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Abstract

While suboptimal best-first search algorithms like Greedy
Best-First Search are frequently used when building auto-
mated planning systems, their greedy nature can make them
susceptible to being easily misled by flawed heuristics. This
weakness has motivated the development of best-first search
variants like ε-greedy node selection, type-based exploration,
and diverse best-first search, which all use random explo-
ration to mitigate the impact of heuristic error. In this paper,
we provide a theoretical justification for this increased robust-
ness by formally analyzing how these algorithms behave on
infinite graphs. In particular, we show that when using these
approaches on any infinite graph, the probability of not find-
ing a solution can be made arbitrarily small given enough
time. This result is shown to hold for a class of algorithms
that includes the three mentioned above, regardless of how
misleading the heuristic is.

1 Introduction

Greedy best-first search (GBFS) (Doran and Michie 1966)
is a popular suboptimal search algorithm that is often used
in planning systems. GBFS takes a greedy approach to ex-
plore a state-space as it always prioritizes the node with the
lowest heuristic value without any consideration of the cost
to get to that node. While this greedy approach can be effec-
tive in practice, it can also make GBFS susceptible to being
misled by an arbitrary amount if the heuristic is wrong. For
example, consider the task of finding a path from node v
to node g in the graph shown in Figure 1a. In this graph,
all nodes in the left subtree below v down to some depth d
have a heuristic value of 4. Because GBFS considers only
the heuristic when evaluating nodes, the algorithm must ex-
haustively search the entire subtree (or heuristic plateau)
before expanding n and finding g. The more misleading the
heuristic (ie. the larger the plateau), the longer it will take
to solve this problem. For example, if d = 10, GBFS will
expand a total of 1, 024 nodes before n, while it will need to
expand a million nodes in the plateau if d = 20.

However, heuristics are not typically wrong everywhere
in a given state-space, and the greediness of GBFS often al-
lows the algorithm to quickly progress through large areas
of the problem in which the heuristic generally guides the
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(a) Problem graph for GBFS. (b) As a subgraph.

Figure 1: Graphs demonstrating the weaknesses of GBFS.

search in the right direction. For example, consider the more
representative graph shown in Figure 1b in which the initial
node is u and the graph in Figure 1a appears as a subprob-
lem. In this new graph, the heuristic provides imperfect, but
useful guidance along the path from u to v. As such, the
greediness of GBFS will get the search near the goal node
much more quickly than a less greedy algorithm such as A∗
or breadth-first search. It is only when the search reaches v
that the progress of GBFS will “stall” because it must ex-
haustively search the plateau under v.

Several recent approaches have augmented GBFS with
random exploration with the aim of maintaining the ben-
efits of greediness, while also making the algorithm more
robust to heuristic error. These techniques work by encour-
aging the search to occasionally ignore the advice of the
heuristic. For example, consider ε-greedy node selection
(Valenzano et al. 2014). On every iteration of a GBFS that
uses this technique, the algorithm will expand the node with
the lowest heuristic value with probability (1 − ε), where ε
is a parameter such that 0 ≤ ε ≤ 1. Otherwise, a node is
selected for expansion uniformly at random from amongst
those in the open list. Because the resulting algorithm is still
greedy for a fraction (1 − ε) of the time, the search will
still benefit from the value of greediness and quickly pass
through areas of the state-space — like from u to v in Figure
1b – in which the heuristic provides useful guidance. How-
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ever, by ignoring the heuristic with probability ε, the algo-
rithm will not be as easily misled by heuristic error. To see
this, consider this algorithm’s performance on the problem
in Figure 1a. In particular, let us compute the probability that
n has not been expanded after some given time assuming
the worst case for this graph: the plateau is infinitely big1.
If ε = 0.5, the probability that the algorithm will not have
expanded n after 1024 iterations is 0.04, which decreases to
0.001 after a million expansions.

If the plateau is not infinite but only goes to a depth of d,
or not all nodes in the plateau have a heuristic value of 4 or
less, then the probability that n is not expanded in at most
1024 expansions is clearly still at most 0.04. It is therefore
likely to have solved the problem in at most a thousand ex-
pansions, regardless of how misleading the heuristic is. In
contrast, standard GBFS will only solve this problem in that
amount of time if the heuristic is not too flawed.

