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Abstract

Random k-CNF formulas at the anticipated k-SAT phase-
transition point are prototypical hard k-SAT instances. We
develop a stochastic local search algorithm and study it both
theoretically and through a large-scale experimental study.
The algorithm comes as a result of a systematic study that
contrasts rates at which a certain measure concentration phe-
nomenon occurs. This study yields a new stochastic rule for
local search. A strong point of our contribution is the con-
ceptual simplicity of our algorithm. More importantly, the
empirical results overwhelmingly indicate that our algorithm
outperforms the state-of-the-art. This includes a number of
winners and medalist solvers from the recent SAT Competi-
tions.

Introduction

The propositional Satisfiability problem (SAT) is the most
well-known NP-complete problem. SAT is of great theoreti-
cal and practical importance. Given a propositional formula
in conjunctive normal form (CNF), the computational CNF-
SAT (or SAT) problem asks to find a boolean assignment to
the variables such that all clauses become true. SAT has been
extensively scrutinized. Within the last two decades alone
this study resulted in numerous, powerful SAT-solvers.

We propose an algorithm that falls within the stochastic
local search (SLS) framework. There are two main types
of SLS solvers: the greedy search and focused random
walk. Greedy search solvers approach the optimal rapidly
but get occasionally trapped in local optima, whereas fo-
cused random walk has the ability to recover from local
optima (Kautz, Sabharwal, and Selman 2009). Most SLS
solvers are a combination of these two paradigms (Cai
and Su 2012). The art of building such SAT-solvers often
times yields rather complicated algorithms. Note that our
SLS algorithm has a very simple description. This algo-
rithm is based on the fundamental work of focused random
walk (Selman, Kautz, and Cohen 1994), including its the-
oretical analysis (Schöning 1999), and its follow-ups. Our
SAT-solver is shown to empirically outperform the state-of-
the-art SAT solvers, including the champions of SAT Com-
petitions from 2012 to 2014 on large-scale hard instances of
random formulas.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

What is a hard random k-CNF? To specify a distribu-
tion over formulas we first limit the number of variables
n and clauses m. Then, we sample formulas uniformly. It
turns out that the ratio m/n is the important parameter. The
first hardness result for random k-CNFs (Mitchell, Selman,
and Levesque 1992) shows that the ratio controls the dif-
ficulty of Random-SAT in a fashion “easy-hard-easy” as
the ratio grows. In (Friedgut, Bourgain, and others 1999)
it was shown that there exists a threshold r such that if
the ratio r(n) for n variables is such that r > r(n) then
almost certainly the formula is non-satisfiable (and vice-
versa). Following that (Achlioptas and Moore 2002) gave a
lower bound on the threshold of random k-SAT. There is also
a spade of important works following up these two. There
are well-believed conjectures about the precise location of
the threshold but no formal proof. In practice, the state-of-
the-art SAT solvers are capable of solving random k-CNFs
with millions of variables (Cai, Luo, and Su 2014) but the
ratio regime where these algorithms work is not the con-
jectured/anticipated ratio (Mertens, Mézard, and Zecchina
2006).

Our SLS algorithm is a result of a rigorous study regard-
ing the flipping probability of variables during SLS. More
precisely, we explore the notion of critical variables. Our
analysis also shows that random k-CNF at the threshold are
hard for SLS algorithms, which is consistent with previous
work (Iwama and Tamaki 2004). In addition to the SLS al-
gorithm we introduce a new technology for speeding up our
SAT-solver. This is dubbed as separated-non-caching imple-
mentation and is shown to further improve the efficiency of
our solver by ≈ +20%. The same technology is shown to
improve the best known implementation for WalkSAT.

Preliminaries

We introduce notation used throughout the paper and the
main algorithmic framework of this work.

Notation A formula F is in conjunctive normal form
(CNF) if F = c1

∧ · · ·∧ cm, where each clause ci is a dis-
junction of literals, i.e. variables or its negations from V =
{v1, . . . , vn}. We say that F is a k-CNF formula if each ci
has at most k literals. A truth assignment α : V → {0, 1}n
is a function from variables to truth values 0/1 (false/true).

