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Abstract

Strategic argumentation provides a simple model of disputa-
tion. We investigate it in the context of Dung’s abstract argu-
mentation. We show that strategic argumentation under the
grounded semantics is resistant to corruption – specifically,
collusion and espionage – in a sense similar to Bartholdi et
al’s notion of a voting scheme resistant to manipulation. Un-
der the stable semantics, strategic argumentation is resistant
to espionage, but its resistance to collusion varies according
to the aims of the disputants. These results are extended to a
variety of concrete languages for argumentation.

Introduction

Organizations have many mechanisms to discourage the
risk of corruption of their processes by the individuals per-
forming these processes: managerial oversight, transparency
through audit trails, the presence of co-workers, random in-
spections, etc. (Bartholdi, Tovey, and Trick 1989) intro-
duced a further way in which corruption is discouraged: the
computational difficulty of determining what an individual
must do to achieve a specific aim (in their problem, to alter
the result of an election). In this paper, we adapt this ap-
proach for strategic argumentation, which provides a simple
model of disputation and negotiation among agents.

A key source of intuition for this work is legal disputation.
(Prakken and Sartor 1998) have argued persuasively that le-
gal precedents can be represented by defeasible rules, and
reasoned with using arguments constructed from the rules.
Lawyers act as agents for their clients and, in particular, may
present oral arguments to a judge in support of their client’s
position and to refute arguments by opposing lawyers. Such
a process can be represented as a game where each player,
in turn, asserts additional arguments that overcome their op-
ponent’s arguments and leave the game in a desired state.
((Prakken 2005) calls such dialogues relevant.) Eventually
a winner emerges when one player is unable to refute the
opponent’s argument.

To model legal disputation requires a game of incomplete
knowledge, since lawyers generally are not aware of all the
arguments their opponent will employ. In theory, and im-
plicit in the rules of such games, the knowledge of which
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arguments are available to a player is kept confidential, as
a strategic advantage. However, in practice, a player may
behave corruptly to violate this confidentiality. In particular,
a player might learn of her opponent’s arguments through
espionage, or collude with her nominal opponent to achieve
a pre-determined outcome. Such behaviour is against legal
ethics, and in this paper we investigate whether strategic ar-
gumentation is resistant to this form of corruption, that is,
whether it is computationally difficult to exploit the corrupt
behaviour.

The games we consider in this paper are two-player ad-
versarial games. In each move a player adds entire ar-
guments, rather than single rules, to the dispute. These
games also require a player to commit to the arguments
she plays, in the sense that there is no ability to retract
an argument. The only way an argument loses force is
as a result of it being attacked by other arguments. We
call playing such games strategic argumentation, follow-
ing (Governatori et al. 2014b). These games are quite dif-
ferent – in purpose and in technical detail, as discussed
above – from dialogue games that are used to provide an
operational interpretation of defeasible rules and argumenta-
tion (for example, (Prakken and Sartor 1998; Prakken 2005;
Thang, Dung, and Hung 2012), among many).

It might appear more natural to formulate strategic argu-
mentation games in concrete terms, with precedents repre-
sented by defeasible rules, as argued by (Prakken and Sartor
1998). Indeed (Maher 2014) does exactly this, using the
defeasible logic DL (Antoniou et al. 2001). However, we
choose to first formulate them in terms of Dung’s model of
abstract argumentation (Dung 1995). Although this has the
danger that important features are abstracted away, we will
show that results obtained in the abstract setting can be ex-
tended to a wide range of concrete formalisms supporting
defeasible rules.

We address two semantics for abstract argumentation: the
grounded and stable semantics (Dung 1995). These seman-
tics seem the most natural for adjudicating disputes. The
grounded semantics accepts arguments that (iteratively) are
only attacked by defeated arguments and hence are relatively
uncontroversial. The stable semantics consists of those ad-
judications where each argument is accepted or rejected.
Furthermore, most concrete languages expressing defeasible
rules reflect one of these semantics.
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In the next section we define strategic abstract argumen-
tation, and the decision problems that arise from the play
of an argumentation game, including those that arise when
exploiting corrupt behaviour. The next two sections then es-
tablish the complexity of these problems under, respectively,
the grounded and the stable semantics. These allow us to
reach conclusions on the resistance to corruption of strate-
gic abstract argumentation. These results are then extended
to many concrete formalisms. For lack of space, proofs are
either sketched or omitted.

