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Abstract

Knowledge graph embedding aims to represent entities and
relations in a large-scale knowledge graph as elements in a
continuous vector space. Existing methods, e.g., TransE and
TransH, learn embedding representation by defining a global
margin-based loss function over the data. However, the op-
timal loss function is determined during experiments whose
parameters are examined among a closed set of candidates.
Moreover, embeddings over two knowledge graphs with dif-
ferent entities and relations share the same set of candidate
loss functions, ignoring the locality of both graphs. This leads
to the limited performance of embedding related applica-
tions. In this paper, we propose a locally adaptive translation
method for knowledge graph embedding, called TransA, to
find the optimal loss function by adaptively determining its
margin over different knowledge graphs. Experiments on two
benchmark data sets demonstrate the superiority of the pro-
posed method, as compared to the-state-of-the-art ones.

Keywords:locally adaptive translation, knowledge graph
embedding, optimal margin

Introduction

A knowledge graph is actually a graph with entities of dif-
ferent types as nodes and various relations among them as
edges. Typical examples include Freebase (Bollacker et al.
2008), WordNet (Miller 1995), OpenKN (Jia et al. 2014),
to name a few. In the past decade, the great success of con-
structing these large-scale knowledge graphs have advanced
many realistic applications, such as, link prediction (Liu et
al. 2014) and document understanding (Wu et al. 2012).
However, since knowledge graphs usually contain millions
of vertices and edges, any inference and computation over
them may not be easy. For example, when using Freebase
for link prediction, we need to deal with 68 million of ver-
tices and one billion of edges. In addition, knowledge graphs
usually adopt symbolic and logical representation only. This
is not enough when handling applications with intensive nu-
merical computation.

Recently, many research work have been conducted to
embed a knowledge graph into a continuous vector space,
called knowledge graph embedding, to tackle these prob-
lems. For example, TransE (Bordes et al. 2013) represents
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entities as points and relations as translation from head en-
tities to tail entities in the vector space. TransH (Wang et al.
2014) models relations as translation on a hyperplane and
represents a relation as two vectors, i.e., the norm vector
of the hyperplane and the translation vector on the hyper-
plane. These methods finally learn the representations of en-
tities and relations by minimizing a global margin-based loss
function.

On one hand, existing embedding methods over one
knowledge graph determine the optimal form of loss func-
tion during experiments. A critical problem is that the de-
termination is made over a limited number of candidates.
For example, the optimal loss function used in TransE (Bor-
des et al. 2013) on Freebase is determined with its mar-
gin among the 3-element set {1, 2, 10}. It is unclear that
why the loss function is examined by only testing a closed
set of values of its parameters in the literature. Obviously,
the margin is nonnegative and the full grid search of find-
ing its optimum is almost impossible. On the other hand,
existing embedding methods over two different knowledge
graphs find their individual optimal loss functions over the
same set of candidates. For instance, in TransH (Wang et
al. 2014), the loss functions on Freebase and WordNet share
the same candidate margins, i.e., {0.25, 0.5, 1, 2}. Since dif-
ferent knowledge graphs contain different entities and rela-
tions, this compatible setting ignores the individual locality
of knowledge graphs and seems not convincing in theory.

In this paper, we propose a translation based embedding
method, called TransA, to address the above two issues. For
different knowledge graphs, TransA adaptively finds the op-
timal loss function according to the structure of knowledge
graphs, and no closed set of candidates is needed in ad-
vance. It not only makes the translation based embedding
more tractable in practice, but promotes the performance of
embedding related applications, such as link prediction and
triple classification. Specifically, the contributions of the pa-
per are two-fold.

• We experimentally prove that knowledge graphs with dif-
ferent localities may correspond to different optimal loss
functions, which differ in the setting of margins. Then we
study how margin affects the performance of embedding
by deducing a relation between them.