In this paper, we formally show that the form of robust-
ness seen above in the graph in Figure 1a also holds in gen-
eral for ε-greedy node selection, and two other exploration-
based algorithms: type-based exploration (Xie et al. 2014)
and diverse best-first search (Imai and Kishimoto 2011).
In particular, we show that these algorithms are probabilis-
tically complete on any infinite graph-search problem. This
means that the probability that a solution has been found
can be made arbitrarily close to 1 given enough time. The
paper therefore provides a theoretical justification for the
claim that the exploration-based techniques are better able
to handle heuristic error than standard GBFS.

2 Related Work

Several previous papers have investigated the completeness
of search algorithms on infinite graphs, including the origi-
nal paper on A∗ (Hart, Nilsson, and Raphael 1968). Dechter
and Pearl (1985) later generalized this result by identifying
sufficient conditions for guaranteeing the completeness of a
best-first search on an infinite graph. This result is reviewed
in Section 3.4. However, we note that GBFS does not satisfy
these conditions, which is why it is incomplete on infinite
graphs like that shown in Figure 1a.

The notion of probabilistic completeness has previously
been considered in several fields. Hoos (1999) classi-
fied several stochastic local search algorithms based on
whether they are probabilistically complete on SAT prob-
lems. LaValle and Kuffner (2001) have demonstrated that
the RRT algorithm is probabilistically complete on kino-
dynamic motion planning problems. However, there are no
previous results on the probabilistic completeness of the
exploration-based best-first search variants.

Previous studies on exploration-based best-first search
variants have empirically demonstrated that these techniques
can greatly improve the performance of automated plan-
ners (Imai and Kishimoto 2011; Valenzano et al. 2014;
Xie et al. 2014). These studies generally suggest that this im-
provement occurs because the exploration-based techniques

1We use the expansion time of n to measure performance since
it is easier to calculate, and is clearly the node preventing progress.

more capably handle heuristic error. In this paper, we use
infinite graphs to provide theoretical evidence of this claim.

Several additional techniques have introduced diversity
into search through local searches (Xie, Müller, and Holte
2014; 2015) or by simultaneously expanding multiple nodes
(Felner, Kraus, and Korf 2003). While a complete discus-
sion of these approaches is beyond the scope of this paper,
we note that these approaches are neither complete nor prob-
abilistically complete on infinite graphs similar to those in
Figure 1. These techniques may therefore benefit from ad-
ditional random exploration as a way to make them more
robust in the face of misleading heuristics. However, such
analysis is left as future work.

Finally, Arvand is a random-walk based approach that
can also help overcome heuristic error (Nakhost and Müller
2009). As it uses a very different form of search than the al-
gorithms considered in this paper, we leave analysis of when
this algorithm is probabilistically complete as future work.

3 Background and Terminology

In this section, we define the necessary notation and termi-
nology used throughout the paper and describe an algorithm
framework that we use in the analysis below.

3.1 Graph-Search Terminology

The focus of this paper is on problems that can be repre-
sented as pathfinding in a graph G(V,E), where V is the
set of nodes of G and E is the set of edges. All edges are
assumed to be directed and to have a non-negative cost. If
there is an edge (np, nc) ∈ E from np to nc, the cost of the
edge is denoted by κ(np, nc), nc is called a child of np, and
np is the parent of nc. The set of children for any n ∈ V
is denoted by children(n). A path is a sequence of nodes
[n0, ..., nk] where ni+1 ∈ children(ni) for any 0 ≤ i < k
and ni �= nj for any 0 ≤ i < j ≤ k. The cost of a path P is
given by the sum of the costs of the edges along P .

We now define a graph-search problem as the tuple τ =
(G,ninit, Vgoals), where ninit ∈ V is the initial node and
Vgoals ⊆ V are the goal nodes. The objective of τ is to
find a solution path P = [n0, ..., nk] where n0 = ninit and
nk ∈ Vgoals. τ is said to be solvable if such a path exists.

In this paper, we assume that children(n) is finite and
bounded for any n ∈ V , even if V is infinite. This means
that for any n ∈ V , |children(n)| ≤ BM for some graph-
specific positive constant BM . BM will be called the maxi-
mum branching factor of G.