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

732



We consider proper complete truth assignments and partial
ones (for α a partial function). In the k-SAT problem we are
given a k-CNF F and we wish to decide if F is satisfiable,
i.e. whether there is α, where α(F ) = 1 (i.e. every ci is sat-
isfied). Given F, v, α, the break value of v break(v) is the
number of clauses to be falsified in F if v is flipped in α.

The distribution of uniform random k-CNF formulas is
defined for a given m,n: a uniform random k-CNF is con-
structed by choosing uniformly at random m clauses from
2k
(
n
k

)
clauses. The ratio for this statistical k-CNF model is

r := m/n.

Algorithmic Framework Each Focused Random Walk al-
gorithm from this family of algorithms (Algorithm 1) per-
forms a memoryless walk in the assignment space as fol-
lows: given the current truth assignment, choose an unsat-
isfied clause c and then use the algorithmic rule pickVar to
choose a variable. By flipping this variable we construct the
truth assignment for the next step.

The rule pickVar is the main object of study in this paper
and there is also extensive previous work (see Introduction).
The classic SLS algorithm is called WalkSAT/SKC and flips
a variable v if there is one with break(v) = 0, otherwise with
probability p chooses a variable uniform randomly to flip
and with the remaining probability flips a variable among
those with minimal break values. We will provide theoretical
and extensive experiments justifying these (at a first glance
not-so-natural) choices. Then, we systematically show that
there is a better alternative.

An alternative that makes fine-grained decisions is prob-
SAT: pickVar chooses a variable v according to a probabil-
ity distribution determined by what in this work we will call
break valuation function f : Z

≥0 → R
≥0. This function

scores break values thus inducing for fixed c a probability
distribution p(v) := f(break(v))∑

v∈c f(break(v)) . Now, every variable in
a clause is associated with a distinct probability according
to its break value. Variables with low break value have more
chance to be flipped. It was empirically verified (Balint and
Schöning 2012) that this improves dramatically over Walk-
SAT/SKC with the best known break valuation be the poly-
nomial f(x) = (ε + x)−cb for 3-SAT and the exponential
f(x) = cb−x for k-SAT (k ≥ 4), for a constant cb > 1.
However, these complicated function forms are extremely
sensitive to the parameters. For instance, certain parame-
terizations of the exponential function do not work for 3-
SAT because the decay of probability is too strong, which
means too greedy. On the other hand, the polynomial func-
tion seems that it does not fit long-clause-SAT (Balint and
Schöning 2012).

Our Study We identify as a performance bottleneck the
form of the break valuation f . We study pickVar restricted1

as follows: (i) given only break(v1), . . . , break(vk) for the
k variables in c, it then (ii) determines a probability distri-
bution p according to f , and (iii) samples according to p a

1Some restriction is needed in a systematic study. Arbitrary,
pickVar includes one that given F first solves the whole instance.

variable to flip. Therefore, we consider pickVar parameter-
ized by f . Our systematic study overwhelmingly favors the
choice of a certain (not too large not too small) break valua-
tion.

Algorithm 1: Focused Random Walk Framework
Input: CNF-formula F , maxSteps
Output: Satisfying assignment α of F , or Unsatisfiable

1 begin
2 α← random generated assignment;
3 for step← 1 to maxSteps do
4 if α satisfies F then return α;
5 c← an unsatisfied clause chosen randomly;

6 v← pickVar(c; F, α) ;
7 α← α with v flipped;
8 return Unsatisfiable

Search Parameter: # of Critical Variables

Critical variables played key-role in theoretical works in
SAT algorithms (Paturi et al. 2005; Hertli 2014). Here, we
revisit critical variables in the context of random formulas
(unlike in previous work) and use them to theoretically study
the magnitude of break values (see next section). Further-
more, critical variables will be used to justify our choice for
the break valuation function.

Definition 1 (critical variable). Given a satisfiable formula
F , a variable x is critical if only one of F |x=0 and F |x=1 is
satisfiable.

Our experimental study (see related section) is conducted
in the empirically suggested threshold value for the ratio
m/n. For a k-CNF we denote the value by rk. For 3,4,5,6,7-
SAT we define this value to be r3 = 4.267, r4 = 9.931, r5 =
21.117, r6 = 43.37, r7 = 87.79 respectively (Mertens,
Mézard, and Zecchina 2006).