• We further propose the locally adaptive translation
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method (TransA) for knowledge graph embedding. It
finds the optimal loss function by adaptively determining
the margins over different knowledge graphs. Finally, ex-
periments on two standard benchmarks validate the effec-
tiveness and efficiency of TransA.

Related Work

Existing knowledge embedding methods aim to represent
entities and relations of knowledge graphs as vectors in a
continuous vector space, where they usually define a loss
function to evaluate the representations. Different methods
differ in the definition of loss functions with respect to the
triple (h, r, t) in knowledge graph, where h and t denote
the head and tail entities, and r represents their relationship.
The loss function implies some type of transformation on h
and t. Among translation based methods, TransE (Bordes
et al. 2013) assumes h + r = t when (h, r, t) is a golden
triple, which indicated that t should be the nearest neigh-
bor of h + r. Unstructured method (Bordes et al. 2012;
2014) is a naive version of TransE by setting r = 0. To deal
with relations with different mapping properties, TransH
(Wang et al. 2014) was established to project entities into
a relation-specific hyperplane and the relation becomes a
translating operation on hyperplane. Another direction of
embedding is the energy based method, which assigns low
energies to plausible triples of a knowledge graph and em-
ploys neural network for learning. For example, Structured
Embedding (SE) (Bordes et al. 2011) defines two relation-
specific matrices for head entity and tail entity, and estab-
lishes the embedding by a neural network architecture. Sin-
gle Layer Model (SLM) is a naive baseline of NTN (Socher
et al. 2013) by concatenating h and t as an input layer to
a non-linear hidden layer. Other energy based methods in-
clude Semantic Matching Energy (SME) (Bordes et al.
2012), Latent Factor Model (LFM) (Jenatton et al. 2012;
Sutskever, Tenenbaum, and Salakhutdinov 2009) and Neu-
ral Tensor Network (NTN) (Socher et al. 2013). Besides,
matrix factorization based methods were also presented in
recent studies, such as RESCAL (Nickel, Tresp, and Kriegel
2012). However, these methods find the optimal loss func-
tion of embedding whose parameters are selected during
experiments. We intend to propose an adaptive translation
method to find the optimal loss function in this paper.

Loss Function Analysis

In this section, we firstly study the loss functions over dif-
ferent knowledge graphs and find their difference in the set-
ting of margins. Then in order to figure out how margin af-
fects the performance of embedding, we derive a relation
by virtue of the notion of stability for learning algorithms
(Bousquet and Elisseeff 2002).

Margin setting over different knowledge graphs

As mentioned before, a knowledge graph is composed
of heterogeneous entities and relations. Knowledge graphs
with different types of entities and relations are different and
exhibit different locality with regard to the types of their el-
ements. In this sense, existing knowledge embedding meth-

Data sets Optimal loss function Mean Rank
Raw Filter

Subset1 fr(h, t) + 3− fr(h
′, t′) 339 240

Subset2 fr(h, t) + 2− fr(h
′, t′) 500 365

FB15K fr(h, t) + 1− fr(h
′, t′) 243 125

Table 1: Different choices of optimal loss functions and the
predictive performances over three data sets Subset1, Sub-
set2 and FB15K, where fr(h, t) = ‖h+ r − t‖22, (h, r, t) is
a triple in knowledge graph, and (h′, r, t′) is incorrect triple.

ods using a common margin-based loss function cannot sat-
isfactorily represent the locality of knowledge graphs.

To verify this, we construct knowledge graphs with differ-
ent locality. We simply partition a knowledge graph into dif-
ferent subgraphs in a uniform manner. Each subgraph con-
tains different types of relations and their corresponding en-
tities. Moreover, different subgraphs have the identical num-
ber of relations for the sake of balance of the number of
entities. We claim that over different subgraphs, the opti-
mal margin-based loss function may be different in terms
of the margin. To validate this point, we perform the em-
bedding method TransE (Bordes et al. 2013) on the data set
FB15K from the knowledge graph, Freebase. And we par-
tition FB15K into five subsets with equal size of relations.
For example, one subset, named Subset1, contains 13,666
entities and 269 relations. Another subset, named Subset2,
has 13603 entities and 269 relations. We conduct link pre-
diction task over these five subsets and use mean rank (i.e.,
mean rank of correct entities) to evaluate the results shown
in Table 1.