3.2 Open-Closed List (OCL) Algorithms

We now introduce the Open-Closed List (OCL) frame-
work. This framework is a generalization of A∗ (Hart,
Nilsson, and Raphael 1968) that defines a class of algo-
rithms that also includes WA∗ (Pohl 1970), GBFS, EES
(Thayer and Ruml 2011), and the existing exploration-based
best-first search variants that are the focus of this paper.
Versions of these algorithms enhanced with multi-heuristic
best-first search and preferred operator lists (Helmert 2006;
Röger and Helmert 2010), are also in this class.

785



Algorithm 1 The OCL Algorithm Framework
1: g(ninit) = 0, parent(ninit) = NONE
2: OPEN ← {ninit}, CLOSED ← {}
3: while OPEN is not empty do
4: n ← SelectNode(OPEN)
5: if n is a goal node then
6: return solution path extracted from CLOSED
7: for all nc ∈ children(n) do
8: if nc ∈ OPEN then
9: if g(n) + κ(n, nc) < g(nc) then

10: g(nc) = g(n) + κ(n, nc), parent(nc) ← n
11: else if nc ∈ CLOSED then
12: if g(n) + κ(n, nc) < g(nc) then
13: g(nc) = g(n) + κ(n, nc), parent(nc) ← n
14: CLOSED ← CLOSED− {nc}
15: OPEN ← OPEN ∪ {nc}
16: else
17: g(nc) = g(n) + κ(n, nc), parent(nc) ← n
18: OPEN ← OPEN ∪ {nc}
19: CLOSED ← CLOSED ∪ {n}
20: return no solution exists

Pseudocode for the OCL framework is given in Algorithm
1. Like A∗, all OCL algorithms search for a solution by iter-
atively building up a set of candidate paths through the ex-
pansion of nodes. These paths are maintained using OPEN
and CLOSED lists, as well as g-costs and parent pointers
just as A∗ does. The only difference between the pseudocode
given for the OCL framework and a standard A∗ definition is
that the OCL framework allows for the use of any arbitrary
policy for iteratively selecting the next node for expansion.
This policy is referred to as the SelectNode function in line
4. For example, the SelectNode function used by A∗ is de-
fined to return the state in OPEN with the minimum value
of g(n) + h(n), where h is the heuristic function. However,
the OCL framework allows for many other policies as well,
including a GBFS that uses ε-greedy node selection. In that
OCL algorithm, SelectNode is a stochastic function that re-
turns the node in OPEN with the minimum heuristic value
with probability (1 − ε), and an arbitrarily chosen node in
OPEN with probability ε.

Best-first search is a common type of OCL algorithm
that uses an evaluation function F (.) to define the node se-
lection policy. On every iteration, the node in OPEN with
the minimal F -value is selected for expansion. For example,
A∗ is a best-first search with evaluation function F (n) =
g(n) + h(n), while GBFS uses F (n) = h(n).

In Algorithm 1, the OCL framework is defined so that
nodes are always moved back from CLOSED to OPEN
when a lower cost path is found to them (see lines 11 to 15).
However, these re-openings are not necessary for the anal-
ysis below, as the proofs also hold if a node in CLOSED is
never re-opened or even occasionally re-opened.

Finally, we say that an OCL algorithm is on iteration
t if it has already expanded t nodes, and we denote the
OPEN and CLOSED lists after t expansions as OPENt

and CLOSEDt, respectively. Note, we omit the subscript t,
when the iteration in question is clear from the context.

3.3 Algorithm Completeness

Let us now formally define two types of termination condi-
tions for OCL algorithms. The first is the standard notion of
algorithm completeness, defined as follows:

Definition 1. An OCL algorithm A is complete for a solv-
able graph-search problem τ if there exists an integer
tmax ≥ 1 such that A is guaranteed to return a solution
for τ in at most tmax iterations.

