss and loss
are defined analogously. A tie occurs when A and B solve
I in the same number of nodes. Table 4 is consistent with
Table 2, showing that SB+ML outperforms PC and SB+PC
head-to-head, solving many more instances in fewer nodes.
SB+ML has 21 absolute wins and 355 wins over PC, while
PC has only 7 absolute wins and 95 wins over SB+ML in
terms of number of nodes. SB+ML is on par with CPLEX-D
in terms of overall wins, with fewer absolute wins (8 vs.
49), but more wins on instances solved by both (267 vs.
196).

Feature analysis. To evaluate whether the instance-specific
branching models we use are warranted, we measure how
similar the learned models are in terms of the feature ranking
induced by the learned (absolute) feature weights. We ana-
lyze models for 57 different instances from one seed, and
find that the average pairwise Spearman’s rank correlation
coefficient (a value between -1 and 1) is 0.16, indicating only
little positive correlation. This implies that instance-specific
variable ranking models are indeed useful. Examining which
features are more informative, we find that combining struc-

tural (e.g. active constraint features) and historical features
such as PC product results in interaction features that often
have large (absolute) weights across models.

Conclusions and Future Directions
We have proposed the first successful ML framework for
variable selection in MIP, an approach which may also bene-
fit other components of the MIP solver such as cutting planes
and node selection. The framework can be extended in sev-
eral directions, such as dynamically adjusting the number of
training nodes θ or learning models multiple times in adap-
tation to the search progress. Beyond the batch supervised
ranking approach we used, online and reinforcement learn-
ing formulations may be interesting to explore, given the
structured, sequential nature of the variable selection task.

Acknowledgments
The work depicted in this paper was partially sponsored by
DARPA under agreement #HR0011-13-2-0001. The con-
tent, views and conclusions presented in this document do
not necessarily reflect the position or the policy of DARPA
or the U.S. Government, no official endorsement should be
inferred. Distribution Statement A: “Approved for public re-
lease; distribution is unlimited.’ L.S. is supported in part by
NSF/NIH BIGDATA 1R01GM108341, ONR N00014-15-1-
2340, NSF IIS-1218749, and NSF CAREER IIS-1350983.
P.L. and G.N. are supported by AFOSR FA9550-12-1-0151
and NSF CCF-1415460.

References
Achterberg, T., and Berthold, T. 2009. Hybrid branching. In
CPAIOR. Springer. 309–311.
Achterberg, T., and Wunderling, R. 2013. Mixed integer
programming: Analyzing 12 years of progress. In Jünger,
M., and Reinelt, G., eds., Facets of Combinatorial Optimiza-
tion. Springer.

730

Achterberg, T.; Koch, T.; and Martin, A. 2005. Branching
rules revisited. Operations Research Letters 33(1):42–54.
Achterberg, T. 2009. Constraint Integer Programming.
Ph.D. Dissertation, Technische Universität Berlin.
Alvarez, A. M.; Louveaux, Q.; and Wehenkel, L. 2014. A
supervised machine learning approach to variable branch-
ing in branch-and-bound. Technical Report, Université de
Liège.
Alvarez, A. M.; Wehenkel, L.; and Louveaux, Q. 2015. Ma-
chine learning to balance the load in parallel branch-and-
bound. Technical Report, Université de Liège.
Bertsimas, D.; King, A.; and Mazumder, R. 2015. Best sub-
set selection via a modern optimization lens. arXiv preprint
arXiv:1507.03133.
Danna, E. 2008. Performance variability in mixed inte-
ger programming. Presented at Workshop on Mixed Integer
Programming, Columbia University, New York.
Fischetti, M., and Monaci, M. 2012. Branching on
nonchimerical fractionalities. Operations Research Letters
40(3):159–164.
He, H.; Daumé III, H.; and Eisner, J. 2014. Learning to
search in branch-and-bound algorithms. In NIPS.
Hooker, J. N. 1995. Testing heuristics: We have it all wrong.
Journal of Heuristics 1(1):33–42.
Hsu, E. I.; Kitching, M.; Bacchus, F.; and McIlraith, S. A.
2007. Using expectation maximization to find likely assign-
ments for solving CSP’s. In AAAI, 224–230.
Hutter, F.; Hoos, H. H.; Leyton-Brown, K.; and Stützle,
T. 2009. ParamILS: an automatic algorithm configuration
framework. JAIR 36(1):267–306.
Joachims, T. 2002. Optimizing search engines using click-
through data. In KDD, 133–142.
Joachims, T. 2006. Training linear SVMs in linear time. In
KDD, 217–226.
Kadioglu, S.; Malitsky, Y.; Sellmann, M.; and Tierney, K.
ISAC – instance-specific algorithm configuration. In ECAI.
Karzan, F. K.; Nemhauser, G. L.; and Savelsbergh, M. W.
2009. Information-based branching schemes for binary lin-
ear mixed integer problems. Mathematical Programming
Computation 1(4):249–293.
Koch, T.; Achterberg, T.; Andersen, E.; Bastert, O.;
Berthold, T.; Bixby, R. E.; Danna, E.; Gamrath, G.; Gleixner,
A. M.; Heinz, S.; et al. 2011. MIPLIB 2010. Mathematical
Programming Computation 3(2):103–163.
Kocsis, L., and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In ECML.
Linderoth, J. T., and Savelsbergh, M. W. 1999. A computa-
tional study of search strategies for mixed integer program-
ming. INFORMS Journal on Computing 11(2):173–187.
Liu, T.-Y.; Xu, J.; Qin, T.; Xiong, W.; and Li, H. 2007.
LETOR: Benchmark dataset for research on learning to rank
for information retrieval. In Proceedings of SIGIR Workshop
on Learning to Rank for Information Retrieval, 3–10.

Liu, T.-Y. 2009. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval 3(3):225–
331.
Lodi, A., and Tramontani, A. 2013. Performance variabil-
ity in mixed-integer programming. Tutorials in Operations
Research: Theory Driven by Influential Applications 1–12.
Nemhauser, G. L., and Wolsey, L. A. 1988. Integer and
Combinatorial Optimization. John Wiley & Sons.
Patel, J., and Chinneck, J. W. 2007. Active-constraint vari-
able ordering for faster feasibility of mixed integer linear
programs. Mathematical Programming 110(3):445–474.
Roth, D., and Yih, W. 2005. Integer linear programming
inference for conditional random fields. In ICML, 736–743.
Rudin, C. 2009. The p-norm push: A simple convex rank-
ing algorithm that concentrates at the top of the list. JMLR
10:2233–2271.
Samadi, M.; Felner, A.; and Schaeffer, J. 2008. Learning
from multiple heuristics. In AAAI, 357–362.
Xu, L.; Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011.
Hydra-MIP: Automated algorithm configuration and selec-
tion for mixed integer programming. In Proceedings of the
18th RCRA Workshop on Experimental Evaluation of Algo-
rithms for Solving Problems with Combinatorial Explosion,
16–30.

731