It follows from Table 1 that the settings of loss functions
are different over the two data sets, Subset1 and Subset2.
More precisely, they take different values of margin as 3 and
2, respectively. Meanwhile, for the whole data set FB15K, it
has been shown in (Bordes et al. 2013) that the best perfor-
mance is achieved when the optimal loss function takes the
margin 1. This suggests that knowledge embedding of differ-
ent knowledge graphs with a global setting of loss function
can not well represent the locality of knowledge graphs, and
it is indispensable to propose a locality sensitive loss func-
tion with different margins.

How margin affects the performance

So far we have experimentally found that the performance
of a knowledge embedding method is relevant to the setting
of margins in the margin-based loss function. This raises a
theoretical question that how the setting of margin affects
the performance when the margin increases. To answer this
question, we present a relation between the error of perfor-
mance and the margin.

Before obtaining the relation, let us firstly give some no-
tations. Denote the embedding method by A. Since the em-
bedding method is to learn the appropriate representations
of entities and relations in the knowledge graph, it can be
viewed as a learning algorithm. Suppose that for the embed-
ding method and the knowledge graph, the training data set

S = {(h1, r1, t1) , . . . , (hi, ri, ti) , . . . , (hn, rn, tn)}
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of size n is a set of triplets in the knowledge graph and the
range of (hi, ri, ti) is denoted by Z . Denote Si the set ob-
tained from S by replacing the i-th sample with a new pair of
head and tail entities drawn in the knowledge graph. Namely,
Si = {S\ (hi, ri, ti) ∪ (h′

i, ri, t
′
i)}, where (h′

i, ri, t
′
i) is ob-

tained by substituting (h′
i, t

′
i) for (hi, ti).

Since A can be regarded as a learning algorithm, we de-
fine R(A, S) as its true risk or generalization error, which is
a random variable on the training set S and defined as

R(A, S) = Ez[L(A, z)].

Here Ez[·] denotes the expectation when z = (h, r, t) is a
triple in knowledge graph and L(A, z) is the loss function
of the learning algorithm A with respect z. It is well known
that the true risk R(A, S) cannot be computed directly and
is usually estimated by the empirical risk defined as

Remp(A, S) =
1

n

n∑
k=1

L(A, zk),

where zk = (hk, rk, tk) is the k-th element of S.
After defining the two risks, the performance of learn-

ing algorithm A can be evaluated by the difference between
R(A, S) and Remp(A, S), and we need to find the relation
between the difference and the margin. To this end, we de-
fine the Uniform-Replace-One stability motivated by (Bous-
quet and Elisseeff 2002).
Definition 1 The learning algorithm A has Uniform-
Replace-One stability β with respect to the loss function L if
for all S ∈ Zn and i ∈ {1, 2, . . . , n}, the following inequal-
ity holds

‖L(AS , ·)− L(ASi , ·)‖∞ ≤ β.

Here AS means that the learning algorithm A is trained on
the data set S, ‖L(AS , ·)‖∞ is the maximum norm, and is
equal to maxzk{L(AS , zk)} for k = 1, 2, . . . , n. The loss
function L of existing embedding methods takes the form

L(AS , z) = fr(h, t) +M − fr(h
′, t′), (1)

where (h, r, t) , (h′, r, t′) ∈ S, fr(h, t) is a nonnegative
score function. M is the margin separating positive and neg-
ative triples and is usually set to be a global constant in a
knowledge graph, e.g. M = 1 in FB15K (Bordes et al.
2011). Moreover, L(AS , z) is defined as a nonnegative func-
tion, namely, if fr(h, t) + M − fr(h