Background
Our work is based on abstract argumentation in the sense of
(Dung 1995), which addresses the evaluation of a static set
of arguments. An argumentation framework A = (S,�)
consists of a set of arguments S and a binary relation �
over S, called the attack relation. The semantics of an argu-
mentation framework is given in terms of extensions, which
are subsets of S.

Given an argumentation framework, an argument a is said
to be accepted in an extension E if a ∈ E, and said to be
rejected in E if some b ∈ E attacks a. An extension E
is conflict-free if the restriction of � to E is empty. An
argument a is defended by E if every argument that attacks
a is attacked by some argument in E. An extension E of A is
complete if it is conflict-free and, a ∈ E iff a is defended by
E. The complete extension under the containment ordering
exists and is called the grounded extension. An extension E
of A is stable if it is conflict-free and for every argument a ∈
S\E there is an argument in E that attacks a. Every stable
extension is complete, and so is a superset of the grounded
extension.

In this paper we consider only two semantics of argumen-
tation frameworks: the grounded semantics, consisting of
the grounded extension, and the stable semantics, consist-
ing of the stable extensions. Complexity results for accep-
tance under these semantics (among others) are presented in
(Dunne and Wooldridge 2009).

An argumentation framework is well-founded if there is
no infinite sequence of arguments a1, a2, . . . , ai, ai+1, . . .
such that, for each i, ai+1 attacks ai. Such argumenta-
tion frameworks have a single complete extension, which
must be the grounded extension and the sole stable exten-
sion (Dung 1995).

Strategic Abstract Argumentation

Strategic argumentation provides a simple model of dy-
namic argumentation, where players take turns to add ar-
guments to the argumentation framework. It is formalized
as follows. We assume there are two players, a propo-
nent P and her opponent O. A split argumentation frame-
work (ACom,AP ,AO,�) consists of three sets of argu-
ments: ACom the arguments that are common knowledge
to P and O; AP the arguments available to P , and AO the
arguments available to O; and an attack relation � over
ACom ∪ AP ∪ AO. AP is assumed to be unknown to O,
and AO is unknown to P . Each player is aware of � re-
stricted to the arguments they know. Each player has a de-
sired outcome or aim, and usually the desired outcomes of

P and O conflict. Starting with P , the players take turns in
adding sets of arguments to ACom from their available argu-
ments, ensuring that their desired outcome is a consequence
of the resulting argumentation framework1. As play contin-
ues, the set of arguments that are common knowledge ACom

becomes larger. When a player is unable to achieve her aim,
she loses2.

We follow the convention that P ’s desired outcome is to
have a distinguished argument a accepted, in some sense,
while O’s aim is to prevent this. The notion of desired
outcome may vary, depending on the argumentation seman-
tics and the attitude of the player. For example, under the
grounded semantics, P might desire that a is accepted in the
grounded extension, while O desires that a is not accepted,
but O might aim for the stronger outcome that a is rejected.

Note that an argument played by P (say) may attack other
arguments in AP , which might otherwise have been used
later to attack arguments played by O. Thus the game truly
is strategic in nature3. Furthermore, it is preferable, in gen-
eral, to play as few arguments as possible, to retain as much
strategic advantage as possible from the confidentiality of
the arguments available. However, the model omits strate-
gizing aspects of play, such as opponent modelling, to focus
on the fundamental issues.

The key problem in strategic argumentation, which must
be solved by each player at each move, is to choose a set of
arguments I to play that will achieve her desired outcome.
We refer to this as the Desired Outcome (or DO) Problem.

The Desired Outcome Problem for P
Instance A split argumentation framework

(ACom,AP ,AO,�) and a desired outcome for P .
Question Is there a set I ⊆ AP such that P ’s desired

outcome is achieved in the argumentation framework
(ACom ∪ I,�)?

