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Abstract

Utilizing trajectories for modeling human mobility often in-
volves extracting descriptive features for each individual, a
procedure heavily based on experts’ knowledge. In this work,
our objective is to minimize human involvement and exploit
the power of community in learning ‘features’ for individuals
from their location traces. We propose a probabilistic graph-
ical model that learns distribution of latent concepts, named
motifs, from anonymized sequences of user locations. To han-
dle variation in user activity level, our model learns motif dis-
tributions from sequence-level location co-occurrence of all
users. To handle the big variation in location popularity, our
model uses an asymmetric prior conditioned on per-sequence
features. We evaluate the new representation in a link pre-
diction task and compare our results to those of baseline ap-
proaches.

Introduction

With the increasing popularity of mobile devices and Lo-
cation Based Social Networks (LBSNs), location traces for
a large sample of the population become instantly avail-
able. The availability of such data allows for large-scale so-
cial analysis (Song et al. 2010), studies of human behavior
(Gonzalez, Hidalgo, and Barabasi 2008) and urban analy-
sis (Zheng, Zhang, and Yu 2015; Idé and Sugiyama 2011;
Toole et al. 2012; Yuan, Zheng, and Xie 2012).

Although trajectory data convey indisputable patterns,
employing them in basic applications usually involves lay-
ers of preprocessing and feature extraction. For example, the
process followed to achieve a task such as demographic pre-
diction often involves: 1) Trajectory preprocessing, which
includes noise filtering, segmentation and stay point detec-
tion (Zheng 2015b). 2) Feature engineering, where trajecto-
ries are analyzed for extracting usable features, often based
on rules initiated by experts. 3) Dimensionality reduction,
for reducing the feature space. 4) Learning tasks are then
completed in the reduced space. 5) Finally, these steps may
be repeated until satisfactory results are obtained. Despite
the evident advantage of this approach, minimizing human
involvement is always preferable in knowledge execution
(Schumann and Lécué 2015). Rule-based feature engineer-
ing often ends up ignoring latent patterns which are impor-
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Figure 1: The distribution of user activity level and location
popularity in MDC (a,c) and GW (b,d) dataset.

tant to the task under study but not obvious to the experts.
More importantly, it is based on predefined knowledge of
the data and the specific task under study, which restricts the
use of extracted features to other applications.

Our objective in this work is to propose a representation
learning model that infers latent patterns from user trajecto-
ries with minimum human intervention. The new representa-
tion can be used in various applications. Inspired by Proba-
bilistic Graphical Models (PGM) in text mining, we propose
a Human Mobility Representation model (HuMoR), which
models trajectory data in an analogous manner to text cor-
pora, where users are mapped to documents and locations
are mapped to words. Similarly to modeling latent topics
from documents using Latent Dirichlet Allocation (LDA)
(Blei, Ng, and Jordan 2003), our proposed model learns dis-
tribution of latent concepts, named motifs, from sequences
of locations based on sequence-level location co-occurrence.
Each user is then represented by a mixture of latent con-
cepts, i.e., a probability distribution over motifs. Comparing
to building users’ representation based on human efforts, the
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proposed approach is automated, efficient, and universally
applicable.