′, t′) < 0, then we set
L(AS , z) = 0. According to the loss function of embedding
method A, we have the following lemma.
Lemma 1 The Uniform-Replace-One stability β of the em-
bedding methods with respect to the given loss function
L(AS , z) is equal to 2f̂r, where f̂r = maxh,t fr(h, t) is
the maximum over the triples (h, r, t) ∈ S.
Proof. By the definition of β and the loss function defined in
Equation (1), we deduce

‖L(AS , ·)− L(ASi , ·)‖∞
=|fr(h, t) +M − fr(h

′, t′)− fr(h, t)−M + fr(h
′′, t′′)|

=|fr(h′′, t′′)− fr(h
′, t′)| ≤ |fr(h′′, t′′)|+ |fr(h′, t′)|

≤2max
h,t

fr(h, t).

Setting f̂r = maxh,t fr(h, t) completes the proof.
Now it is ready to reveal the relationship between the mar-

gin and the difference between the two risks of performance.
Theorem 1 For the embedding method A with Uniform-
Replace-One stability β with respect to the given loss func-
tion L, we have the following inequality with probability at
least 1− δ,

R(A, S) ≤ Remp(A, S)+

√
(M + f̂r)2

2nδ
+

6f̂r(M + f̂r)

δ
,

(2)
where f̂r = max

h,t
fr(h, t) is defined in Lemma 1.

Before proving Theorem 1, we first present the following
Lemma verified in (Bousquet and Elisseeff 2002).
Lemma 2 For any algorithm A and loss function L(AS , z)

such that 0 ≤ L(AS , z) ≤ L̂, set zi = (hi, ri, ti) ∈ S, we
have for any different i, j ∈ {1, 2, . . . , n} that

ES

[
(R(A, S)−Remp(A, S))

2
]

≤ L̂2

2n
+ 3L̂ES∪z′

i
[|L(AS , zi)− L(ASi , zi)|]

Proof of Theorem 1: First, for the given loss function
L(AS , z), we deduce that

L(AS , z) ≤ M + fr(h, t) ≤ M + f̂r.

Then from the definition of Uniform-Replace-One stability,
we find that ES∪z′

i
[|L(AS , zi) − L(ASi , zi)|] ≤ β. Hence,

by Lemma 2 and Lemma 1, we obtain that

ES

[
(R(A, S)−Remp(A, S))

2
]

≤ (M + f̂r)
2

2n
+ 6(M + f̂r)f̂r

By Chebyshev’s inequality, we derive that

Prob((R(A, S)−Remp(A, S)) ≥ ε)

≤
ES

[
(R(A, S)−Remp(A, S))

2
]

ε2

≤
(
(M + f̂r)

2

2n
+ 6(M + f̂r)f̂r

)
.

Let the right hand side of the above inequality be δ, then we
have with probability at least 1− δ that

R(A, S) ≤ Remp(A, S)+

√
(M + f̂r)2

2nδ
+

6f̂r(M + f̂r)

δ
.

This completes the proof.
From Theorem 1, it can be seen that a large margin would

lead to over-fitting during the learning process. This is rea-
sonable since a large margin means more incorrect triples
(h′, r, t′) involve in the computation of the loss function
(1) such that fr(h, t) + M − fr(h

′, t′) ≥ 0. However, set-
ting M as small as possible is also inadvisable since it is a
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strict constraint that excludes incorrect triples whose values
fr(h

′, t′) are slightly larger than fr(h, t). Therefore, it de-
mands a strategy to choose moderately small values of M in
practice so as to make the error of performance as small as
possible.

Locally Adaptive Translation Method

In the previous section, to obtain better performance of em-
bedding, it has proved that it is necessary to find an appro-
priate loss function in terms of margin over different knowl-
edge graphs. In this section, we propose a locally adaptive
translation method, called TransA, to adaptively choose the
optimal margin.