A similar problem is called the strategic argumentation
problem in (Governatori et al. 2014b), but we prefer a more
specific name, since there are several problems associated
with strategic argumentation. The Desired Outcome prob-
lem is essentially an abduction problem (Booth et al. 2014;
Maher 2014). The operation of adding arguments to an argu-
mentation framework has been studied in (Cayrol, de Saint-
Cyr, and Lagasquie-Schiex 2010), which addresses struc-
tural properties, and (Baumann and Brewka 2010), which
addresses enforcing a desired extension, rather than a single
desired argument. More recently, (Bisquert et al. 2013) ad-
dresses a problem similar to the Desired Outcome problem
and establishes a relationship to belief update.

Implicit in the treatment of argumentation games (and, in-
deed, in games generally) is that the rules of the game are

1Each player’s move is a normal expansion, in the terminology
of (Baumann and Brewka 2010).

2For brevity, we ignore the possibility that neither player can
achieve her desired outcome.

3For a similar argumentation game, results of (Rahwan, Larson,
and Tohmé 2009) suggest games are strategy-proof only under very
constraining conditions.
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adhered to by the players. Specifically, in games of incom-
plete knowledge, the privacy of the knowledge of a player is
assumed to be respected, and this privacy is a strategic ad-
vantage. However, as pointed out by (Maher 2014) in a more
concrete context, it is possible for a player or players to sub-
vert the game by violating the assumed confidential nature
of AP and AO, through either espionage or collusion. Such
subversion corresponds to a violation of legal ethics, and so
it is in the interests of the subverting player(s) that the play
of the game has the appearance of normal play. This gives
rise to the problem of how to achieve this appearance while
producing the desired outcome of the subverter(s). We con-
sider the corresponding decision problems.

In the case of collusion between P and O to ensure that
(say) P wins, the players must arrange a sequence of moves
that satisfy the rules of the game and leads to P winning.

The Winning Sequence Problem for P
Instance A split argumentation framework

(ACom,AP ,AO,�) and a desired outcome for P .
Question Is there a sequence of moves such that P wins?

Recall that each player must achieve her desired outcome
at the end of each move and O must have no more moves
at the end of the sequence, so deciding whether such a se-
quence exists is non-trivial.

In the case of espionage, one player, say P , knows her
opponents arguments AO and desires a strategy that will en-
sure P wins, no matter what moves O makes. A strategy for
P in a split argumentation framework (ACom,AP ,AO,�)
is a function from a set of common arguments and a set of
playable arguments to the set of rules to be played in the
next move. A sequence of moves S1, T1, S2, T2, . . . result-
ing in common arguments AP,1

Com,AO,1
Com,AP,2

Com,AO,2
Com, . . .

is consistent with a strategy s for P if, for every j, Sj+1 =

s(AO,j
Com,AP ). A strategy for P is winning if every valid

sequence of moves consistent with the strategy is won by P .

The Winning Strategy Problem for P
Instance A split argumentation framework

(ACom,AP ,AO,�) and a desired outcome for P .
Question Is there a winning strategy for P ?

We say that strategic argumentation is resistant to col-
lusion (respectively, espionage) if the complexity of the
Winning Sequence problem (Winning Strategy problem) is
greater than the complexity of the Desired Outcome prob-
lem, under the commonly believed complexity-theoretic as-
sumption that the polynomial hierarchy does not collapse.
We say that strategic argumentation is resistant to corrup-
tion if it is resistant to both espionage and collusion.

Thus, argumentation is resistant to corruption if the com-
putational cost of exploiting the corruption is greater (under
the complexity-theoretic assumption) than the cost of sim-
ply playing the game. This computational cost is a potential
barrier to corruption.

Example 1 Consider a split argumentation framework
(ACom,AP ,AO,�) with arguments A, B, C, and D

where ACom = ∅, AP = {A,D}, AO = {B,C}, and
D attacks B, B attacks A and C, C attacks A and B. P ’s
aim is to have A accepted. Note that, under the grounded
(and stable) semantics, A and B are rejected while C and
D are accepted.

With espionage, P (say) knows all of O’s arguments, but
cannot control how O plays them. Thus, after P plays A, O
might play C and O would win.

With collusion, P and O know all the arguments and can
control how they are played. However, they are constrained
by the necessity to play them to give the appearance of nor-
mal play, so that their collusion is not exposed. In collusive
play to have A accepted, P plays A, O plays B, P plays D
and wins.