On an infinite graph, algorithms like GBFS with ε-greedy
node selection will rarely satisfy this definition since there
is always a chance that they will be “unlucky”. For example,
on any problem with an infinitely long path P∞, there is al-
ways a non-zero probability that for any t, the first t node
expansions will all be nodes from P∞. However, it can be
shown that the likelihood that such exploration-based algo-
rithms miss a solution due to being unlucky can be made
arbitrarily small given enough time. This second type of ter-
mination guarantee is formally defined as follows2:

Definition 2. An OCL algorithm A is probabilistically com-
plete on a solvable graph-search problem τ if the probability
that A solves τ in at most t ≥ 0 node expansions converges
to 1 as t→∞.

3.4 Complete OCL Algorithms

Different OCL algorithms have previously been shown to be
complete in certain specific cases. For example, A∗ is known
to be complete on any finite graph, since in such graphs,
there are only a finite number of paths from ninit to any
other node in the state-space (Hart, Nilsson, and Raphael
1968). As such, even if A∗ exhaustively searches every path
from ninit to every other node before expanding a goal node,
the algorithm will still only expand a finite number of nodes
before finding a solution. Since this argument also applies
for any node selection policy, it is also true that any OCL
algorithm is complete on any finite graph.

In infinite graphs, the only known completeness results
for OCL algorithms are those given by Dechter and Pearl
(1985) for best-first search algorithms. In particular, they
showed that best-first search algorithms are complete in any
graph in which there is no infinite path with a bounded F (.)
evaluation. This condition guarantees completeness by en-
suring that the algorithm never gets stuck only considering
the nodes along some infinite path. For example, consider
the graph in Figure 1a and assume the plateau is infinite and
all edges have a cost of 1. When using A∗ on this problem,
the evaluation of n will be 6. As such, the only nodes in
the plateau that may be expanded before n are those with
an evaluation of at most 6. This rules out all nodes in the
plateau that are a depth of 3 or more below v.

In contrast, the GBFS evaluation function is bounded
along any infinite path in the plateau in Figure 1a, since the
evaluation is never larger than 4. As such, GBFS will get
stuck exploring down an infinitely long path in this graph,
and is therefore incomplete. Moreover, notice that this issue

2This definition is a simplification of the notion of probabilis-
tically approximate completeness given by Hoos (1999), which
differentiated between optimal and suboptimal solutions.

786



that GBFS has with infinite graphs corresponds exactly with
the issue it has with arbitrarily misleading heuristics.

4 Probabilistically Complete OCL

Algorithms

In this section, we identify a sufficient condition that guaran-
tees that an OCL algorithm is probabilistically complete on
any graph. This condition is introduced in Section 4.1. We
then show that algorithms satisfying this condition are prob-
abilistically complete in Section 4.2. A simple extension of
this result is then identified in Section 4.3.

4.1 Fair OCL Algorithms

We begin by introducing a property for OCL algorithms that
guarantees probabilistic completeness on any graph. Intu-
itively, this property ensures that the probability of expand-
ing a given node in OPEN is never disproportionately low.
For example, consider a GBFS enhanced with ε-greedy node
selection. Suppose that a node n is in OPEN after t expan-
sions. The probability that n is the t + 1-st node expanded
is at least as large as ε/|OPENt|, with equality if n does
not have the smallest heuristic value among all nodes in
OPENt. Since this is true for any t′ when n ∈ OPENt′ ,
the probability that n is expanded next is therefore always at
least inversely proportional to the size of OPEN.

Let us now formalize this property as follows:

Definition 3. An OCL algorithm is φ-fair to a node n where
0 ≤ φ ≤ 1 if it is true that if n ∈ OPENt for any t, the
probability that n is the t+ 1-st node expanded is at least

φ

|OPENt|
We refer to φ as the fairness factor of A for n, and say

that A is fair to n if there exists a constant 0 < φ ≤ 0 such
that A is φ-fair to n. For example, a GBFS enhanced with
ε-greedy node selection is fair to any node n if ε > 0, since
it is ε-fair to n with the positive fairness factor of ε. Notice
that an algorithm is only said to be fair to a node if it is φ-fair
to that node for some positive φ. This is because 0-fairness
does not imply that the probability that the node is selected
for expansion is always at least inversely proportional to the
size of OPEN. We also refer to an OCL algorithm as being
fair to a set V ′ ⊆ V of nodes if there exists a fairness factor
φ where 0 < φ ≤ 1 such that A is φ-fair to all nodes in V ′.

