Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

On the Containment of SPARQL
Queries under Entailment Regimes

Melisachew Wudage Chekol
Data and Web Science Group
University of Mannheim
Mannheim, Germany
mel @informatik.uni-mannheim.de

Abstract

Most description logics (DL) query languages allow instance
retrieval from an ABox. However, SPARQL is a schema
query language allowing access to the TBox (in addition to
the ABox). Moreover, its entailment regimes enable to take
into account knowledge inferred from knowledge bases in the
query answering process. This provides a new perspective for
the containment problem. In this paper, we study the contain-
ment of SPARQL queries over OWL EL axioms under en-
tailment. OWL EL is the language used by many large scale
ontologies and is based on ££7 . The main contribution is a
novel approach to rewriting queries using SPARQL property
paths and the p-calculus in order to reduce containment test
under entailment into validity check in the p-calculus.

Introduction

Recently, the study of SPARQL query containment has at-
tracted a lot of attention. In (Kostylev et al. 2015), the
authors explore the complexity of containment and eval-
uation problems for fragments of SPARQL 1.1 property
paths. Interestingly, in their study they allow negated prop-
erty paths. The study in (Pichler and Skritek 2014) provides
complexity analysis for several fragments of SPARQL: the
results ranging from NP-completeness for AND-UNION
queries to undecidability for the full SPARQL. Addition-
ally, in (Letelier et al. 2013) the containment and optimiza-
tion of OPTIONAL queries is investigated while providing
a 1 -complete complexity for query subsumption (a so-
lution p; subsumes another solution ps , if py extends p;
with more variables). However, these studies do not con-
sider the containment problem under schema nor entail-
ment regimes. On the contrary, the authors in (Chekol et al.
2012b) and (Chekol et al. 2012a) address containment under
SHT schema axioms and RDFS entailment regime respec-
tively and establish a double exponential upper bound com-
plexity. For this study, we consider the OWL DL entailment.

Automata theoretic notions and a reduction into validity
test in a logic have been widely used to address the problem
of query answering and containment (Kostylev et al. 2015;
Chekol et al. 2012b; Calvanese, Giacomo, and Lenzerini
2008; Geneves, Layaida, and Schmitt 2007; Krotzsch and

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

936

Rudolph 2007; Calvanese et al. 2000). Contrary to the au-
tomata techniques, the logic based approaches are fairly
implementable. In this respect, recently in (Geneves and
Schmitt 2015), the authors study logical combinators whose
benefit is to provide an exponential gain in succinctness in
terms of the size of a logical formula. This allows us to study
containment for expressive query languages in exponential-
time, even though their direct formulation into the underly-
ing logic results in an exponential blow up of the formula
size. Consequently, in this paper, we take advantage of this
approach to study the containment of SPARQL queries over
OWL EL ontologies under OWL DL entailment by a reduc-
tion into the p-calculus. OWL 2 has three tractable profiles
called OWL EL, OWL QL, and OWL RL. In particular, we
are interested in OWL EL which is based on the descrip-
tion logic ££7" and is a maximal subset of OWL 2 DL
in which reasoning problems can be decided in polynomial
time. £L7 is very attractive and has been used widely as a
language of choice for terminological reasoning in biomed-
ical applications (Kazakov, Krotzsch, and Simancik 2014;
Baader, Brandt, and Lutz 2005). Query answering over
OWL EL ontologies under the OWL DL entailment regime
can be done via ontology-based data access (OBDA — query
answering in the presence of ontologies) which requires
queries to be expanded using the terminological part of the
ontology (Hansen et al. 2015; Bienvenu, Lutz, and Wolter
2012). Likewise, checking query containment under an en-
tailment regime can be reduced to testing the containment
of the rewritten or expanded queries. Indeed, for conjunctive
queries query containment and query answering are equiv-
alent problems. Thus, containment can be reduced to query
answering as shown in (Calvanese, Giacomo, and Lenzerini
2008).

The fact that conjunctive query answering over unre-
stricted ELT ontologies is undecidable was proved at the
same time and independently by (Krotzsch and Rudolph
2007) and by (Rosati 2007). In particular combining role
atoms in queries and complex role inclusion axioms can
make reasoning more difficult. Thus, for this work, we con-
sider OWL EL without role composition and nominals, pre-
cisely, the fragment based on the LM (€L extended with
role hierarchies, domain and range restrictions, and a bottom
concept) (Baader, Brandt, and Lutz 2008). With this restric-
tion, we obtained a double exponential upper bound in the

presence of blank nodes for AND-UNION SPARQL queries
and triple exponential for OPTIONAL pattern queries. How-
ever, the complexity bounds drop by exponentiation when
blank nodes do not appear in the right-hand side query.
The complexity bounds do not reflect the flexibility of our
approach. On one hand, the size of the encodings can be
reduced by upto exponentiation by using logical combi-
nators (Geneves and Schmitt 2015). On the other hand,
we have showed that our approach is easily extensible to
all of the OWL profiles and other expressive description
logics. In addition, by implementing a query rewriter and
schema parser, we can take advantage of the implementation
in http://sparql-qc-bench.inrialpes.fr/. Due to space limita-
tions, proofs and details are omitted.