Grounded Semantics

We assume that the desired outcome for P is to have a dis-
tinguished argument a accepted in the grounded extension,
while the desired outcome for O is that a is not accepted.

We first show that, even without strategizing, performing
a single move in strategic abstract argumentation is difficult,
in the worst case. Specifically, it is NP-complete. The proof
is by reduction of SAT to the Desired Outcome problem.

Theorem 2 The Desired Outcome problem for P under the
grounded semantics is NP-complete

The aim of the opponent O is to ensure that the distin-
guished argument is not accepted in the grounded extension.

Corollary 3 The Desired Outcome problem for O under the
grounded semantics is NP-complete

Alternatively, O might want the distinguished argument
to be rejected, rather than simply not accepted.
Corollary 4 The Desired Outcome problem for O under the
grounded semantics, where O’s aim is to reject the distin-
guished argument, is NP-complete

Thus the difficulty of playing a strategic argumentation
game under the grounded semantics is the same for P and
O.

We now turn to the two problems that arise when exploit-
ing information obtained by corrupt behaviour. To exploit
knowledge of the opponent’s arguments requires a winning
strategy, determining the existence of which is PSPACE-
complete, as would be expected from the theory of complete
games.

Theorem 5 Under the grounded semantics the Winning
Strategy problem is PSPACE-complete.

The proof that the problem is PSPACE-hard involves
modelling quantified Boolean formulas, where each player
corresponds to a quantifier, and each block of variables cor-
responds to arguments that a player may play, extending the
construction of Theorem 2. The main technical difficulty is
in ensuring that playing of arguments adheres to the order in
which variables are quantified, since argumentation games
permit the playing of any argument in any move.

Exploiting collusion might appear to have similar require-
ments to exploiting espionage but, because the players are
coordinating, it is easier.
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Theorem 6 Under the grounded semantics, the Winning Se-
quence problem is Σp

2-complete.

The proof of hardness is essentially a simpler form of the
proof of the previous theorem.

For these two problems we see that strategic argumenta-
tion under the grounded semantics is resistant to corruption,
since the complexity of exploiting the information obtained
corruptly is greater than the complexity of playing the game.

Stable Semantics

The stable semantics generates, in general, multiple exten-
sions of an argumentation framework A. Each stable exten-
sion represents a coherent classification of the arguments as
accepted or rejected. These extensions are exactly the pos-
sible results of rational adjudication of the arguments in A,
under the assumption that the judge rules on all arguments.

The multiplicity of extensions makes for a greater range
of aims available to a player than under the grounded seman-
tics. A player may aim to have her distinguished argument
a accepted in all stable extensions. This corresponds to the
aim of the grounded semantics: to unequivocally establish
a.

Alternatively, a player might aim only to have her distin-
guished argument accepted in at least one stable extension.
In a situation where summary judgement must be avoided,
the existence of one extension supporting the player’s con-
tention a can be seen as sufficient reason for continuing legal
proceedings. Achieving this weaker aim will, in general, ex-
pose fewer of the player’s arguments.

A player might aim only to have a accepted in more than
half of the stable extensions. This aim might be sufficient
in situations where the judgement criterion is the preponder-
ance of evidence, or the balance of probabilities. Alterna-
tively, a player might aim to have a better than 2:1 ratio of
stable extensions accepting a to those that do not. This rep-
resents a more decisive advantage over the opponent than
simply having more stable extensions accepting a.

For later reference we enumerate these aims.

1. Universal: a is accepted in all stable extensions

2. Existential: a is accepted in at least one stable extension

3. Majority: a is accepted in more than half of the stable
extensions

4. Supermajority: the number of stable extensions where a
is accepted is more than twice the number of stable exten-
sions where it is not accepted

Clearly the universal aim is closely related to sceptical
acceptance, while the existential aim is closely related to
credulous acceptance of arguments. The difference is in the
strategic choice of additional arguments to achieve this ac-
ceptance.

In addition to these aims, a player might wish to prevent
her opponent from achieving such aims. Thus, for each of
the above aims there is a “spoiler” aim that is the comple-
ment of the original aim. For example, a spoiler for the uni-
versal aim intends that there is at least one stable extension
in which a is not accepted, while a spoiler for the majority

aim intends that fewer than (or exactly) half of the stable
extensions accept a. For convenience, we will refer to the
spoiler aims as the Desired Outcome problem for the player
O, while the original aims will be referred to as the Desired
Outcome problem for player P .