HuMoR considers three key attributes of trajectory data:
1) User Activity Level: Users in a community have vary-
ing activity levels, ranging from very active users with dense
trajectories to passive users with very sparse trajectories, as
shown in Fig. 1(a) (the distribution of the number of vis-
ited locations for every user in the Mobile Data Challenge
(MDC) Call-Detail Record (CDR) dataset (Laurila et al.
2012)). More challenges are brought by a large portion of in-
active users, as observed in the Gowalla (GW) LBSN dataset
(Cho, Myers, and Leskovec 2011) shown in Fig. 1(b), which
has a skewed distribution over user activity levels. The dif-
ficulty of learning user representation here corresponds to
the issue of learning from documents with different lengths,
especially including many short text like tweets that LDA
fails to learn (Tang et al. 2014). In our model, we intro-
duce the notion of sequences, defined as segments extracted
from users’ trajectories. Extracted sequences have compara-
ble lengths, and thus are much easier to handle than trajec-
tories with varied activity levels.
2) Location Popularity Level: The popularity of locations,
measured by the total number of visits, follows a power law
distribution (shown in Fig. 1(c),1(d)). In text mining, there
are also highly frequent words and rare words. Frequent
words are usually eliminated to prevent them from dominat-
ing topics’ distributions, as most of the frequent words are
stop-words and their elimination has little impact on the con-
text. However, frequent locations are not ignorable as they
represent popular places. Consequently, our model consid-
ers frequent locations by adopting an asymmetric prior for
the per-sequence motif distribution. This amendment allows
some motifs to occur more often than others. As a result,
popular locations can be coupled with such motifs, with-
out dominating the remaining motif-location distributions.
Asymmetric priors for LDA were discussed in (Wallach,
Mimno, and McCallum 2009).
3) Side Features: Trajectory data contains informative side
features which can be used to aid the learning process. This
includes the timestamp of visited locations, often used to ex-
tract meaningful features such as home and work locations.
Our model utilizes these features by conditioning a per-
sequence prior over them, inspired by (Mimno and McCal-
lum 2008). As our model imposes no restriction on the data
source, incorporating cross-domain data classifies our model
as an instance of data fusion approaches (Zheng 2015a).

Finally, HuMoR provides per-user motif distribution,
which can be considered as a new representation for each
user. We evaluate the new representation on social link pre-
diction with two data sets, one of mobile records (MDC) and
the other is extracted from an LBSN (GW). We compare our
results against a number of baseline methods and show that
our new representation has superior performance.

Related Work
Table 1 provides a summary of most relavent work. Re-
cently, Kapicioglu et al. introduced Collaborative Place
Models (CPM) to infer patterns from trajectories of geoloca-
tions, while other work uses semantically labeled locations.

Table 1: Summary of related work by the used method, the
type of Location Description, the ability to handle Side Fea-
tures and Variation in user activity and in location popularity.

Reference Method Location Side Vari-
Description Feature ation

Eagle et al. PCA Semantic � -
Farrahi et al. LDA Semantic � �
Joseph et al. LDA Semantic � �
Phung et al. LSDA Semantic � -
Kapicioglu et al. CPM Geographic � -
Our Model HuMoR Anonymized � �

For example, Joseph, Tan, and Carley (2012) and Farrahi and
Gatica-Perez (2011) employed LDA, Eagle and Pentland
(2009) applied PCA instead of LDA, and Phung, Adams,
and Venkatesh (2008) proposed LSDA (based on N-gram
LDA), on semantic location traces.

Three factors distinguish our work from existing models,
1) Learning from anonymized locations with minimum
preprocessing of raw trajectories: our model learns from
anonymized locations (IDs of locations) as opposed to se-
mantically labeled locations, which require human efforts,
and geographic locations, which invade users’ privacy.
2) Handling side features and variations: HuMoR en-
ables adding per-sequence side features that enrich the learn-
ing process. In topic models like LDA, words in docu-
ments are assumed to be independent, i.e., documents are
represented as a bag-of-words. Existing topic models that
consider word order are mostly n-gram and/or Markovian
models (Wallach 2006; Wang, McCallum, and Wei 2007;
Gruber, Weiss, and Rosen-Zvi 2007) in which additional
complexity is introduced due to the imposed dependency.
Our model can consider order of visited locations without
assuming a Markovian relation between location-IDs and/or
motifs. This is achieved by introducing time range as a side
feature. In addition, our model introduces an asymmetric
prior and user sequences in the learning process to handle
the variations in location popularity and user activity.
3) Evaluation via real world application: we assess the
usefulness of the learned patterns in social link prediction. In
related work, evaluation measures largely depend on listing
the top locations per latent pattern, and visually assessing
the similarity between them. We assert that a good represen-
tation is the one that captures the intrinsic characteristics of
the high dimensional data without losing significant infor-
mation. Thus, we evaluate our work on link prediction using
two real datasets.