Lemma 1. Given a uniform random k-CNF F with n vari-
ables and ratio rk, there are at least ρkn critical variabless,
where ρ3 = 0.82, ρ4 = 0.92, ρ5 = 0.96, ρ6 = 0.98,
ρ7 = 0.99, with probability 1− 1/2Ω(n).

Proof. Let F be a uniform random k-CNF with n vari-
ables and X the number of satisfying assignments. By
Markov’s inequality we have that Pr[X ≥ c] ≤ E[X]/c.
We know that E[X] = 2n Pr[α satisfies F ] where α is
a random assignment. The event that α satisfies each in-
dividual clause is independent, thus Pr[α satisfies F ] =
Pr[α satisfies a random clause]m = (1 − 2−k)m = (1 −
2−k)rkn, then E[X] = (2(1− 2−k)rk)n. Finally, we have:

Pr[X ≥ c] ≤ (2(1− 2−k)rk)n/c

For r7 = 87.79 we choose c = 1.005n; note that any
c =

(
(2(1 − 2−k)rk) + ε

)n
, ε > 0 asymptotically works.

Then,

Pr[X ≥ 1.005n] ≤ 0.9997n = 1/2Ω(n)
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So the number of variables that are not critical variables
is at most log2 1.005

n ≤ 0.0072n, which means that more
than a 0.99 fraction of variables are critical. Using the same
argument for random 3-CNF to 6-CNF at suggested thresh-
old ratios we obtain that the fractions for the critical vari-
ables are 0.82, 0.92, 0.96, and 0.98.

That is, almost every step of the focused random walk will
be dealing with critical variables.

Search Parameter: Break Value Magnitude

Our goal is to find the break valuation function that opti-
mizes the performance of pickVar as defined in the Prelim-
inaries. Now, we study the magnitude of break values as-
sumed in random formulas, and in particular the role of low
and zero break values.

Additional Notation Given a formula F , a truth assign-
ment α, and a clause c, we say that x ∈ c is a 0-break vari-
able if break(x) = 0 and c is unsatisfied under α. Finally,
we define the notion of critical clause (Paturi et al. 2005).
Let x be a critical variable. A critical clause for x and an
satisfying truth assignment α is a clause that its only true lit-
eral under α is x or x̄. It is straightforward to see that there is
at least one critical clause for each critical variable and any
satisfying assignment.

Why biased towards low break values? Works that
showed great empirical success determine break valuations
that favor low break values and in particular 0-break val-
ues. Let us now theoretically justify this issue. By Lemma 1
we know that in a random formula the vast number of vari-
ables are critical. The expected number of occurrences of a
variable in a uniform random k-CNF is rkk. Same for the
expected number of clauses containing a variable x. Thus,
with probability at least break(x)

rkk
, flipping a critical variable

x will falsify a critical clause. Importantly, this cannot be
satisfied unless x is flipped over again. This explains why
previous SAT-solvers prejudiced towards lower break val-
ues in the so-called “intensification” component of the al-
gorithm. A process that always flips variables with minimal
break values gets trapped in local optima and to that end
the use of probabilistic choices serves in what is commonly
termed as “diversification”.

0-break variables A 0-break variable is least likely to be
a critical variable because flipping it does not falsify any
clause. So, it is not a critical variable unless all the criti-
cal clauses are satisfied by other variables under the current
assignment. Thus, it is safe to flip it.

Due to the special role of 0-break values in previous re-
search we also study their role empirically. Since we have
not concluded yet on the break valuation, we first fix a sim-
ple setting to study in isolation. Specifically, we design a
generalized version of WalkSAT, outlined in Algorithm 2.

We conduct a thorough empirical study supporting further
our previous theoretical observations. If lower break value
deserves higher probability to be flipped, then p0 should

Algorithm 2: pickVar for Generalized WalkSAT
Input: An unsatisfied clause c, CNF formula F ,

complete assignment α
Output: A variable v ∈ c

1 begin
2 if ∃ variable x ∈ c with break(x) = 0 then
3 With probability p0:
4 v← a variable in c chosen at random;
5 With probability 1− p0:
6 v← x;
7 else
8 With probability p1:
9 v← a variable in c chosen at random;

10 With probability 1− p1:
11 v← a variable in c with minimum break;
12 return v

Solvers W0 W1 W2 W3 W4 W5
p0 0 0.1 0.2 0.3 0.4 0.492
p1 0.567 0.556 0.542 0.527 0.510 0.492