4.2 Theoretical Analysis of Fair OCL Algorithms

In this section, we prove that if an OCL algorithm is fair
to all the nodes along some solution path of a given prob-
lem τ , then that algorithm is probabilistically complete on
τ . The proof consists of two main steps. First, we show that
if an OCL algorithm generates a node n that it is fair to, then
the probability that n is eventually expanded converges to 1.
This result is then inductively used to show the desired re-
sult: if the algorithm is fair to all of the nodes along some
solution path, then the probability that a solution is eventu-
ally found also converges to 1.

Recall that when using ε-greedy node selection on the
graph in Figure 1a, the probability that n is expanded con-
verges to 1. The first lemma formally guarantees that this
convergence happens in general for any OCL algorithm that
is fair to any n, regardless of the size of OPEN.3 The general
structure of the proof is as follows. First, we find an upper
bound on the probability that a fair OCL algorithm has not
expanded a node n in the e iterations after it is generated.
This upper bound is given as the product of the probabili-
ties that it does not expand n on each of the e iterations. We
then use the following well-known result from real analysis
to show this product converges to 0 as e→∞.

Lemma 4.1. For a given infinite sequence a0, a1, ..., of real
numbers, the product

∏∞
j=0(1+aj) converges to a non-zero

value if and only if
∑∞

j=0 |aj | converges to a real number.

Showing that the upper bound on the probability that n
is not expanded converges to 0 then clearly implies that the
probability n is expanded eventually converges to 1. This
argument is formalized as follows:

Lemma 4.2. Let n be a node in a given problem τ , and let
A be an OCL algorithm that is fair to n. If n is in OPENt,
then the probability that either n or a goal node is expanded
in at most t+ e iterations will converge to 1 as e→∞.

Proof. Assume n is in OPENt of A, and A is φ-fair to n for
some constant φ > 0. Let Xn be the random variable for the
number of additional iterations it takes to expand either n or
a goal node for the first time. This means that Pr(Xn > e)
is the probability that neither n nor a goal node has been
expanded after a total of t+e expansions. By using the chain
rule and the definition of Pr(Xn > e′) for any e′, we can
perform the following derivation on Pr(Xn > e):

Pr(Xn > e) = Pr(Xn �= 1 ∧ ... ∧Xn �= e) (1)
= Pr(Xn �= 1) · (X �= 2|Xn �= 1) · ...·

Pr(X �= e|Xn �= 1 ∧ ... ∧Xn �= e− 1) (2)
= Pr(Xn �= 1|Xn > 0) · (X �= 2|Xn > 1) · ...·

Pr(X �= e|Xn > e− 1) (3)

=
e∏

i=1

Pr(Xn �= i|Xn > i− 1) (4)

=
e∏

i=1

(1− Pr(Xn = i|Xn > i− 1)) (5)

By Line 5, an upper bound for Pr(Xn > e) can be given
using lower bounds on Pr(Xn = i|Xn > i − 1) for each i.
Notice that if neither n nor a goal node has been expanded
after t+ i−1 expansions, then the probability of n being the
t+ i-th node expanded is at least φ/ |OPENt+e−1| since A
is φ-fair to n. While |OPENt+e−1| is unknown, the follow-
ing is an upper bound:

|OPENt|+ (e− 1) · (BM − 1) (6)

3For technical reasons, the lemma actually guarantees that the
likelihood that either n or a goal node is expanded converges to 1.
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This holds since each of the (e−1) expansions removes one
node from OPEN and adds at most BM . By substitution
into line 5, we are then left with the following inequality:

Pr(Xn > e) ≤
e∏

i=1

(
1− φ

|OPENt|+ (i− 1) · (BM − 1)

)

(7)

We can therefore show that Pr(Xn > e) converges to 0 as
e→∞ by showing that the right side of this inequality con-
verges to 0. To do so, we consider the following summation
so that we can later apply Lemma 4.1. Note, the derivation
that follows consists of only algebraic manipulations.