Because the classical knowledge graph is fully made up of
two disjoint sets, i.e., the entity set and relation set, it makes
sense that the optimal margin, denoted by Mopt, is com-
posed of two parts, namely, entity-specific margin Ment, and
relation-specific margin Mrel. Furthermore, it is natural to
linearly combine the two specific margins via a parameter
μ which controls the trade-off between them. Therefore, the
optimal margin of embedding satisfies

Mopt = μMent + (1− μ)Mrel, (3)

where 0 ≤ μ ≤ 1. To demonstrate that the margin Mopt

is optimal, it is sufficient to find the optimal entity-specific
margin and the optimal relation-specific margin, and we will
elaborate this in the following.

Entity-specific margin

To define the optimal entity-specific margin Ment, it has
been verified by (Fan et al. 2015) that for a specific head
entity h (or tail entity t), the best performance is achieved
when the embedding of entities brings the positive tail en-
tities (or head entities) close to each other, and moves the
negative ones with a margin. The positive entities have
the same relation with h (or t), and the negative entities
have different relations with h (or t). In this sense, the
optimal margin Ment is actually equal to the distance be-
tween two concentric spheres in the vector space, illus-
trated in Figure 1. The positive entities (illustrated as “©”)
are constrained within the internal sphere, while the neg-
ative entities (illustrated as “�”) lie outside the external
sphere. The interpretation of Ment is motivated by the work
of metric learning, such as (Weinberger and Saul 2009;
Do et al. 2012). Notice that the above analysis applies to
both the head entity h and the tail entity t, thus we simply
use entity h to stand for both cases in the rest of the paper.

More formally, for a specific entity h and one related re-
lation r, the sets of positive and negative entities with re-
spect to r are defined as Pr = {t|(h, r, t) ∈ Δ} and
Nr = {t|(h, r, t) �∈ Δ, (h, r′, t) ∈ Δ, ∃r′ ∈ R}, where
Δ is the set of correct triples, R is the set of relations in the
knowledge graph. In other words, the set of negative entities
Nr contains those which have relations with h of type other
than r. Remark that due to the multi-relational property of
the knowledge graph, it may be true that Pr ⊆ Nr. Then
the optimal margin Ment is equal to the distance between
the external sphere and the internal sphere, which push the

h

Ment

Figure 1: The illustration of the entity-specific margin Ment.
The points marked by circle and rectangle are positive and
negative entities, respectively.

elements in Nr away from h and keep the elements in Pr

close to each other. Let nrh be the number of relations of
the entity h, i.e., the number of different types of relations
with h as one end. Set Rh be the set of relations related to h.
More formally, we define Ment as follows.
Definition 2 (Entity-specific margin) For a given entity h,
for all t ∈ Pr and t′ ∈ Nr,

Ment =

∑
r∈Rh

min
t,t′

σ(‖h− t′‖ − ‖h− t‖)

nrh
,

where

σ(x) =

{
x when x ≥ 0;
−x otherwise.

returns the absolute value of x.
It can be seen from Definition 2 that for each relation r,

the value mint,t′ σ(‖h − t′‖ − ‖h − t‖) obtains the mini-
mum when it takes the nearest negative entity and the far-
thest positive entity with respect to h. In Figure 1, the near-
est negative entity is marked as the black rectangle, and
the farthest positive entity is marked as the red circle. This
definition is kind of similar to the margin defined in Sup-
port Vector Machine (Vapnik 2013; Boser, Guyon, and Vap-
nik 1992), where the margin of two classes with respect to
the classification hyperplane is equal to the minimum ab-
solute difference of the distances of any two different-class
instances projected to the norm vector of the hyperplane.
In particular, when Nr = ∅, we set Ment = 0, which is
reasonable since all positive entities are within the internal
sphere. Remark that the reason we consider the term nrh
as a denominator is to discriminate relations with different
mapping properties, i.e., 1-to-1, 1-to-N, N-to-1, N-to-N. Be-
sides, in order to apply the optimal margin Ment to large
data set, we similarly adopt the active set method proposed
in (Weinberger and Saul 2008) to speed up the calculation.
We check a very small fraction of negative entities typically
lying nearby the farthest positive entity for several rounds.
Averaging the margins obtained in each round leads to the
final entity-specific margin.