Table 1: Parameters of generalized WalkSAT, smaller p0 val-
ues indicate smaller preference to 0-break variables

be less than p1. In fact, W0 (p0 = 0) and W5 (p0 = p1)
are two prototypes of WalkSAT (McAllester, Selman, and
Kautz 1997). We report the best p1 corresponding to each p0
in Table 1, p0 ranges from 0 to p1, as well as their perfor-
mances depicted in Figure 1. The “original” marker repre-
sents the original caching implementation with XOR tech-
nology, while the “separated-non-caching” marker is under
our new separated-non-caching implementation introduced
in section “Separated-non-caching Technology”.

As a result, W0 (choose 0-break variable if there exists
one) dominates the rest even when using our novel imple-
mentation. Thus, flipping 0-break variables should be given
priority in similar random walk algorithms.

Putting Everything Together:

Which Break Valuation?

Considering the significance of 0-break variables, we
propose the new algorithm polyLS outlined in Algo-
rithm 3. Each step chooses 0-break variables same as Walk-
SAT/SKC, whereas if there is no 0-break variable it uses an
inverse polynomial valuation (see previous section for justi-
fication) of the form: f(x) = 1/g(x).

One of our main contributions is the choice of a very sim-
ple break valuation that significantly outperforms the state-
of-the-art on hard SAT instances. In this section we theoreti-
cally justify why polynomial valuation functions outperform
the exponential ones. New notation: gp(x) and ge(x) denote
a polynomial and an exponential function respectively. The
break valuation function will be f(x) := 1

gp(x)
or 1

ge(x)
.
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Figure 1: Performances under different parameters for ran-
dom 3-SAT with ratio 4.267 from SAT Challenge 2012. W0
is the best known implementation for WalkSAT/SKC

Algorithm 3: The pickVar Function of polyLS
Input: An unsatisfied clause c, CNF formula F ,

complete assignment α
Output: A variable v ∈ c

1 begin
2 if ∃ variable x ∈ c with break(x) = 0 then
3 v← x;
4 else
5 foreach v ∈ c do
6 choose v and break the loop with

probability p = f(break(v))∑
v∈c f(break(v)) ;

7 return v

Polynomial vs Exponential Valuations

The behavior of algorithms at the suggested threshold values
is still a big open theoretical question for more than 20 years
now. Our theoretical analysis is conditioned on commonly
used assumptions.

In what follows we denote a clause (disjunction of literals)
as a set. Let us consider the following (natural) example of
a formula.

{x0, x1, x2}, {x0, x1, x̄2}, {x0, x̄1, x2}, {x0, x̄1, x̄2}, (1)
{x̄0, x3, x4}, {x̄0, x3, x̄4}, {x̄0, x̄3, x4}, (2)
. . .

, {x̄0, x2l−1, x2l}, {x̄0, x2l−1, x̄2l}, {x̄0, x̄2l−1, x2l} (l)

Each line includes 3 clauses except the first line, there are
2l + 1 variables and 3l + 1 clauses in total.

Lemma 2. Let F 3-CNF containing all 3l+ 1 clauses from
(1) to (l). Then, gp(x) is strictly better than ge(x) in terms of
the running time of Algorithm 3, with probability 1−1/2Ω(l)

for sufficiently large l.

Proof. The focused random walk starts with a random com-
plete assignment, x0 is assigned to 1 with probability 1/2.

Then, all clauses are satisfied with probability 1 − 1/4l−1.
The other case is more interesting: x0 is assigned to 0 with
probability 1/2, then all the clauses from (2) to (l) are satis-
fied, while there is one and only one clause in (1) that will
be unsatisfied. Without loss of generality let this clause be
c = {x0, x1, x2}. There are 3 variables x0, x1, and x2 in
c. We have break(x1) = break(x2) = 1 because there is
one and only one satisfied clause in (1) such that the only
true literal of this clause corresponds to x1 or x2. Let us
now consider the break value of x0: every three clauses from
(2) to (l) provide break value 1 for x0 with probability 3/4,
there are l − 1 triples, then the expectation of break(x0) is
3(l− 1)/4. By applying Chernoff bound we know the prob-
ability of break(x0) ≥ l/2 is 1− 1/2Ω(l).