Human Mobility Representation Model

Preliminaries

Let v ∈ V be a user from the set of unique users in the
data, and let c ∈ C be a location-ID from the set of unique
location-IDs. User v’s trajectory data, R(v), contains suc-
cessive points of location-IDs visited over a period of time.
Location-IDs have metadata (such as timestamps).

Definition 1 (User Social Graph) Let G = (V, E) be a
user social graph where nodes, V , represent users and
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edges, E , denote the social links between users.

Definition 2 (Sequence) Let s = (ci, ..., ci+I) be a se-
quence, where I is the length of the sequence. A sequence
is defined as an ordered series of location-IDs, extracted
from user v’s trajectory R(v), in which all elements of
the sequence share common side features. For example, if
we consider time range as a side feature, s can be a se-
quence of location-IDs occurring in the morning. Given user
v, s(j)v is user v’s jth sequence such that s

(j)
v ⊂ R(v).

Sv =
〈
s
(j)
v

〉|Sv|
j=1

is user v’s collection of sequences, and

S =
〈Sv

〉|V|
v=1

is the collection of sequences for all users.

Problem Statement (User Representation) Given users’
trajectory data, R(.), learn compact and representative fea-
ture spaces, R̂(.), for all users in the community, where the
reduced feature space can be used as an alternative to the
original one in applications such as link prediction.

Model Description

To solve the stated problem, we exploit the existence of la-
tent patterns in human mobility (Song et al. 2010), which we
refer to as motifs. These motifs can be used to describe users
in a compact feature space. As a result, we map the prob-
lem from learning users’ representations, in general, to ex-
plicitly learning motifs from trajectory data. We propose to
model motifs, in an analogous manner to modeling topics in
text, using generative PGMs. We propose a Human Mobility
Representation model (HuMoR, shown in Fig. 2), which ex-
tracts latent patterns from community-level sequences while
making use of metadata associated with location-IDs.

HuMoR is a hierarchical Bayesian model, where S is
modeled as a mixture over an underlying set of motifs, and
each motif is modeled as a mixture over an underlying set of
location-IDs. The parameter of the motif distribution is con-
ditioned on the sequence side features. This conditioning is
intended to capture additional similarity between sequences,
given features imposed by users. That is, by imposing such
conditioning, motifs not only capture locations appearing to-
gether, but also locations with similar side features, even if
they did not co-occur in the same sequences.

The generative process of HuMoR is:

1. For each motif, k = 1 : K

(a) Draw φk ∼ Dirichlet(β)
(b) Draw λk ∼ [Normal(0, σ2

0I), Normal(0, σ2)]

2. For each sequence s ∈ S
(a) Assign αs = exp(xs

TΛ)

(b) Draw θs ∼ Dirichlet(αs)
(c) For each location-ID in s, i = 1 : I

i. Draw z ∼ Multinomial(θs)
ii. Draw cs,i ∼ Multinomial(φz)

where λk is a per-motif vector with length n (the cardinal-
ity of side features + 1), where n − 1 elements are drawn
from a per-motif Gaussian distribution with variance σ2

0 and
mean 0. The nth value, a.k.a., the default value of motif k,
is sampled from a Gaussian distribution with σ2 and mean

φ
K

β

c z θ α

λ

σ2

x
|S| I

K

c z

Figure 2: Graphical representation of HuMoR, where I is
the length of a sequence, |S| is the number of sequences
extracted from the data, c is a location-ID drawn randomly
from the location-ID distribution φ of motif z, θ is the motif
distribution drawn from Dirichlet(α). α is conditioned on
the sequence features x and λ, where λ is randomly drawn
from a normal distribution with variance σ2. φ is randomly
drawn from Dirichlet(β). Nodes represent random variables.
Shaded nodes are observed and plates indicate repetition.