∞∑
i=1

φ

|OPENt|+ (i− 1) · (BM − 1)
(8)

=
φ

BM − 1
·

∞∑
i=1

1

|OPENt|/(BM − 1) + i− 1
(9)

≥ φ

BM − 1
·

∞∑
i=1

1


|OPENt|/(BM − 1)�+ i− 1
(10)

≥ φ

BM − 1
·

∞∑
i=�|OPENt|/(BM−1)�

1

i
→∞ (11)

Line 11 diverges since the harmonic series diverges, so the
expression in line 8 must also diverge. By Lemma 4.1, this
implies that the right side of the inequality in line 7 must
either diverge to∞ or converge to 0 as e→∞. Since all of
the terms in this product are in the range [0, 1], the product
in line 4.1 cannot diverge to ∞, and it must converge to 0.
Therefore Pr(Xn > e) converges to 0 as j → ∞ by line 7,
and so Pr(Xn ≤ e) converges to 1.

Notice that in the above proof, after every iteration during
which n is not expanded, the probability that it is expanded
on the next iteration can decrease if OPEN increases in size
(see the paragraph following line 5). However, as the proof
shows, φ-fairness is enough to ensure that this probability
cannot decrease “too quickly”, and so the probability that n
is eventually expanded still converges to 1.

Let us now show that OCL algorithms that are fair to
all the nodes along some solution path are probabilisti-
cally complete. Intuitively, the proof is based on the idea
that Lemma 4.2 can be used inductively to show that over
time, fair OCL algorithms will most likely continue to
make progress along solution paths until a goal is found.
For example, consider a problem with solution path P =
[n0, ..., nk]. Lemma 4.2 states that once nk−1 is generated,
it will probably be expanded eventually, thus generating nk.
Since the probability that nk is expanded once it is generated
converges to 1 regardless of when nk is generated, together
these facts imply that if nk−1 is generated, the likelihood
that nk is expanded converges to 1. The same can be shown
to be true inductively for nk−2, nk−3, ..., n0. This argument
is formalized in the following lemma.
Lemma 4.3. Let P = [n0, ..., nk] be a solution path to prob-
lem τ , and let A be an OCL algorithm that is φ-fair to all

nodes along P . If nj ∈ OPENt after t expansions for some
0 ≤ j ≤ k, then the probability that A will expand a goal
node in at most t+ e iterations converges to 1 as e→∞.

Proof. The proof of this statement is by induction on j, start-
ing with j = k in the base case and considering decreasing
values of j from there. Consider the base case where j = k.
By Lemma 4.2, the probability that nk or a goal node is
expanded converges to 1 as the number of expansions con-
verges to ∞. Since nk is a goal node, this implies that the
probability that a goal node will be expanded converges to
1. Therefore, the statement is true in the base case.

Now assume that the statement is true for all nodes on P
at depth j + 1 or greater where j ≤ k, and suppose that nj ∈
OPENt for some t. There are now two cases to consider.

In the first case, nj is not the deepest node from P in
OPEN after t expansions. As such, there is some nj′ that
is along P , such that j′ > j and nj′ is in OPEN after t
expansions. Since j < j′ ≤ k, the induction hypothesis
implies that the probability that a goal node is expanded will
converge to 1. Therefore, the statement is true in this case.

In the second case, nj is the deepest node from P that is
in OPENt. This implies that all nodes that are deeper than
nj along P have yet to be generated. We now introduce two
random variables. First, let Xgoals be the random variable
for the number of additional iterations before a goal node
is expanded. Second, let Xj be the random variable for the
number of additional iterations before either nj or a goal
node is expanded. We will now show that Pr(Xgoals ≤ e)
converges to 1 as e → ∞ in this case. Since Xj ≤ Xgoals

and by the law of total probability, the following is equal to
Pr(Xgoals ≤ e) as e→∞:

lim
e→∞

e∑
i=1

Pr(Xj = i) · Pr(Xgoals ≤ e|Xj = i) (12)

Now consider Pr(Xgoals ≤ e|Xj = i). This is the prob-
ability that a goal node is expanded in at most e more ex-
pansions, given that nj is the t + i-th node expanded. as
e→∞. If nj is the t+ i-th node expanded, either nj+1 will
be in OPENt+i (either because it is added to OPEN or was
already there) or nj+1 will be in CLOSEDt+i. If nj+1 ∈
CLOSEDt+i, then it must have been expanded previously
and so some deeper node from P must be in OPENt+i.