We now turn to describing the complexity of the Desired
Outcome problem under the stable semantics with the vari-
ous aims.

Theorem 7 The Desired Outcome problem under the stable
semantics with the universal aim is Σp

2-complete.

Proof Consider the following algorithm.

Nondeterministically choose a subset I of AP and
consider the argumentation framework with arguments
ACom ∪ I and the restriction of � to these arguments.
Check that the distinguished argument a is in all stable
extensions of this argumentation framework.

The problem of checking that a is accepted in all stable ex-
tensions is in co-NP so this algorithm shows that this prob-
lem is in Σp

2.
To show that the DO problem is Σp

2-hard we reduce the
satisfiability problem of ∃∀ quantified Boolean formulas to
the DO problem. Let X and Y be disjoint sets of Boolean
variables, and let ψ be a Boolean formula over those vari-
ables in disjunctive normal form. Let D1, . . . , Dn be the
disjuncts in ψ. Consider the formula ∃X∀Y ψ. We con-
struct a split argumentation framework as follows.

For each literal q, there is an argument denoted Aq . There
is an argument AD for each disjunct D, and arguments Aψ

and A¬ψ . There are also, for each variable p, arguments Np

and Bp. ACom consists of all these arguments. AP consists
of an argument Iq , for each literal q based on X . AO is
arbitrary, since it is not relevant to the DO problem.

The attack relation � among these arguments is defined
as follows4.

• For each variable p in X ,
Ip attacks A¬p and I¬p attacks Ap

• For each variable p in X ,
Ip attacks Np and I¬p attacks Np

Ap attacks Bp and A¬p attacks Bp

• For each variable p in X ,
Np attacks Aψ and Bp attacks Aψ

• For each variable p in Y ,
Ap attacks A¬p and A¬p attacks Ap

• For each conjunction D, and each literal q in D,
A∼q attacks AD

• For each conjunction D,
AD attacks A¬ψ

• A¬ψ attacks Aψ

The intuition of the construction is that arguments of the
form Iq played by P represent an assignment for X , argu-
ments Np (respectively Bp) express that neither Ip nor I¬p

(respectively, both Ip and I¬p) are present in I (the set of
arguments played by P ), and arguments Aα represent that

4For any literal q, ∼q is the complement of q. That is, if q has
the form ¬p then ∼q is p, while if q is a variable p then ∼q is ¬p.
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the formula α is true under an assignment derived from the
stable extension.

The remainder of the proof is a verification that finding
I ⊆ AP such that Aψ is in all stable extensions of AI =
(ACom∪I,�) is equivalent to finding an assignment for X
that satisfies ∀Y ψ. �

Given that the credulous acceptance problem (is a in some
stable extension of A?) is NP-complete, it is straightforward
to show that the corresponding Desired Outcome problem is
also NP-complete.

Theorem 8 The Desired Outcome problem under the stable
semantics with the existential aim is NP-complete.

To characterize the complexity of the remaining aims we
need a relatively obscure complexity class. The complex-
ity class PP was originally formulated in probabilistic terms
(Gill 1977), but to align better with its use in this paper we
use an equivalent formulation using non-deterministic com-
putation (Fortnow 1997). A language L is in PP iff there is a
nondeterministic polynomial-time Turing machine M such
that x is in L if and only if M(x) has more accepting com-
putation paths than rejecting paths. PP is somewhat similar
to the complexity class #P, which counts the number of ac-
cepting paths, but involves decision problems, rather than
function problems. PPP contains the entire polynomial hier-
archy, but is contained in PSPACE.

Several problems related to probabilistic planning are
PP-complete or NPPP-complete (Littman, Goldsmith, and
Mundhenk 1998). Some problems related to manipulation
in weighted voting games are PP-complete(Faliszewski and
Hemaspaandra 2009); some others are NPPP-complete (Rey
and Rothe 2014).

Theorem 9 The Desired Outcome problem under the stable
semantics with the majority aim is NPPP-complete.