Preliminaries

An RDF graph contains a set of triples of the form (IUB) x
I x (IUBUL) denoted by IB x I x IBL, where I, B,
and L are three disjoint infinite sets denoting the set of IRIs
(identifying a resource), blank nodes (denoting an unidenti-
fied resource) and literals (a character string or some other
type of data) respectively. We use an abstract syntax (a, b,)
to denote an RDF triple, where the subject a € IB, pred-
icate b € 1, and object ¢ € IBL, to denote RDF triples.
In addition, ¢ can be a list denoted by (c1,...,¢i,...,Cpn)
and ¢; € IBL. Since SPARQL’s syntax is based on that of
RDF’s, next, we present an RDF representation of OWL EL
(as done in (Bischof et al. 2014)).

OWL EL classes, properties, and individuals are repre-
sented by either I or B whereas complex classes and prop-
erty expressions are represented by blank nodes B. Fur-
ther, we denote concepts and properties in OWL EL by C,
D € IB and P, Q € IB respectively. For compact pre-
sentation, we provide shorthand names (in parenthesis) for
RDF(S) and OWL vocabularies: rdf:type (a),
rdfs:subClass0f (sc), rdfs:domain (dom),
rdfs:subProperty0f (sp), rdfs:range (range),
owl:members (members), owl:equivalentProperty
(eqp), owl:equivalentClass (eqc), owl:onProperty
(onp), owl:someValuesFrom

(svf), owl:intersectionOf (int), owl:Thing (Thing),
owl:topObjectProperty (topProp), and
owl:allDisjointClasses (alldsjnt).

Definition 1. An OWL EL ontology G uses the following
triples to represent axioms:
(IB,P,IBL), (IB,a,C),(C,sc,D), (C,eqc, D),
(IB, onp, P)(IB, svf, D), (P, dom, C), (P, range, C),
(C,int, (C4,...,Cy)), where Cy,...,C, € IB,
(P, sp,
(B,members, (C4, ...,

Q), (P,eqp, Q), and (B, a,alldsjnt),
Ch)).

To provide the semantics of OWL EL ontologies, we ex-
tend the notion of universal model (a structure that realizes
the entailments of an ontology) which has been used to pro-
vide semantics for OWL QL (Bischof et al. 2014). Entail-
ment of OWL EL is defined model theoretically as usual.

937

We first define RDF-based inference rules. A part of these
rules is shown below, for a complete list we refer the reader
to (Bischof et al. 2014; Krotzsch 2011). Applying these rules
may lead to a universal model which can be infinite in size.
The closure cl(G) of an OWL EL ontology G is a possibly
infinite RDF graph obtained from G by exhaustively apply-
ing the inference rules. For compact presentation, we do not
display the AND operator between the triples.

= (b, a, Thing)
(z,2,b)(b, int, (C4,...,Ci, ..., Cp)) = (z,2a,C})
(z,a,b)(b,onp, P)(b,svE,C) = (x, P,b1)(b1,2,C)
(z,a,0)(C,sc,D) = (x,a,D)
(z,2,0)(C,eqc, D) = (z,a,D)
(z,a,C)(D,eqc,C) = (x,a,D)
(x, P,y)(C,onp, P)(C, svf, Thing) = (x,a,C)
(x, P,y)(P,dom, C) = (z,a,C)
(z, P,y)(P,range,C) = (y,a,C)
(z, P,y)(P,sp, Q) = (z,Q,y)
(z, Py) (P, eqp, Q) = (z,Q,y)
(

z, P,y)(Q,eqp, P) = (z,Q,y)

(z,a, Thing)(y, a, Thing) = (z, topProp,y)

In the above rules, b, by € B and z, y, C, C;, C,, D,
P, @ € V are SPARQL variables as defined in the
next section. An OWL ontology G is inconsistent if there
is a mapping for the triple(s): {(x, a, owl:Nothing)}
or {(z,a,C;), (z,a,C}), (b,a,alldsjnt), (b,members,

1,..,Ci...,Cj,...,Cy))}. When so, every OWL ax-
iom is a logical consequence, and there is no universal
model. SPARQL queries are evaluated over OWL EL on-
tologies under OWL DL entailment where the OWL axioms
are evaluated under OWL Direct Semantics (Glimm 2011;
Glimm and Krotzsch 2010).