Relation-specific margin

The optimal relation-specific margin Mrel from the rela-
tion aspect is found by considering the proximity of re-
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r

Mrel r1

r3 r4

r2

r5

Figure 2: The illustration of the relation-specific margin
Mrel.

lations concerning a given entity. For a specific entity h
and one of its related relation r, if Nr �= ∅, set Rh,r =
{r1, r2, . . . , rnhr−1} be the set of relations the entity h has
except r. Different relations in Rh,r have different degrees
of similarity with the relation r. To measure this similar-
ity, we consider the length of relation-specific embedding
vectors. We classify the relations in Rh,r into two parts ac-
cording to whether its length is larger than ‖r‖. For relations
ri, rj ∈ Rh,r with lengths larger than ‖r‖, we assume that
ri is more similar with r than rj if ‖ri‖−‖r‖ ≤ ‖rj‖−‖r‖.
Then similar to the analysis of entity-specific margin, the
optimal relation-specific margin is equal to the distance be-
tween two concentric spheres in the vector space. The in-
ternal sphere constraints relation r and those with length
smaller than ‖r‖, while the relations with length greater than
‖r‖ lie outside the external sphere. More formally, we define
the optimal relation-specific margin as follows.

Definition 3 (Relation-specific margin) For a given entity
h and one of its related relations r, if ∃ ri ∈ Rh,r such that
‖ri‖ ≥ ‖r‖, then

Mrel = min
ri∈Rh,r

(‖ri‖ − ‖r‖). (4)

It follows from the definition of Mrel that for ri ∈ Rh,r with
‖ri‖ ≥ ‖r‖, we have ‖ri‖ − ‖r‖ ≥ Mrel. In other words,
‖ri‖ ≥ Mrel + ‖r‖ holds for those ri ∈ Rh,r. This means
that Mrel is determined by the most similar relation(s) with
smallest difference of length, and it pushes other dissimi-
lar relations whose lengths are much larger than ‖r‖ away
from r. In this sense, Mrel is optimal. In Figure 2, we illus-
trate the calculation of Mrel with Mrel = ‖r1‖ − ‖r‖. It
can be seen that any of the other relations ri (i = 2, 3, 4, 5)
has length larger than r1. In particular, if Rh,r = ∅ or no
ri ∈ Rh,r exists such that ‖ri‖ ≥ ‖r‖, then we set Mrel = 0
by convention. This makes sense since relations with length
smaller than ‖r‖ are inherently constrained within the inter-
nal sphere of radius ‖r‖.

The locally adaptive method TransA

Given a triple (h, r, t), we define the margin-varying objec-
tive function as follows.∑
(h,r,t)∈Δ

∑
(h′,r,t′)∈Δ′

max(0, fr(h, t) +Mopt − fr(h
′, t′)),

Data sets #Rel #Ent #Train #Valid #Test
WN18 18 40,943 141,442 5,000 5,000
FB15K 1,345 14,951 483,142 50,000 59,071
WN11 11 38,696 112,581 2,609 10,544
FB13 13 75,043 316,232 5,908 23,733

Table 2: The data sets.

where max(x, y) returns the maximum between x and y,
Mopt = μMent + (1 − μ)Mrel is the optimal margin de-
fined by Equation (3), Δ is the set of correct triples and Δ′
is the set of incorrect triples. Following the construction of
incorrect triples (Bordes et al. 2013), we replace the head
or tail entities in the correct triple (h, r, t) ∈ Δ to obtain
(h′, r, t′) ∈ Δ′.