0. To simplify notations, we refer to both variances as σ2.
λk, k = 1...K can be packed column by column, resulting
in an n × K matrix denoted as Λ. The per-motif location-
ID distribution, φk, k = 1...K can be packed column by
column, resulting in a |C| × K matrix of location distribu-
tions, denoted as Φ. The parameter of the Dirichlet prior on
the per-motif location-ID distribution is denoted by β. The
parameter of the Dirichlet prior on the per-sequence motif
distribution is denoted as α, which is a log-linear function
of the sequence feature xs and Λ. The per-sequence motif
distribution drawn from Dirichlet(αs), θs, s = 1...|S| can
be packed column by column, resulting in a K × |S| ma-
trix denoted as Θ. z is a motif for location-ID cs,i, i.e., the
ith location-ID in sequence s. K is the number of motifs
in the model. In this model, c and x are the only observed
variables, all other variables are latent.

The generative process of HuMoR is explained as follows.
For each sequence, we draw a probability distribution for
motifs, θ, from Dirichlet(α), where α is a function of the
sequence feature x and Λ. Then, for every element in the
sequence, we randomly draw a motif z from the multinomial
motif distribution, and a location-ID from the multinomial
location-ID distribution of the selected motif φz .

Building Blocks

In this section, we discuss the two main elements that make
HuMoR successful for trajectory data.
Sequences The concept of sequences is introduced to har-
ness the power of the community in learning latent patterns
for individuals. Given the variation in user activity level,
which is apparent in different sources of data, it is important
for models of human mobility to capture such imbalance.
By introducing sequences as defined in Definition 2, the
model learns from community-level sequences as opposed
to individual-level trajectories. Thus, for inactive users, the
risk of not learning their latent patterns is minimized as our
model learns from users with similar patterns collectively.
Side Features There is more to trajectory data than
anonymized locations. HuMoR provides a general frame-
work for adding metadata, by incorporating per-sequence
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side features. This approach gives an additional layer of flex-
ibility to our model while enriching the learning process.

Example: Consider visiting time as a side feature and as-
sume we have three time ranges, each representing a unique
portion of the day (e.g., morning, evening, and night). xs

will be a vector of length 4 encoding the time feature of se-
quence s, by containing one in the proper time range and
zero otherwise in addition to a motif default value 1. As
αk = exp(xs

Tλk), k = 1...K is the parameter of per-
sequence motif prior, the first n−1 elements in λk associate
sequences having the same value of time range together,
even when sequences have different location-IDs. The nth
element in λk is added to result in αk, which ultimately as-
sociates sequences having the same side features, with the
same motifs. When the parameter σ2 for drawing λk is large,
the default values for all motifs will fluctuate more freely,
and thus distinguish motifs from each other.

Estimating Model Parameters

In this section, we describe the algorithm used for inferring
the model parameters. Note that the full joint distribution
over parameters, for HuMoR in Fig. 2, has a probability dis-
tribution given by the chain rule in the following Equation,

P (σ2,Λ,x,α, β,Φ,Θ, z, c)= P (σ2)P (Λ|σ2)

K∏
k=1

P (φk|β)

|S|∏
s=1

P (xs)P (αs|xs,Λ)P (θs|αs)

I∏
i=1

P (zi|θs)P (cs,i|φz). (1)

We are interested in reversing the generative process and
learning the posterior distribution: the distribution of the la-
tent variables (z,Φ,Θ,α,Λ) given the observed data is

P (Λ,α,Φ,Θ, z|c,x, β) = P (c,x,Λ,α,Φ,Θ, z|β)
P (c,x|β) . (2)

This distribution is intractable and cannot be computed
exactly. Thus, we adopt an inference model where we al-
ternate between estimating z using collapsed Gibbs sam-
pling from the current prior distribution (i.e., sampling motif
assignments) and optimizing Λ given z using the standard
L-BGFS optimizer (Byrd, Nocedal, and Schnabel 1994) in
MALLET (McCallum 2002). Values of Λ are then used in
addition to the sequence side features to estimate α. Lastly,
Φ and Θ are estimated using Equation (5) and (6), respec-
tively. The estimation process is given in Algorithm 1.