SPARQL queries are formed inductively from path pat-
terns which in turn are defined inductively from path expres-
sions, i.e., PP € IBV x ¢V x IBLV. In PP, V is a set of
variables disjoint with IBL and e is a property path! induc-
tively defined as: e :=1|e? | e~ |eoe |ere | et | e*.

Definition 2. A path pattern (simply query pattern) q is de-
fined inductively: q ::= PP | g AND¢ | ¢ UNION ¢’ |
q OPT ¢'. We use the notation cPP for conjunctive, uPP for
union, and oPP for optional path queries.

Additionally, we define a basic graph pattern (BGP) as:
BGP := IBV x IV x IBLV | BGP AND BGP'. Al-
ternatively, we use a dot (.) to denote the operator AND .
We consider SELECT DISTINCT queries which are of the
form (W) such that W is a tuple of variables in V which
are called distinguished variables, and q is a path pattern.
The variables V \ W are called non-distinguished vari-
ables. However, non-distinguished variables are not a part
of SPARQL. We consider a class of OPTIONAL (oPP)

"http://www.w3.org/TR/sparql1 1-query/

queries which are attractive both from theoretical complex-
ity and optimization point of view. This class, known as
well-designed OPT patterns, is first introduced in (Pérez,
Arenas, and Gutierrez 2009) and well studied in (Kostylev
et al. 2015).

Definition 3. A query q is well-designed if for every subpat-
tern ¢ = (q1 OPT q2) of q and every variable x occurring
in q, it holds that: if x occurs inside qo and outside ¢', then
x also occurs inside q;.

For example, the pattern (z,a,b) OPT ((y,c,d) AND
(z,e,2)) is well-designed as the variable x occurs inside
and outside the OPT operator. SPARQL has multiset (or
bag) semantics, however, when dealing with containment,
we consider set semantics. This is due to the undecidability
of union of conjunctive queries under bag semantics (Ioan-
nidis and Ramakrishnan 1995). We present a set semantics
for SPARQL based on simple entailment (i.e., without tak-
ing reasoning into account).

Definition 4. Let G be an RDF graph and q a SPARQL
query pattern. The set A(q, G) of answers of q in G is de-
fined inductively as:

A((z,1,y), G) = {p | (p(x), p(1), p(y)) € G}

A((z,e?,y),G) ={p| p(z) = p(y)} UA((z,e,y),G)
A((z,e”,y), G) =A((y,e,x), G)
A((z,e | €,y), G) = Al(z,e,y),G) UA((z,€,y),G)
A((z,eoe’,y),G) =3In: A((x, 7n)7G) A((n,e,y),G)
Al(z,et,y), @) = [Jiz1A((z,¢',9), G)
A(z. €, 1),G) = {p | p(z) = ply)} UA((@,e*,1), G)
AlgAND ¢, G) = A(q, G) X A(q, G)
A(qUNION ¢, G) = A(q, G) UA(¢, G)
A(qOPT ¢, G) =A(q,G) X A(d,G) UA(q,G) \ A(d', G)
A(g(W),G) =TlwA(g, G)

where €' is the composition of e 1 times, i.e., eo ... o e and
u € I and p(u) = wu, i.e., the mapping of a constant is
itself. Two triple mappings p1 and po are said to be com-
patible if Vx € dom(p1) N dom(pa), p1(z) = p2(z). If p1
and po are compatible, then py U ps is also a mapping ob-
tained by extending p1 according to ps on all the variables
in dom(p2) \ dom(p1). Given two sets of mappings M, and
My, the join of My and My is defined as: My X My =
{p1Ups | p1 € M1, pa € Ms are compatible}, the union
MiUMy = {p | p € My or My} and difference M, \ My =
{p1 € My | Vpa € Ma, p1 and py are not compatible}. And
finally, the projection operator 11y selects only those parts
of the mappings relevant to variables in W .