In fact, the optimal margin defined in Equation (3) from
the entity and relation aspects provides a way to character-
ize the locality of knowledge graph in that it considers the
structure information in the graph. For one thing, the entity-
specific margin models the local distance between negative
and positive entities. For another, the relation-specific mar-
gin quantifies the proximity of relations. Moreover, when
the entities and relations change, the optimal margin varies
accordingly, without fixing its value among some predefined
candidates. This is way the method is called locally adaptive.

The learning process of TransA employs the widely used
stochastic gradient descent (SGD) method. To combat over-
fitting, we follow the initialization of entity and relation em-
beddings as in (Bordes et al. 2013). In this paper, without
loss of generality, we assume that given a triple (h, r, t), the
score function fr(h, t) takes the form as

fr(h, t) = ‖h+ r − t‖, (5)

where ‖ · ‖ represents the L1-norm or L2-norm of the vector
h + r − t, and h, r, t ∈ R

d, d is the dimension of the em-
bedded vector space. Remark that although we suppose that
entity and relation embedding are in the same vector space
R

d, it is not difficult to extend the method to that in different
vector spaces similar to the work (Lin et al. 2015).

Experiments

We will conduct experiments on two tasks: link prediction
(Bordes et al. 2013) and triple classification (Wang et al.
2014). The data sets we use are publicly available from
two widely used knowledge graphs, WordNet (Miller 1995)
and Freebase (Bollacker et al. 2008). For the data sets from
WordNet, we employ WN18 used in (Bordes et al. 2014)
and WN11 used in (Socher et al. 2013). For the data sets
of Freebase, we employ FB15K used also in (Bordes et al.
2014) and FB13 used in (Socher et al. 2013). The statistics
of these data sets are listed in Table 2.

Link prediction

Link prediction aims to predict the missing entities h or t for
a triple (h, r, t). Namely, it predicts t given (h, r) or predict
h given (r, t). Similar to the setting in (Bordes et al. 2011;
2013; Zhao, Jia, and Wang 2014), the task returns a list of
candidate entities from the knowledge graph instead of one
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Data sets WN18 FB15K

Metric Mean Rank Mean Rank
Raw Filter Raw Filter

Unstructured 315 304 1,074 979
RESCAL 1,180 1,163 828 683

SE 1,011 985 273 162
SME(linear) 545 533 274 154

SME(bilinear) 526 509 284 158
LFM 469 456 283 164

TransE 263 251 243 125
TransH(bern) 401 388 212 87
TransH(unif) 318 303 211 84

TransA 165 153 164 58

Table 3: Evaluation results on link prediction.

best answer, and we conduct the link prediction task on the
two data sets WN18 and FB15K. Following the procedure
used in (Bordes et al. 2013), we also adopt the evaluation
measure, namely, mean rank (i.e., mean rank of correct en-
tities). It is clear that a good predictor has lower mean rank.
In the test stage, for each test triple (h, r, t), we replace the
head or tail entity by all entities in the knowledge graph, and
rank the entities in the decreasing order with respect to the
scores calculated by fr. To distinguish the corrupted triples
which are also correct ones, we also filter out the corrupted
triples before the ranking of candidate entities. This opera-
tion is denoted as “filter” and “raw” otherwise.

The baseline methods include classical embedding meth-
ods, such as TransE (Bordes et al. 2013), TransH (Wang
et al. 2014), and others shown in Table 3. Since the
data sets we used are the same as our baselines, we
compare our results with them reported in (Wang et
al. 2014). The learning rate λ during the SGD process
is selected among {0.1, 0.01, 0.001}, the embedding di-
mension d in {20, 50, 100}, the batch size B among
{20, 120, 480, 1440, 4800}, and the parameter μ in Equation
(3) in [0, 1]. Notice that the optimal margin for TransA is not
predefined but computed by Equation (3). All parameters are
determined on the validation set. The optimal settings are:
λ = 0.001, d = 100, B = 1440, μ = 0.5 and taking L1

as dissimilarity on WN18; λ = 0.001, d = 50, B = 4800,
μ = 0.5 and taking L1 as dissimilarity on FB15K.