Let the break values for c be (b, 1, 1), where b ≥ l/2. If
we do not choose x0 to flip, there always exists an unsatisfied
clause in (1). The only way to satisfy all the clauses is to flip

x0. The probability of flipping x0 is
1

g(b)
1

g(b)
+2 1

g(1)

≈ 1
g(b) (omit

the constant) for sufficiently large b, thus the expected steps
needed to flip x0 is g(b). Regardless of which polynomial
or exponential function (i.e. which constants we choose to
parameterize it) we choose, there is always sufficiently large
l for which gp(b) < ge(b), since b ≥ l/2.

Theoretical Analysis for Random Formulas

In a uniform random 3-CNF, the situation is not exactly as
in our example above. The next, and most important, step
is to understand what happens in a uniform random k-CNF.
After all, our SLS algorithm is about random formulas. Our
main theoretical result relies on the following lemma and
two empirical observations.

Lemma 3. Let a random k-CNF with sufficiently large num-
ber of variables n at ratio rk and fix an arbitrary variable
x in it. Then, with probability 1 − o(1) the break value of x
does not change within o(n) steps.

The (easy) proof of this lemma argues by considering the
average number of occurrences of each variable. Therefore,
we can study how different laws behave within o(n) steps.

Observation 1. (Balint et al. 2014) During the focused ran-
dom walk for uniform random k-CNF (k = 3, 4, 5, 6, 7) with
ratio rk, about 90% break values encountered for variables
within the chosen unsatisfied clauses are less than 5, while
a constant fraction of break values can reach up to rkk/2.

Our result Assuming Observation 1, given a uniform ran-
dom k-CNF F at ratio rk, there exists a polynomial gp(x)
such that for any exponential ge(x), using 1

gp(x)
as the break

valuation function under our framework makes in expecta-
tion a smaller number of steps to solve F than when using

1
ge(x)

.
To show the contribution of a constant fraction of vari-

ables with high break values (Observation 1) to the expec-
tation of overall steps, let us consider an unsatisfied clause
{x1, . . . , xk} in F , while x1 is a critical variable assigned in
a wrong way leading to unsatisfiable. Suppose there exists an
xi, 2 ≤ i ≤ k, with small break value, while break(x1) = b
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3-SAT 4-SAT 5-SAT 6-SAT 7-SAT
κ 2 4 5 7 7
β -0.08 0.06 0.03 0.08 0.35

Table 2: Parameter settings of polyLS

is relatively high. Then, the probability of flipping x1 is ap-
proximately 1

g(b) . Note that the upper bound of b concen-
trates around rkk/2 which is a constant, thus by choosing a
sufficiently large s and considering s steps of focused ran-
dom walk, b remains the same and x1 is flipped within s
steps with high probability (Lemma 3). Based on this we
can then compare the expected number of steps required to
flip x1 under polynomial/exponential law.

Let for simplicity ge(b) := αb and gp(b) := bβ , and
λ := αb/bβ . There exists a λ0, such that if λ > λ0, the ex-
pectation of steps to solve F using gp(x) is smaller than that
using ge(x), because there exist a constant fraction of such
variables to be flip. If λ ≤ λ0, we have α ≤ (λ0b

β)1/b =
(1 + ε)β . Let b be large enough thus ε is a small positive
number. Now, let us consider another unsatisfied clause c′
with break values (1, 2, . . . , 2). Instead of this one we could
have considered any not-all-equal break values, whereas c′
represents the most common case according to Observation
1. The first variable with break value 1 should be flipped
with highest probability. However, if we want the probabil-
ity of flipping the first variable using ge(x) to be as high as
that using gp(x) (this is essential because otherwise the ca-
pacity of intensification is lost), then these two probabilities
have to be equal, i.e. 2β/(2β + k − 1) = α/(α + k − 1).
This implies α = 2β , which contradicts that α ≤ (1 + ε)β .

In order to balance the intensification and diversifica-
tion, the curve of the break valuation function has to
change slowly.