If the answers of a SPARQL query ¢ over a graph G
are non empty, i.e., A(q,G) # 0, we write q is safis-
fiable in G. The query evaluation problem for cPP and
uPP queries is NP-complete. Besides, the evaluation prob-
lem is coNP-complete and) 5-complete for oPP without
and with projection respectively (Kostylev et al. 2015). Fur-
thermore, it is known that containment of 2RPQs (two-way

938

regular path queries) and Conjunctive 2RPQs without pro-
jection is PSPACE-complete (Calvanese et al. 2003), and
EXPSPACE-complete if projection is allowed. It has been
proved that, these results carry over for SPARQL frag-
ments cPP and oPP with projection. The PSPACE-complete
bound is inherited if the right-hand side query is without
projection. The problem of subsumption is EXPSPACE-
complete for oPP queries (Kostylev et al. 2015). For query
evaluation under OWL DL entailment, we obtain:

Theorem 1. Let G be an OWL EL ontology, cl(G) its clo-
sure and P a BGP. A variable mapping p is a solution for
P over G under OWL DL entailment regime if and only if
either p is a solution for P over cl(G) under simple entail-
ment, or cl(QG) is inconsistent

From Theorem 1, we have a set of mappings for BGPs,
if the query under evaluation contains UNION and/or OP-
TIONAL patterns, we can apply join, union and difference
operations on these mappings to obtain a mapping for the
patterns as in Definition 4.

Definition 5. Given a set of OWL EL axioms S and SPARQL
queries q and ¢', q is contained in q under the OWL DL
entailment regime, denoted q TS, ¢/, iff for any OWL EL
ontology G which is a model of S, A(q,G) C A(¢, G).

SPARQL queries can be encoded into the p-calculus.

p-calculus

The p-calculus is a logic obtained by adding fixpoint opera-
tors to ordinary modal logic (Kozen 1983). The syntax of the
p-calculus is composed of countable sets of atomic propo-
sitions AP, a set of variables Var, a set of programs and
their respective converses Prog = {s,p,0,3,p,o} for nav-
igating in graphs. A p-calculus formula, ¢, can be defined
inductively as follows:

o u=Tlq| X |~¢|leny|{a)e]|lae | pXe | vXe

where ¢ € AP,X € Var and a € Prog is a transi-
tion program or its converse a. The greatest and least fix-
point operators (v and) respectively introduce general
and finite recursion in graphs. If a p-calculus formula
appears under the scope of a least yu or greatest v fixed
point operator over all the programs {s,p,o,3,p,0} as,
pXPV(HXVPIX V- orvXYPpASXAP)XA---,
then, for legibility, we denote the formulae by Ifp(X, 1))
and g¢fp(X,), respectively. For instance, the p-calculus
encoding of the ¢(z) = («,sp,transport) correspond-
ing to the query that selects all modes of transportation is:
Ifp(X, (3)z A (p)sp A (o)transport). p-calculus formulas
that are encodings of SPARQL queries are interpreted over
RDF transition systems.

RDF Transition Systems RDF transition systems were
first introduced in (Chekol et al. 2012a). They are labelled
transition system representations of RDF graphs where two
sets of nodes are introduced: one set for each triple (called
triple node) and the other set for each subject, predicate,
and object of each triple. A triple node is connected to its
subject, predicate, and object nodes. For instance, the RDF

graph can be turned into an RDF transition system

s 0
[z} ;r

using a function o as: . Transition from one
node to another is done by using a set of transition programs
{s,p, 0} and their converses. An RDF transition system K
is considered as a model of formula 1) if there exists a node
s in the transition system where ¢ holds, i.e., K, s = ¢. If a
formula has a model, then it is called satisfiable.

The p-calculus with converse lacks functionality or num-
ber restrictions. Thus, one cannot impose that each triple
node is connected to exactly one node for each subject, pred-
icate, and object node. However, one can impose a lighter re-
striction to achieve this by taking advantage of the technique
introduced in (Geneves and Layaida 2006) and adopted in
(Chekol 2012). Since it is not possible to ensure that there
is only one successor, then we restrict all the successors to
bear the same constraints. Thus, they become interchange-
able. This can be done by rewriting the formulas using a
function f such that all occurrences of (a)y (existential for-
mulas) are replaced by (a) T A [a]p. f is defined inductively
on the structure of a u-calculus formula. Thus, when check-
ing for query containment, we assume that the formulas are
rewritten using function f.

Lemma 1. Let ¢ be a p-calculus encoding of a SPARQL
query, o is satisfied by some RDF transition system if and
only if () is satisfied by some transition system.

Containment under Entailment

To clarify the study of SPARQL query containment under
entailment regimes, consider the following example.

Example 1. Containment between q and ¢’ does not hold
under the simple entailment. However, containment holds
under OWL DL entailment q Cpy, q' because eqp can be
expressed as a two-way sp relation.

q(y) = (z,eqp,train).(y, z, Berlin)

qd (y) = (z,sp, train).(train, sp, z).(y, x, Berlin)
SPARQL query containment under OWL DL entailment can
be determined by rewriting queries using ontology axioms
and then reducing the encoding of the rewriting to the valid-
ity test in the p-calculus.