Collapsed Gibbs sampling is an MCMC algorithm, which
iteratively draws and updates one sample from the popula-
tion given all other samples. In HuMoR, this implies sam-
pling from the conditional distribution, P (zi|z−i, C), since
z is a sufficient statistic for Φ and Θ. Sampling is given by,

P (zi|z(−i), C) ∝ (η
(−i)

k|s + αk) ·
η
(−i)

c|k + β

η
(−i)

.|k + β
. (3)

where ηk|s is the number of times motif k was drawn in se-
quence s, superscript (−i) is used when sequence i is ex-
cluded, ηc|k is the number of times location-ID c was as-
signed to motif k, η.|k = {ηcj |k}|C|j=1 is the total number of

location-IDs assigned to motif k, and β =
∑|C|

c=1 β.

Algorithm 1: Parameter Estimation for HuMoR
Input: K,S,X = {x1, ...,x|S|}, σ2, β
Output: Φ,Θ

1 Initialize Λ, z, and update counters;
2 for each iteration do
3 if mod(iteration,optimization interval) = 0 then
4 Optimize Λ;

5 for each sequence s ∈ S do

6 α = exp(xs
TΛ);

7 for each location-ID i = 1 : I do
8 for each motif k = 1 : K do

9 P (zi|z(−i), C) = (η
(−i)

k|s + αk) ·
η
(−i)

c|k +β

η
(−i)

.|k +β
;

10 Sample k ∼ P (z|C);

11 Compute Φ,Θ where φc|k =
ηc|k+β

η.|k+β
and θk|s =

ηk|s+αk

I+α
;

The location-ID distribution of each motif can be esti-
mated as: P (Φ|S, β) = 1

Zφ
Dirichlet(Φ|η.|k + β), where

Zφ is a normalization factor. Since the expectation of
Dirichlet(x|α) is

E(xi) =
αi∑K

k=1
αk

, (4)

each element in the matrix Φ is estimated using

φc|k =
ηc|k + β

η.|k + β
. (5)

The motif distribution is given by P (θ|z,α) =
1

ZΘ
Dirichlet(θ|I +α). Again, given Equation (4), the kth

element in the motif distribution vector θ is given by,

θk|s =
ηk|s + αk

I +α
. (6)

HuMoR’s complexity is O(k·|S|·ls), which is comparable
to LDA’s complexity (O(k·|V|·lv)), since |S|�(|V| · lv)/ls,
where ls and lv are the average lengths of sequence and user
trajectories, respectively.

Per-user Motif Distribution

As HuMoR does not model the full user trajectory gener-
ation process. We show here how to estimate the per-user
motif distribution, P (z|v). Let user v ∈ V has |Sv| number
of sequences, after learning per-sequence motifs for all users
(θs in Eq. (6)), we approximate P (z|v) using the chain rule,

P (z = k|v) =
|Sv|∑
i=1

P (z, si|v) =
|Sv|∑
i=1

P (z|si, v)P (si|v). (7)

P (s|v) can be estimated empirically from the data,

P (s|v) =
I∏

i=1

P (ci|v) =
|Cs|∏
c

ηc|s∑|Cv|
c′ ηc′|v

=

|Cs|∏
c

ηc|s
η.|v

(8)
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where ηc|s and ηc|v are the frequency of location-ID c in
sequence s and user v, and |Cs| and |Cv| are the number of
unique location-IDs in sequence s and user v, respectively.