Our Local Search and Implementation
We propose a SAT-solver for hard random instances. This
consists of (i) the algorithm and (ii) a new implementation
technology we introduce. Roughly speaking, the latter is re-
sponsible for ≈20% of the speedup.
g(x) = (((x− 1)

κ
2 + 2)2 + β)−1, κ ∈ Z

+,−1 < β < 1

Here is why we chose to fit this form: (i) parameter κ de-
cides the decay rate of the function; (ii) parameter β affects
mostly the first few values of g. Although, these small x’s
are few the role of β is significant. Recall that in probSAT
≈90% of the flipped variables’ break values are less than 4,
whereas for 7-SAT is 5 (Balint et al. 2014).

We fit the parameters of polyLS following a two-step tun-
ing mechanism using the random k-SAT benchmark from
SAT Challenge 2012: first we try to fix κ by setting β = 0,
then we perform validation experiments to find the best β
corresponding to κ. The best parameters reported by our
method are listed on Table 2.

Separated-non-caching Technology

Implementation has a notable effect on the performance of
SLS. Current state-of-the-art: probSAT uses caching scheme

3-SAT 4-SAT 5-SAT 6-SAT 7-SAT
9.8% 10.7% 7.9% 6.5% 4.3%

Table 3: Percentage of 0-break variables among all flipping
variables

Implementations 3-SAT 4-SAT
Caching without XOR 3.98 2.46

XOR-caching 4.99 2.95
Non-caching 4.84 2.78

Separated-non-caching 5.30 3.07

Table 4: Average 106 flips per second

with XOR technology (Balint et al. 2014), while WalkSAT
in UBCSAT framework (Tompkins and Hoos 2005) and
the latest version of WalkSATlm (Cai, Luo, and Su 2014)
use non-caching implementation. The latter one also sep-
arates positive and negative literals for each variable. We
take a step further building on top of the previous very in-
fluential works. We propose separated-non-caching, which
is even more efficient. The term “separated” indicates that
we have separated the non-caching process from the break
value calculation, detailed can be found in the technical re-
port (Liu 2015). We stress out that polyLS can make use
of the separated-non-caching implementation to calculate
break values, while probSAT cannot.

Table 3 shows that for 3,4-SAT, about 10% of the flipping
of polyLS only executes simple calculations to find 0-break
variable, which boost efficiency. These strongly suggest that
the separated-non-caching technology executes more flips
within the given time, outperforming the rest on 3-SAT and
4-SAT. Table 4 shows our new technology gives a consid-
erable speed up over the previous implementations, actually
this also leads to the best known implementation of Walk-
SAT/SKC (W0, showed in Figure 1).

Empirical Results

We conducted large-scale experiments to evaluate polyLS
on uniform random k-SAT instances sampled at the sug-
gested threshold ratios.

The Benchmarks and Competitors

In the following we use SC to denote SAT Competition,
and RSC for its random SAT track. We adopt 3 benchmark
classes from SC 2013, 2014, and random generated classes
named “large”, details are in the result Table 5 and Table 6.
We compare polyLS with state-of-the-art SAT solvers:

• Dimetheus: 1st place in RSC 2014.
• BalancedZ (Li and Huang 2005): 2nd place in RSC 2014.
• DCCASat (Luo et al. 2014): 3rd place in RSC 2014.
• probSAT (Balint and Schöning 2012): 1st place in RSC

2013, based on WalkSAT framework.
• CScoreSAT (Cai and Su 2013) is specialized in k-

SAT(k > 3).
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Instance
Class

BalancedZ
suc

par10

DCCASat
suc

par10

Dimetheus
suc

par10

probSAT
suc

par10

WalkSATlm
suc

par10

polyLS
suc

par10

3SAT-SC13 29.4%
35481

29.2%
35711

33.8%
33432

28.6%
35834

27.0%
36565

36.6%
32002

3SAT-SC14 30.3%
35178

24.3%
37916

25.7%
37322

18.0%
41022

26.0%
37525

36.0%
32132

3SAT-large 20.0%
40158

25.0%
37584

10.0%
45065

10.0%
45122

5.0%
47542

35.0%
32955

Table 5: The comparative results of polyLS and their state-of-the-art competitors on the random 3-SAT threshold benchmark,
50 instances form SAT Competition 2013 and 30 instance for 2014, 20 random generated instances in 3SAT-large with 15000
variables. The best performance is achieved by polyLS, which dominates others especially in large instances. Note that probSAT
and WalkSATlm are both based on focused random work