Experiment results are shown in Table 3. It can be seen
that on both data sets, TransA obtains the lowest mean rank.
Furthermore, on WN18, among the baselines, Unstructured
and TransH(unif) perform the best, but TransA decreases the
mean rank by about 150 compared with both of them. On
FB15K, among the baselines, TransH(unif) is the best base-
line. TransA decreases its mean rank by 30 ∼ 50. Notice
that the decreases on WN18 and FB15K are different, be-
cause the number of relations in WN18 is quite small and
the relation-specific margin is very small too. In this case,
the optimal margin is almost equal to the entity-specific mar-
gin. While on FB15K, the number of relations is 1345, and
the optimal margin is the combination of the entity-specific
margin and the relation-specific margin.

Data sets WN11 FB13 FB15K
SE 53.0 75.2 -

SME(linear) 70.0 63.7 -
SLM 69.9 85.3 -
LFM 73.8 84.3 -
NTN 70.4 87.1 68.5

TransH(unif) 77.7 76.5 79.0
TransH(bern) 78.8 83.3 80.2

TransA 93.2 82.8 87.7

Table 4: Evaluation results of triple classification. (%)

Triple classification

Triple classification, studied in (Socher et al. 2013; Wang
et al. 2014), is to confirm whether a triple (h, r, t) is cor-
rect or not, namely, a binary classification problem on the
triple. The data sets we use in this task are WN11 and FB13
used in (Socher et al. 2013) and FB15K used in (Wang et
al. 2014). Following the evaluation in NTN (Socher et al.
2013), the evaluation needs negative labels. The data sets
WN11 and FB13 already have negative triples, which are
obtained by corrupting golden ones. For FB15K, we follow
the same way to construct negative triples as (Socher et al.
2013). The classification is evaluated as follows. For a triple
(h, r, t), if the dissimilarity score obtained by fr is less than
a relation-specific threshold, then the triple is classified to
be positive, and negative otherwise. The threshold is deter-
mined by maximizing accuracy on the validation data set.

The baseline methods include classical embedding meth-
ods, such as TransE (Bordes et al. 2013), TransH (Wang
et al. 2014), and others shown in Table 4. The learn-
ing rate λ during the stochastic gradient descent pro-
cess is selected among {0.1, 0.01, 0.001}, the embedding
dimension d in {20, 50, 100, 200, 220, 300}, the parame-
ter μ in Equation (3) in [0, 1], and batch size B among
{20, 120, 480, 1440, 4800}. The optimal margin for TransA
is not predefined but computed according to Equation (3).
All parameters are determined on the validation set. The op-
timal setting are: λ = 0.001, d = 220, B = 120, μ = 0.5
and taking L1 as dissimilarity on WN11; λ = 0.001, d = 50,
B = 480, μ = 0.5 and taking L1 as dissimilarity on FB13.

Experiment results are shown in Table 4. On WN11,
TransA outperforms the other methods. On FB13, the
method NTN is shown more powerful. This is consistent
with the results in previous literature (Wang et al. 2014). On
FB15K, TransA also performs the best. Since FB13 is much
denser to FB15K, NTN is more expressive on dense graph.
On sparse graph, TransA is superior to other state-of-the-art
embedding methods.

Conclusion

In this paper, we tackled the knowledge embedding problem
and proposed a locally adaptive translation method, called
TransA, to adaptively learn the representation of entities and
relations in a knowledge graph. We firstly presented the ne-
cessity of choosing an appropriate margin in the margin-
based loss function. Then we defined the optimal margin
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from the entity and relation aspects, and integrated the mar-
gin into the commonly used loss function for knowledge em-
bedding. Experimental results validate the effectiveness of
the proposed method.
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