Query Rewriting The rewriting problem for conjunctive
queries over £L ontologies is shown to be ExpTime-hard
(Hansen et al. 2015; Bienvenu, Lutz, and Wolter 2012). In
addition, it has been shown that query evaluation in OWL
QL under OWL DL entailment can be done by rewriting
queries using SPARQL 1.1 property paths. Additionally, it
is proven that this approach does not work for OWL EL
if (1) intersection (int) of concepts appears in the subject
position, and (2) there is unrestricted use of someValues-
From (svf) in the subject and object positions of an RDF
triple (Kazakov, Krétzsch, and Simancik 2014). However,
this problem can be avoided by using a more expressive
query language or an OBDA-based approach. Consequently,
here, we use the u-calculus in order to rewrite the queries.
In fact, we perform the following to rewrite a query: if the

query is not rewritable using SPARQL property paths, then

we use the p-calculus, otherwise, property paths are used.
We introduce spp, somepp, intListp, and scp as ab-

breviations denoting the following path expressions:

spp = (sp | eqp | eqp),
somepp = (onp o sp o (dom | range)),
intListp = (int o rdf:rest” o rdf:first),
(

scp = (sc | eqc | eqc” | somepp | intListp).

The subproperty relations can be queried by using either the
subproperty or equivalent or inverted equivalent relations,
this is denoted by spp. somepp expresses svf through
path composition using onp, sp, dom, and range relations.
Furthermore, scp denotes several ways of querying sub-
class relations, for instance, using subclass itself, equiva-
lent class, domain, range and so on. Finally, the intersec-
tion of concepts can be retrieved using the path expression
intListp by navigating through the RDF collection ele-
ments using rdf:last and rdf:first relations. Beyond
this, subclass relations can also be retrieved from the con-
cepts that are defined with onp and sv£. For instance, given
the graph G = {(c, sc,) (x,onp,) (z, svf,d)) (d, sc,d’)
(y.onp,7) (y, s0f.d') (y,sce)} and the query (2, sc,v),
under OWL DL entailment the answer is {(d,d’), (c,e)}.
However, as it is not possible to obtain this by rewriting the
query using property paths, we use the p-calculus formu-
lae mu((z, sc,v)) and mu'((z, s¢,v)) in Definition 6. In the
definition, for legibility, we denote UNION by U.
Definition 6. Given a SPARQL query pattern q, the rewrit-
ing of q is obtained inductively using a function T as fol-
lows:

7((s, sp, 0)) = (s,spp",0)
7((s,p,0)) = (s,7,0) AND (9: spp*,p)
7((s,type,0)) = (s,type oscp™,0) U ((s,2,y) .

(z,spp* odomo scp 0))U

((9.7.5) - (r.5pp" © zange o scp”. 0)
7((p,dom,0)) = (p,spp’ o domoscp”, 0)
7((p. range,) = (p.spp" o range o spe*, o)
7((s,z,0)) = (s, x, 0) when is a variable
7((p, eqp, q)) (p7eqp ,a) U ((p,sp,q)-p,sp,q))
7((s,eqc,0)) = (s,eqc™,0) U ((p,sc,q).p,5¢,q))
(X = Ilfp(X, (p >type A {(0)alldsjnt)A
<5>(<p>members A (o) ((p)rdf:rest A
(5)(0) (p)rdf:first) A (5)(0)X)
where X = (s, a, alldSJnt)
r(s.60) = (s.5cp".0) Umul(s,5c,0)
U mu'[(s, sc,0)]
mul(s,sc,0)] = (3)s A 1X.(5) (p)sc A (0)o) V (p)(sc
A (o) (5} ([(p)(omp A (B (3 X)
(0){0){5) X] A [{p) (57 A (p) (3) X)A
/ (o)) ((p)sc A (o) (B) () X))
i [(5,5¢,0)] = (8)s A puX-{s) (p)sc A (0)0) V {p) (s
A (o) (5} ([(p) (% A (B3 X))
(0)(0)(5)X] A [(p)(omp A (p) (5) X)A
, (0)(5)((p)sp A (0)(5){3) X))
7(¢ AND ¢') =7(g) AND 7(¢’)
m(qUq) =7(q)Uur(q)
7(gOPT q') =7(q) OPT7(¢)

For AND-UNION query patterns, it is proved that the rewrit-
ing without the p-calculus is correct and the data complexity

of query answering is NLOGSPACE (Bischof et al. 2014).
In addition, the p-calculus rewriting is in PTIME by a reduc-
tion into model checking in the p-calculus (Kozen 1983). It
is possible to extend these proofs to the more complex OP-
TIONAL patterns. Next, we show how these query rewrit-
ings can be encoded into the p-calculus. If the rewriting is
already a p-calculus formula, then its encoding is itself. Oth-
erwise, we proceed as discussed below.