Instance
Class

BalancedZ
suc

par10

DCCASat
suc

par10

Dimetheus
suc

par10

probSAT
suc

par10

WalkSATlm
suc

par10

CScoreSAT
suc

par10

polyLS
suc

par10

4SAT-SC13 23.8%
38371

23.0%
38667

28.8%
35892

27.4%
36436

15.8%
42174

24.2%
38158

30.4%
35015

4SAT-SC14 9.7%
45194

15.7%
42416

20.0%
40109

16.7%
41782

5.3%
47335

8.0%
46281

20.0%
40162

4SAT-large 10.0%
45047

20.0%
40191

25.0%
37858

20.0%
40130

10.0%
45036

15.0%
42652

30.0%
35263

5SAT-SC13 19.6%
40356

18.8%
40792

17.6%
41357

21.6%
39394

15.6%
42280

18.6%
40810

28.6%
35993

5SAT-SC14 45.0%
27627

48.0%
26551

49.7%
26018

44.7%
28132

32.7%
34031

42.3%
29253

53.3%
23926

5SAT-large 15.0%
42617

35.0%
32642

10.0%
45333

25.0%
37638

30.0%
35424

30.0%
35396

50.0%
26012

6SAT-SC13 29.8%
35706

32.8%
33992

31.0%
34872

28.8%
36167

29.2%
35994

18.4%
40986

33.4%
33604

6SAT-SC14 44.3%
28025

48.7%
25920

49.0%
25937

42.7%
28864

40.3%
29967

49.3%
25590

50.0%
25246

6SAT-large 0.0%
50000

20.0%
40309

10.0%
45032

5.0%
47549

10.0%
45222

15.0%
42582

25.0%
37662

7SAT-SC13 45.2%
27777

45.4%
27623

45.4%
27601

44.6%
28020

41.2%
29481

41.6%
29481

50.2%
25252

7SAT-SC14 43.3%
28400

43.3%
28444

42.0%
29153

43.0%
28670

43.3%
28517

42.3%
28954

43.3%
28484

7SAT-large 10.0%
45137

35.0%
33201

15.0%
42631

0.0%
50000

5.0%
47523

40.0%
30853

55.0%
23780

Table 6: Comparison on random k-SAT with k > 3, 50 instances form SAT Competition 2013 and 30 instance for 2014, 20
random generated instances in kSAT-large with 15000, 3000, 600, 300, 170 variables for 3,4,5,6,7SAT respectively. polyLS
outperformed other state-of-the-art solvers on all the instance classes except 4SAT-SC14 and 7SAT-SC14 (but also reached the
same successful rates as the best), which is much more obvious as the instance size increases. WalkSATlm and CScoreSAT are
designed especially towards long clause SAT, but their performances are relatively poor

• WalkSATlm (Cai, Su, and Luo 2013): novel non-caching
for 3-SAT, improved WalkSAT for others.
All the source codes we used can be downloaded from

http://www.satcompetition.org/edacc/.

Evaluation Methodology

The cutoff time is set to 5000 seconds as same as in SAT
Competition 2013 and 2014. Each run terminates finding a
satisfying within the cutoff time is a successful run. We run
each solver 10 times for each instance from SAT Competi-
tion 2013 and 2014. Thus, 500 runs for each class in SC13
and 300 runs for SC14. For large class instances we run each

instance only once. We report: (i) suc the ratio of successful
runs over total runs, (ii) par10, the penalized average run
time (an unsuccessful run is penalized as 10 times cutoff
time). The result in bold is the best performance for a class.

All the experiments are carried out on our machine with
Intel Core Xeon E5-2650 2.60GHz CPU and 32GB memory
under Linux.

Experimental Results

All details about the experiments are listed on Table 5 and
Table 6, which shows that polyLS outperforms the state-
of-the-art SAT solvers overwhelmingly in both successful
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rate and penalized average time, especially on large scale
instances.

Conclusions

We have shown through a large-scale empirical study and
rigorous argumentation that the use of an inverse polynomial
law in SLS is very beneficial for solving hard random CNF
formulas. Our empirical study showed that our elegant algo-
rithm combined with the separated-non-caching technology
clearly outperforms many state-of-the-art SAT-solvers.
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