In fact, the use of any (rational) ratio between accept-
ing and rejecting computation paths (other than 0:1 and 1:0)
leads to the same complexity class, NPPP. Consequently,
any supermajority aim, including the ratio 2:1, is also NPPP-
complete.

Corollary 10 The Desired Outcome problem under the sta-
ble semantics with the supermajority aim is NPPP-complete.

We might wish to give weights to each stable extension
and aim to have the sum of weights of stable extensions ac-
cepting the distinguished argument be greater than the sum
of the weights of remaining extensions. Again, the Desired
Outcome problem with this aim is NPPP-complete.

Unlike the grounded semantics, the difficulty of playing a
strategic argumentation game under the stable semantics is
different, in general, for player P and player O.

Proposition 11 The complexity of the Desired Outcome
problem under the stable semantics for player O is:

• NP-complete when P has the universal aim
• Σp

2-complete when P has the existential aim
• NPPP-complete when P has the majority or supermajority

aim

Finally, an idiosyncrasy of the stable semantics is that
some argumentation frameworks have no stable extension.
Thus a player might want a move to create such an argumen-
tation framework, particularly in cases where she appears
likely to lose. This aim is as hard as the universal aim.

Theorem 12 The Desired Outcome problem under the sta-
ble semantics, where the aim is to have no stable extensions,
is Σp

2-complete.

We now turn to the cost of exploiting corruption under the
stable semantics.

Theorem 13 Under the stable semantics, with any of the
aims, the Winning Strategy problem is PSPACE-complete.

This result is essentially a corollary to Theorem 5, based
on the fact that the construction in that theorem creates well-
founded argumentation frameworks.

Similarly, the Winning Sequence problem, no matter
which aim, is Σp

2-hard, from Theorem 6. For the major-
ity/supermajority aim, a stronger lower bound is obtained
by reduction of the EA-MAJSAT problem.

Theorem 14 Under the stable semantics, the Winning Se-
quence problem for P is;

• Σp
2-complete for the universal and existential aims,

• NPNPPP
-complete for the majority and supermajority

aims.

Thus we see that, under the stable semantics, strategic ar-
gumentation is resistant to espionage. However, it is not re-
sistant to collusion under the existential or universal aims,
because the Winning Sequence problem has the same com-
plexity as the Desired Outcome problem for one of the play-
ers. Surprisingly, then, strategic argumentation is resistant
to collusion under the majority/supermajority aims.

Concrete Systems

There are numerous systems for defeasible reasoning, any of
which might be used as the basis of strategic argumentation
at the concrete level. Among systems for defeasible reason-
ing that reflect the grounded semantics are: the defeasible
logics NDL and ADL (Maier and Nute 2010), the defeasi-
ble logics in the DL and WFDL (Billington et al. 2010;
Maher 2013) frameworks, the extended defeasible logics of
Billington (for example (Billington 2011)), courteous logic
programs (Grosof 1999) and its more recent incarnations
LPDA5 (Wan et al. 2009) and Rulelog (Grosof and Kifer
2013), Ordered Logic (Laenens and Vermeir 1990), logic
programming without negation as failure (LPwNF) (Di-
mopoulos and Kakas 1995), and Defeasible Logic Program-
ming (DeLP) (Garcı́a and Simari 2004). Similarly, struc-
tured argumentation systems ASPIC (Amgoud et al. 2006)
and its derivatives (Prakken 2010; Wu and Podlaszewski
2015) and assumption-based argumentation (ABA) (Bon-
darenko et al. 1997) support grounded semantics.

5We assume that LPDA theories have the overriding property
(Wan et al. 2009).
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Strategic argumentation in these concrete systems is more
precise than in abstract argumentation in the sense that play-
ers can re-use individual rules – rather than entire arguments
– that are played by their opponent. Nevertheless, hard-
ness results are relatively easily extended from abstract ar-
guments to concrete systems. For example:

Theorem 15 The Desired Outcome problem is NP-hard for
the defeasible logics NDL and ADL, the logics in the frame-
works DL and WFDL, Billington’s extended defeasible
logics, for the formalisms Ordered Logic, LPwNF, courte-
ous logic programs, LPDA, Rulelog, and DeLP, and for the
argumentation systems ABA, ASPIC and its derivatives un-
der the grounded semantics.