Encoding SPARQL queries into the u-calculus The
principle of the translation is that each triple is associated
with a sub-formula ((5) subject A (p)predicate A (o) object)
stating the existence of the triple somewhere in a transition
system. Hence, it is quantified by p (least fixed point) so as
to propagate the sub-formula to the entire transition system.
wencodes a reflexive transitive closure over all the programs
and is denoted by Ifp(X, sub-formula) (Chekol et al. 2012a).
Given a containment problem ¢ C ¢/, the encoding is as fol-
lows: the variables, constants, and blank nodes of the left-
hand side query ¢ are encoded using atomic propositions of
the p-calculus. Basically, the variables, constants and blank
nodes are frozen, i.e., equivalent to obtaining a canonical
instance of the query. Whereas the blank nodes on the right-
hand side query ¢’ are treated as existential variables and are
encoded by instantiating them in all possible ways with the
elements of ¢ (i.e., constants, blank nodes and variables) that
appear on the subject and object positions since blank nodes
do not appear on the predicate positions. The variables and
constants of ¢’ are encoded into atomic propositions in the
p-calculus. Afterwards, a recursive function E is used to in-
ductively construct a formula.

Definition 7. The p-calculus encoding of the containment
test between SPARQL queries q and q' can be obtained as:

lel(q)] [bn(q")]
(\/ \/ Ep,; s, (>

(I)qEq’ =
E((z,y,2)) lfpg <§> A (p)y A (0)z)
E((z,e, 2)) = Ifp(X, (8)x A RE(e, 2))
E((z,e™,y)) =E((y, e, 7))
E((z,e” 1e1,y)) =E((z,e”,y)) VE((z,e1,y))
E((x7€ ey 7y)) = E((:IZ’ €1,Y)V E((.T e;7y))
E((x,e I 6;,2/)) = E((xv) \ E((m,ef,y))
E((z,e” ce1,y)) = {o)x A RE(e_ oe1,y)
E((z,eoer,y)) = (5)z ARE(e, (0)RE(e; ,y))
E((z,e” oe],y)) = (o)x ARE(e™, (0)RE(e71,¥))
E((z,(e7)*,y)) = (o)a ARE((e7)",y)
E((z,(e7)"y)) = {(o)z ARE((e”)",y)
E((CIZ’, (67)?7y)) = <0>$ A RE((ei)‘?,y)
E(q¢ AND ¢') = E(q) NE(q)
E(¢g UNION ¢') =E(q) VE(¢)

where el(q) denotes a set containing all constants, blank
nodes, and variables that appear in the subject and ob-
ject positions of q, bn(q') denotes a set containing all the
blank nodes in ¢', and b; — 1; denotes the jth blank node
b; € bn(q’) is replaced by l; € el(q). Further, in lfp, x and
z are atomic propositions and property paths that appear
in the query are encoded into atomic propositions using the
Sfunction RE. This function takes two arguments (the predi-

940

cate which is a path expression and the object of a triple).

RE(,y) = (M Aoy

RE(e1€¢',y) = (RE(e,y) V RE(¢, y))
RE(eo ¢, y) = RE(e, (s)RE(¢',y))
RE(e?,y) = RE(e,y) vV (5)y

RE(e™,y) = pX.RE(e,y) V RE(e, (s)X)
RE("y) = RE(eH,y) Vv (s)y

RE(I™,y = (DIN(3)y

RE((e")",y) = uX.RE(e™,y)VRE(e™,(0)X)
RE((c)'5) = RE((e)",y)V o)y
RE((c)7y) = RE(e,)V {o)y

RE(e” oe1,y) = RE(e7,{s)RE(e,y))
RE(cocr,y) = RE(c, (RE(e;)

RE(c ey y) = RE(c) (O)RE(es ,y))

Lemma 2. Let g € {cPP,uPP}, for every RDF transition
system K whose associated OWL EL ontology is G, we have
that q is satisfiable in G iff E(q) is satisfiable in K.

Encoding OPTIONAL Pattern (oPP) Queries We as-
sume that the query patterns are in OPT normal form, i.e.,
an OPT query pattern containing only the operators AND
and OPT is in OPT normal form if the OPT operator never
occurs in the scope of an AND operator. It was shown that
every well-designed graph pattern can be transformed into
OPT normal form in polynomial time (Letelier et al. 2013).
To translate OPTIONAL pattern queries into the p-calculus,
we extend the function E as shown below.

Definition 8. Given mwo queries q,q € {oPP}, the u-
calculus encoding of the containment test is obtained by ex-
tending E as: E(g0PT ¢') = E(q) VE(¢ AND ¢').