Let motif z and user v be conditionally independent given
sequence s, P (z|s, v) = P (z|s), using Bayes’ formula and
the parameters inferred by HuMoR, P (z|s) is estimated by

P (z = k|s) = P (s|z)P (z)

P (s)
=

∏I
i
φci|kθk|s∑

k′(
∏I

i
φci|k′)θk′|s

. (9)

Therefore, taking Equations (8) and (9) into (7), we have

P (z = k|v)=
|Sv|∑
s

( ∏I
i
φci|kθk|s∑

k′(
∏I

i
φci|k′)θk′|s

·
|Cs|∏
c

ηc|v
η.|v

)
, (10)

which represents the per-user motif distribution, θv .
For new users, we estimate the per-user motif distribution

using

P (z = k|v) =
|Cv|∑
c

φc|v∑
k′ φc|k′

· ηc|v
η.|v

, (11)

which is simpler and more efficient than folding in approach
and produces comparable results.

Evaluation

Our objective is to evaluate the proposed model and verify
that the new representation preserves the latent patterns in
the original raw feature space. As HuMoR is inspired by
topic models, we compare our model with LDA and LDA-
Asymmetric (LDA-A), which is an LDA model with asym-
metric prior on the per-user motif distribution. Additionally,
we compare with Principal Component Analysis (PCA) and
Human Effort (HE), where features are extracted by experts
based on task-dependent knowledge. It is important to note
that we do not adopt conventional methods used for evalu-
ating topic models (e.g., likelihood of held-out documents)
because the likelihood of different models is not compara-
ble (Chang et al. 2009). As a result, we evaluate our model
by measuring the performance of the new representation on
an application of social link prediction, where better results
imply better representation, as this indicates minimum loss
of information and effective latent motif expression.

We evaluate our approach on two publicly available
datasets: MDC and GW. Table 2 shows summary statistics
of the datasets. MDC is a CDR data, where cell-IDs associ-
ated with communication records are regarded as visited lo-
cations. Communications between users are represented as
undirected links in the social graph. GW is an LBSN, where
visited locations are reported by users, and friendships in
the network are represented as undirected links in the social
graph. Comparing to GW, MDC contains more visited lo-
cations per user. This is simply because visits are collected
automatically by mobile carriers as opposed to LBSN where
users manually checkin to locations.

We applied PCA, LDA and LDA-A on the same user ×
location frequency matrix. We train all graphical models for
1000 iterations, and optimize parameters every 50 iterations,
after an initial burn-in period of 200. The common param-
eter β for all graphical models is set to be β = 0.01. For

Table 2: Datasets Statistics. No. of Nodes (No.N), No. of
Edges (No.E), No. of Checkins (No.C), averaged Checkins
per User (CpU) and Checkins per Location (CpL).

No.N No.E No.C CpU CpL
MDC 107 197 1,270,045 11870 25
GW 43,956 222,319 2,887,700 65 29
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Figure 3: Heatmap of per-sequence and per-user motif dis-
tribution. Note in 3(a), user A has sequences with 2 distinct
patterns, while user B has only 1 pattern.

HuMoR, we use time range as a sequence feature, where
we divided the day into four equal intervals. We have tested
different intervals for time range, and found that the results
are robust against the variation in the settings of this feature.
The first n− 1 elements in λ, associated with sequence fea-
tures, are drawn from a Gaussian distribution with σ2 = 0.5.
The nth element, associated with the motif default value, is
drawn from a Gaussian distribution with σ2 = 100. Col-
lectively, the value of λ along with the sequence features
determine α, which in turn controls the per-sequence mo-
tif distribution. Sequences with similar α’s, will have simi-
lar motif distributions. Thus, setting a large variance for the
motif default value enables motifs to be easily distinguished
from each other. We study the sensitivity of σ2 and report the
results later. Regarding the number of motifs K, we study
its sensitivity after comparing the performance of different
models, where K is set to 5.