4

As such, regardless of whether nj+1 is in OPENt+i or
CLOSEDt+i, there must be some nj′ from P in OPENt+i

where j′ > j. Since the induction hypothesis guarantees
that the probability that a goal node is expanded converges
to 1 whenever a node deeper than nj along P is in OPEN,
this means that Pr(Xgoals ≤ e|Xj = i) converges to 1 as
e→∞. Therefore, line 12 simplifies to the following:

lim
e→∞

e∑
i=1

Pr(Xj = i) (13)

This summation is the probability that nj or a goal node is
eventually expanded, which converges to 1 by Lemma 4.2.
Therefore Pr(Xgoals ≤ e) as e→∞ in this case.

4This is a well-known property of best-first search algorithms
that also applies for all OCL algorithms.
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Having handled all cases, the statement is true.

Since the first node along any solution path is always in
OPEN0 (ie. before any nodes are expanded), Lemma 4.3
immediately implies the desired result:

Theorem 4.4. An OCL algorithm A is probabilistically
complete for any problem in which there is solution path P
such that A is fair to all nodes along P .

4.3 Periodically Fair OCL Algorithms

In this section, we show that Theorem 4.4 can be extended
to algorithms that are not fair to the nodes along some so-
lution path on every iteration, but are fair often enough.
For example, consider the following variant of ε-greedy. In-
stead of always selecting a node uniformly at random from
OPEN with probability ε, this variant always selects ran-
domly on every third iteration and always selects according
to the heuristic function on all other iterations. Clearly this
new approach will behave similarly in practice to ε-greedy
with ε = 1/3, and so it is not surprising that this new algo-
rithm is also probabilistically complete on any graph.

Unfortunately, Theorem 4.4 cannot be immediately used
to imply this result, since this new variant is not fair to any
node in OPEN on two out of every three expansions. How-
ever, the probability that any node n ∈ OPENt will be se-
lected for expansion at some point during the next three it-
erations is at least 1/[|OPENt|+ 2 · (BM − 1)]. This holds
because a random selection must be made at some point dur-
ing the next 3 expansions, and at that time there may be at
most 2 · (BM − 1) new nodes in OPEN. As such, this ε-
greedy variant will still select n sometime during the next 3
expansions with a probability that is at least inversely pro-
portional to OPENt. Because this condition holds for any t,
we say that this algorithm is fair to n with a period 3.

In general, if for some given problem τ there is a constant
ρ ≥ 1 such that OCL algorithm A is fair with a period of ρ
to all the nodes on some solution path, then A is probabilis-
tically complete on τ . While we omit the details, this proof
requires only a minor modification to the proof above.

5 The Completeness of Existing Variants

In this section, we show that the existing best-first search
variants that use exploration are probabilistically complete.

ε-greedy Node Selection. As shown in Section 4.1, GBFS
enhanced with ε-greedy node selection is always fair to any
node in OPEN. This is also true of any OCL algorithm
that employs this technique. As such, any OCL algorithm
enhanced with ε-greedy node selection is probabilistically
complete on any graph.

Type-Based Exploration. The second GBFS variant we
consider is type-based exploration (Xie et al. 2014). This
algorithm selects greedily according to the heuristic on ev-
ery second iteration, and probabilistically from OPEN on
the remaining iterations. Unlike ε-greedy which selects uni-
formly at random from OPEN when making a probabilistic
selection, the probabilistic selections in type-based explo-
ration are made according to a distribution over OPEN that

is defined by a type system. A type system is a function
that partitions OPEN into disjoint and non-empty groups
T0, ..., Tk. Given a partitioning of OPEN, node selection is
a two-step process. First, one of the partitions Ti is selected
uniformly at random from among the k partitions. Secondly,
a node is uniformly selected from among those nodes in Ti.