Lemma 3. Let ¢ € oPP, for every RDF transition system
K whose associated OWL EL ontology is G, we have that q
is satisfiable in G iff E(q) is satisfiable in K.

Proof. (sketch) (=) assume that ¢ is satisfiable in G and
K is an RDF transition system associated to G. To show
that, E(q) is satisfiable in K, we proceed inductively on
the construction of the formula. The base case is when
q(z) = (z,z,y) OPT (x,r,s) is an OPT pattern query.
Consider that ¢ is satisfiable in its two canonical instance
graph G = {(z,2,9)} and G' = {(x, 2,y), (x,7,5)} and
E(g) is satisfiable on their associated RDF transition graphs

o

K = and K’ respectively. The encoding
of ¢ is E(q) = E((z,y,2)) V E((z,y,2) AND (,7,5)).

E(q) = ifp (X, (5)z A (p)y A {0)z) Vv (ifp(Y, (3)z A (p)y A
(0)2) Alfp(Z,(3)z A (p)r A {0)s)), in this encoding the

variables represent atomic propositions. These formulae are
satisfied in both of the transition systems, i.e., K = E(q)
and K’ = E(q). In fact, we can encode each variable with
T so that it can be instantiated in every node of the transi-
tion system. The formula obtained in this way is satisfiable
in K and in every transition system that is associated with
every satisfying graph of ¢. The semantics of the OPT oper-
ator is captured by the fact that E(q) is satisfied in K. This is
due to the first disjunct in E(g) being true in K whereas the

second disjunct does not hold. For the inductive case, one
can continue similarly by taking care of the query pattern
connectives AND and OPT.

(<) this direction can be shown by working inductively
on the construction of the formula and the structure of its
models which are RDF transition systems due to restrictions
imposed on the formula (cf. preliminaries section). O

With Lemma 3 we can check the containment of OPT
queries. Next, we present the encoding of OWL EL axioms
in the p-calculus.

Encoding OWL EL Schema Given a set of OWL EL ax-

ioms S = {s1,...,8,}, the u-calculus encoding of S is
obtained using the function © as follows:
o) =1
O(8) =O(s1) A+ -+ A O(sp)
O((C,sc, D)) = fp(X e(C) = o(D))
O((C, eqe, D)) = gfp(X, (8(C) = O(D)) A
(6(D) = 6(C)))
O((b, int, (C4,
., Ch)) = (s)((p)intA
(0)(O(C1) A---NO(Cr))
©((b, onp, P),
(b,svE, C)) = (s)((n)P A (0)((5)(0)O(C)))
O((P,sp,Q)) = ¢fp(X,P = Q)
O((P,eqp,Q)) = gfp((P = Q (Q = R))
O((P,domain, C)) = (s)((p) (0)C))
©((P,range, C)) = (0)(p > < >(< > A {0)C)

where X = (b,a,alldsjnt), (b,members, (Ci,...,Cy))
and in ©(C) and ©(D), if C and D are blank nodes
b € B, then we check if b is contained in the triples
{(b, int, (C1,...,Cy)} or {(b,onp,P), (b,svE,C)} and
construct the formula accordingly. Blank nodes and IRIs, in
O, are encoded as atomic propositions in the u-calculus.

Lemma 4. Given a set of OWL EL axioms S, S has a model
iff ©(8S) is satisfiable.

Proof. (Sketch) The proof directly follows from that of
Lemma 1 of (Chekol 2012). O

So far, we have presented the rewriting of SPARQL
queries using property paths, the encoding of queries and
OWL EL axioms in the p-calculus. Thus, we can reduce
query containment under OWL DL entailment regime into
validity test in the p-calculus as: ¢ CS, ¢ < 7(q) C°
7(q") & Pr(g)5-(4) NO(S). We abbreviate O, (y=s7(4) A
O(8) by ©(S,4,¢).

Theorem 2. Given two SPARQL querzes g q € {CPP
uPP} and a set of OWL EL axioms S, q TS, q iff (S, q,q')
is unsatisfiable.

Proof. (=) We show the contrapositive: if ¢ [Z5, ¢/, then
D(S, q,q') is satisfiable. One can verify that every model G

941

of § in which there is at least one tuple satisfying ¢ but not
¢’ can be turned into an RDF transition system model for
®(S, q,q"). To do so, consider a graph G which is a model
of §. Assume also that there is a tuple @ in the answers
of ¢ over G but not in the answers of ¢’. We can construct
an RDF transition system K from G (as done in (Chekol
2012)). From Lemma 4, we obtain that ©(S) is satisfiable in
K. At this point, it remains to verify that while E(q) is sat-

isfiable in K, ¢ = <\/fl<q)' VIO, L (d)

To do so, we build the formulas E(q) and ¢ by first skolem-
izing the distinguished variables using the answer tuple a.
Consequently, from Lemma 2 one obtains E(q) is satisfiable.
However, ¢ is unsatisfiable, this is because the atomic propo-
sitions in the formula corresponding to the constants, blank
nodes and variables that do not appear in the SELECT clause
are not satisfied in K. This is justified by the fact that if a
formula ¢ is satisfiable in an RDF transition system, then its
negation —¢ is unsatisfiable. So far we have: O(S), E(q),
and —¢ are satisfiable in K. Thus, (S, q,¢’) is satisfiable
in K. Without loss of generality, we get that ®(S, ¢, q’) is
satisfiable.