Fig. 3 shows a heatmap of the new representation learned
by HuMoR per sequence (θs, Fig. 3(a)) for 2 selected users
and per user (θv , Fig. 3(b)) for 950 users. The new represen-
tation is mostly sparse, i.e., sequences (and users) are asso-
ciated with only few motifs. The learned motif distribution
properly captures latent patterns of sequences and users, and
can instantly be used to group them into clusters.

Link Prediction

Given a subset of the network, Gknown, which contains
all nodes in G and only a subset of the edges, the task of
link prediction is to infer the missing (new) links. Predicted
links can either be positive, meaning a connection exists be-
tween the pair of users, or negative with no connection be-
tween users. Link prediction is a challenging problem due to
the extremely unbalanced proportion of positive to negative
links (3.4% positive links in MDC and only 0.02% in GW).
Link prediction has been studied with unsupervised methods
(Liben-Nowell and Kleinberg 2003), supervised classifica-
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Table 3: Mean AUC for link prediction. Columns indicate the new representation used in conjunction with pairs of topology
measures and prediction approaches (in rows). Three prediction approaches are used: Decision Trees, KNN, and Matrix Fac-
torization (MF) on the Adjacency Matrix (AM). Column Top (for Topology) gives AUC values when using only three topology
measures (CN, AA, and Jacc) in unsupervised link prediction.

MDC GW
Methods HE PCA LDA LDA-A HuMoR Top HE PCA LDA LDA-A HuMoR Top

Trees CN 0.782 0.768 0.761 0.768 0.800 CN 0.778 0.793 0.815 0.777 0.912 CN
AA 0.779 0.759 0.769 0.768 0.799 0.645 0.876 0.875 0.847 0.841 0.917 0.892
Jacc 0.779 0.769 0.762 0.779 0.805 AA 0.772 0.789 0.814 0.805 0.892 AA

KNN CN 0.859 0.831 0.858 0.870 0.891 0.645 0.727 0.689 0.881 0.833 0.969 0.901
AA 0.861 0.831 0.864 0.872 0.888 Jacc 0.934 0.938 0.936 0.939 0.972 Jacc
Jacc 0.845 0.831 0.866 0.877 0.893 0.645 0.721 0.774 0.914 0.892 0.954 0.832

MF AM 0.873 0.893 0.881 0.891 0.943 0.820 0.922 0.942 0.932 0.935 0.950 0.906

tion methods (Dong et al. 2012), and Matrix Factorization
(MF) (Menon and Elkan 2011).

First, we use unsupervised methods based on only
measures extracted from the network topology. We con-
sider three measures: (1) the number of common neigh-
bors between pairs of nodes vi and vj : CN(vi, vj) =
|N (vi) ∩ N (vj)|, where | · | gives the cardinality of a
set and N (·) is the set of 1-hop neighbors of a user;
(2) Adamic-Adar (Adamic and Adar 2003), AA(vi, vj) =∑

n∈N (vi)∩N (vj)
1

log(|N (n)|) ; and (3) Jaccard coefficient

Jacc(vi, vj) =
|N (vi)∩N (vj)|
|N (vi)∪N (vj)| . A link is predicted between

user vi and vj when their measure is above a threshold, vary-
ing which results in an ROC curve. The Area Under the ROC
Curve (AUC) using each of these measures for both datasets
is listed in Table 3 under the Topology (Top) column.