Let us now identify type system conditions that guaran-
tee periodic fairness. To do so, notice that if OPEN is par-
titioned into ψ types, the probability that any n in OPEN
is selected for expansion when a probabilistic expansion is
made is 1/(ψ · |Ti|), where Ti is the set of nodes of the same
type as n. If there are at most K possible types for some
finite K, then the probability that n is expanded is at least
1/(K ·|OPEN|). This holds since ψ ≤ K and Ti can contain
at most all of the nodes in OPEN. In that case, the algorithm
will be fair to any node. Type-based exploration will also be
fair to any n on some solution path P if there is a finite up-
per bound Υ on the number of nodes that can ever be of the
same type as n. In this case, the probability of selecting n
when it is in OPEN will be at most 1/(|OPEN| · Υ), since
|Ti| ≤ Υ and the number of different types that OPEN will
be partitioned into will be at most |OPEN|.

The theory presented above can therefore be used to guar-
antee that any OCL algorithm enhanced with type-based ex-
ploration will be probabilistically complete on any graph if
the type system used has a maximum number of types or
a maximum number of nodes of any type. For example, if
the type system groups together all nodes with the same
heuristic value and there are a finite number of heuristic
values, the algorithm is periodically fair to any node and is
therefore probabilistically complete. Alternatively, consider
a type system that can only put two nodes into the same
partition if they have the same depth from the initial node.
When using this type system, there can be at most Bd

M nodes
of the same type as any node at depth d of some solution path
P . Since P has a finite length (ie. a maximum depth), the
type-based search that uses this type system is periodically
fair to any node on P . As such, the algorithm is probabilis-
tically complete when using such a type system.

Diverse Best-First Search. The third best-first search
variant considered is Diverse Best-First Search (DBFS)
(Imai and Kishimoto 2011). While DBFS is an OCL algo-
rithm, it is easier to understand DBFS as a sequence of local
searches (GBFS specifically) that use a common CLOSED
list. Each of these local searches begins with the selection of
a node n from OPEN in a process explained below. Once
n is selected, the rest of OPEN is temporarily ignored and
a new GBFS is started with n as its initial node. This local
GBFS prunes nodes previously seen in earlier local searches
(ie. that are in the global CLOSED list), and executes un-
til either a goal is found or some node expansion limit is
reached. If the expansion limit is reached, the OPEN and
CLOSED lists of the local GBFS are merged with the global
OPEN and CLOSED lists collected from the previous local
searches. A new node is then selected from OPEN to be the
initial node of the next local search.

We now describe the policy used to select a node as the
initial node for a local search. DBFS performs these selec-
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tions stochastically using a type system that groups nodes
together if they have the same depth from the global ninit

and the same heuristic value. The type system is then used
as follows. First, a type Ti is selected stochastically using a
non-uniform distribution over the non-empty types. Then, a
node is uniformly selected from amongst those of type Ti.

While we omit the details due to space constraints, the
distribution used for type selection is designed to balance
between favouring nodes at a shallower depth and favouring
nodes with low heuristic values. Moreover, it can be shown
that this distribution ensures that the algorithm is fair to any
node that is along some solution path when selecting the ini-
tial node of a local GBFS. Intuitively, this holds because the
distribution used is not too unbalanced over types, each of
which can only contain a maximum number of nodes since
the depth of a node is used to determine a node’s type.

Since DBFS is fair on these selections, the algorithm can
be shown to be periodically fair if these stochastic selections
are done often enough. The frequency of these selections
is determined by the expansion limits used during the local
DBFS. In the original version of DBFS, this limit was set as
the heuristic value of the node selected as the initial node of
the local GBFS, where it is assumed that the heuristic val-
ues are all non-negative integers. If the heuristic value of any
node in a given domain is at most M , then at most M expan-
sions is made during any local search. A fair node selection
is therefore made at least once every M +1 expansions, and
so DBFS is periodically fair in this case.

As such, DBFS is probabilistically complete on any graph
if there is a maximum on the heuristic value of any node in
the domain. Alternatively, DBFS is probabilistically com-
plete on any graph if the node expansion limit is always set
as some maximum value.

6 Conclusion

In this paper, we have considered the behaviour of sev-
eral exploration-based best-first search algorithms on infi-
nite graphs. In particular, we have shown that the probability
that these algorithms will find a solution on infinite graphs
becomes arbitrarily close to 1, given enough time. This re-
sult will hold regardless of the accuracy of the heuristic in-
formation used. Since GBFS is incomplete on these graphs
for the same reason that it struggles with misleading heuris-
tics, this result represents theoretical evidence regarding the
increased robustness of the exploration-based techniques.
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