The proof uses results in (Maher 2015) showing that these
concrete argumentation languages can imitate abstract argu-
mentation frameworks.

Parts of this theorem have already been proved. Specif-
ically, (Governatori et al. 2014b) addresses one defeasible
logic, (Maher 2014) addresses many of the defeasible log-
ics, and (Governatori et al. 2014a) addresses ASPIC under
the grounded semantics. However, all use more complicated
technical machinery than is necessary when starting from
the abstract level. It would take substantial work to use that
machinery to obtain this result.

Some concrete systems have features that suggest that
such lower bounds are not tight. Nevertheless, for many of
these formalisms our results at the abstract level extend to
the concrete level. Hence

Theorem 16 Consider the following formalisms: defeasi-
ble logics in the DL and WFDL frameworks, ADL and
NDL (assuming minimal conflict sets), courteous logic pro-
grams, LPDA (assuming the overriding property), Ordered
Logic, LPwNF, and flat ABA, ASPIC and its derivatives un-
der the grounded semantics.

Strategic argumentation in any of these formalisms is re-
sistant to corruption.

Several concrete languages reflect the stable semantics,
rather than the grounded semantics including: defeasible
logics under stable model semantics (Antoniou et al. 2000;
Maier 2013), DEFLOG (Verheij 2003), ASPDA6 (Wan,
Kifer, and Grosof 2015), as well as ABA, ASPIC and its
derivatives under the stable semantics.

Theorem 17 Consider the following formalisms: ambigu-
ity blocking defeasible logics in the DL framework under
the stable models semantics; NDL (assuming minimal con-
flict sets) under the β-stable sets semantics; ASPDA (assum-
ing the overriding property); and flat ABA, ASPIC and its
derivatives under the stable semantics.

Strategic argumentation in any of these formalisms is re-
sistant to espionage, and is resistant to collusion for the ma-
jority and supermajority aims.

6We assume that ASPDA theories have the overriding property
(Wan et al. 2009).

Related Work

(Maher 2014) introduced the idea of resistance to corrup-
tion for the defeasible logic DL (Antoniou et al. 2001). He
showed the equivalent of Theorems 2, 5, and 6 for this logic.
This paper goes further in establishing similar results for ab-
stract argumentation and for a wider range of concrete lan-
guages that reflect the grounded semantics. In addition, this
paper addresses abstract argumentation and concrete lan-
guages that reflect the stable semantics. The stable seman-
tics presents significantly more complications, and the re-
sults on resistance to corruption are more nuanced. (Gov-
ernatori et al. 2014b; 2014a) each only addressed the De-
sired Outcome problem for a single formalism. (Booth et al.
2014) view the Desired Outcome problem as an abduction
problem where a game of hypothetical moves refines the set
of abducibles that are needed to explain the acceptance of an
observation. Theorem 2 identifies the complexity of playing
their game under the grounded semantics.

Conclusion

We have seen that playing strategic argumentation games is
difficult, but the degree of difficulty depends on the argu-
mentation semantics and the aim of the player. Under the
grounded semantics, the difficulty of playing the game is the
same for P and O. In contrast, under the stable semantics,
if P has a universal aim then she has a harder task than her
opponent.

We have also seen that, in general, argumentation games
are resistant to corruption. The games are resistant to es-
pionage under both grounded and stable semantics. They
are also resistant to collusion under the grounded semantics
and under the stable semantics when the player’s aim is a
majority or supermajority. However, when P ’s aim is uni-
versal or existential, the complexity of colluding (that is, the
complexity of finding a winning sequence) is the same as
the complexity of finding a next move for one of the play-
ers. Thus, from a worst-case viewpoint, the computational
difficulty of exploiting collusion is not a barrier or disincen-
tive to collusive behaviour. These results were proved for
abstract argumentation, and then extended to a wide variety
of concrete languages for expressing argumentation.

This work suggests several avenues for further research:
How can the results here be adapted to negotiation, where P
and O do not have inconsistent aims, and to multiple play-
ers? There are many other semantics for abstract argumenta-
tion; are games resistant to collusion under these semantics?
Do similar results apply to other notions of abstract argu-
mentation?
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