Second, we add user representation to topology mea-
sures to learn classifiers for link prediction. For one pair
of users vi and vj , the existence of link between them
is predicted as a binary classification problem with input
{θvi − θvj , T opology(vi, vj)}, where θv is user v’s new
representation learned from trajectories and Topology can
be any of CN, AA or Jacc. We employ two classification ap-
proaches: Decision Trees and K-Nearest Neighbors (KNN).
To overcome the issue of unbalanced labels, we limit link
prediction to the 2-hop neighbors of each user. Thus, elimi-
nating many true negative links from the learning space. Ta-
ble 3 shows the AUC averaged over 10 runs when adding
five different representation produced by HE, PCA, LDA,
LDA-A and HuMoR to the three different topology mea-
sures. In both datasets when comparing to the column of
Topology, we see that the new representation learned by Hu-
MoR always improves the results significantly and outper-
forms all other representation learning methods. Some meth-
ods even worsen the results because of the inappropriately
added representations.

Finally, we do link prediction using MF with and without
the learned representations. Table 3 shows that adding rep-
resentations always improves the results, and the best results
are achieved by HuMoR. The overall best result in MDC is
achieved by MF with representations from HuMoR. In GW,
the best result is achieved by KNN with representations from
HuMoR added to AA. All the results indicate that the new
representation learned by HuMoR is better than the others.

When comparing the results achieved using HuMoR on
both datasets, we note that profound improvement is ob-
tained in the GW dataset. Recall that GW is an LBSN dataset
with a large number of inactive users, who mostly have
sparse location traces. As HuMoR captures patterns from
collective sequences of all individuals in the dataset, the
sparsity of location traces does not impact the model’s per-
formance as it does with mainstream topic models (LDA and
LDA-A).

Parameter Sensitivity

We study the sensitivity of HuMoR to the setting of the num-
ber of motifs (K) and to the motif variance (σ2) in Fig. 4.
Fig. 4(a) shows the AUC results for both datasets when vary-
ing the value of K. For the MDC data, prediction results de-
grade when the number of motifs increases over 5. This is
not the case with the GW data as no significant change is
observed. The main reason is that MDC has a small number
of users for which a small K is sufficient for capturing the
latent pattens. Fig. 4(b) shows that the model is robust to the
setting of σ2.
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Figure 4: Sensitivity analysis of HuMoR parameters.

Conclusions and Future Work

We propose HuMoR, a PGM designed to infer latent patterns
from anonymized location traces with power-law distributed
locations. Unlike mainstream topic models, HuMoR is capa-
ble of learning patterns for users with different activity levels
and including side features in the learning process. We ad-
mit that HuMoR’s efficiency is limited by Gibbs sampling.
Thus adopting an efficient parameter inference technique is
a main direction for future work.
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Schumann, A., and Lécué, F. 2015. Minimizing user in-
volvement for accurate ontology matching problems. In
AAAI.
Song, C.; Qu, Z.; Blumm, N.; and Barabási, A.-L. 2010.
Limits of predictability in human mobility. Science
327(5968):1018–1021.
Tang, J.; Meng, Z.; Nguyen, X.; Mei, Q.; and Zhang, M.
2014. Understanding the limiting factors of topic modeling
via posterior contraction analysis. In ICML.
Toole, J. L.; Ulm, M.; González, M. C.; and Bauer, D. 2012.
Inferring land use from mobile phone activity. In KDD.
Wallach, H. M.; Mimno, D. M.; and McCallum, A. 2009.
Rethinking LDA: Why priors matter. In NIPS.
Wallach, H. M. 2006. Topic modeling: beyond bag-of-
words. In ICML.
Wang, X.; McCallum, A.; and Wei, X. 2007. Topical n-
grams: Phrase and topic discovery, with an application to
information retrieval. In ICDM.
Yuan, J.; Zheng, Y.; and Xie, X. 2012. Discovering regions
of different functions in a city using human mobility and
POIs. In KDD.
Zheng, Y.; Zhang, H.; and Yu, Y. 2015. Detecting collec-
tive anomalies from multiple spatio-temporal datasets across
different domains. In SIGSPATIAL.
Zheng, Y. 2015a. Methodologies for cross-domain data fu-
sion: An overview. IEEE Transactions on Big Data.
Zheng, Y. 2015b. Trajectory data mining: An overview.
TIST 6(3):29.

871