(<) ©(S,q,q’) implies that there exists a transition sys-
tem where the formula ®(S, ¢, ¢’) holds. Consequently, K
is an RDF transition system due to the restriction imposed
in Lemma 1. From K it is possible to construct a model G
so that we can utilize Lemma 4 to verify that indeed G is a
model of S. Thus, it remains to show that the answers of ¢
are not included in the answers of ¢’ over G. From our as-
sumption, we have that E(q) A ¢ is satisfiable in K. From
this, we obtain that E(q) is satisfiable while ¢ is not. It is
possible to build an OWL EL ontology from the model 7
using a function that uses assertions to form triples. Thus,
we have that the answers of ¢ over GG are not empty but ¢’
is empty because G contains all those triples that satisfy ¢
and not ¢’. Therefore, we get that the answers of g are not
contained in that of ¢’. O

The size of the encoding for checking the containment
of {cPP, uPP} queries in the p-calculus is exponential and
the satisfiability test of a u-calculus formula can be done in
an exponential amount of time. Therefore, we get a double
exponential upper bound as shown below.

is not.

Proposition 1. Given two SPARQL queries q, ¢ € {cPP,
uPP} and a set of OWL EL axioms S, containment under
OWL DL entailment can be solved in double exponential
amount of time in the size of the encoding.

We prove the soundness of the containment of oPP queries.

Theorem 3. Given two SPARQL queries q,q' € oPP and
a set of OWL EL axloms S, q is contained in ¢’ under OWL
DL entailment, ¢ TS5, ¢’ iff ®(S, q,q) is unsatisfiable.

Proposition 2. Given two SPARQL queries q,q € oPP,
and a set of OWL EL axioms S, containment under OWL
DL entailment can be solved in triple exponential amount of
time in the size of the encoding.

This result follows from the fact that the size of the encoding
of oPP queries is double exponential if ¢’ does not contain
blank nodes.

Conclusion

In this work, we have shown that query containment over
a set of OWL EL axioms under the OWL DL entailment
can be reduced to validity test in the u-calculus by rewriting
queries using property paths and the p-calculus. We have
provided a double exponential upper bound for containment
of cPP and uPP queries. Whereas there is a further jump in
complexity if the queries are oPP. In both cases, if the right
hand side query does not have blank nodes, there is an expo-
nential drop in complexity. Note that SPARQL query con-
tainment in the presence of blank nodes coincides with that
of having non-distinguished variables (i.e., union of con-
junctive query containment). We plan to extend the imple-
mentation in (Chekol et al. 2013) by writing a parser that
performs query rewriting, and designing a benchmark. Even
though, there are no other systems that we can compare it
too, we will carry out experiments to evaluate its perfor-
mance and to see how well it copes with the size of the
formulas obtained from query rewritings. We will apply the
technique introduced in (Geneves and Schmitt 2015) in or-
der to reduce the size of the formula by upto exponential.

Furthermore, our approach is very flexible, it can directly
be applied to OWL QL without inverse roles. It can also eas-
ily be extended to deal with OWL RL without cardinality re-
strictions. Besides, without additional modification we can
use our encoding to determine containment of queries of the
form BGP MINUS BGP’. It is possible to prove an exponen-
tial upper bound for this problem when the right-hand side
query has no blank nodes.

References

Baader, F.; Brandt, S.; and Lutz, C. 2005. Pushing the EL
envelope. In IJCAI, volume 5, 364-369.

Baader, F.; Brandt, S.; and Lutz, C. 2008. Pushing the EL
envelope further. In Proceedings of the OWLED 2008 DC
Workshop on OWL: Experiences and Directions.

Bienvenu, M.; Lutz, C.; and Wolter, F. 2012. Deciding FO-
rewritability in EL. Description Logics 70-80.

Bischof, S.; Krotzsch, M.; Polleres, A.; and Rudolph, S.
2014. Schema-agnostic query rewriting in SPARQL 1.1. In
ISWC, 584-600.

Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2000. Containment of Conjunctive Regular Path
Queries with Inverse. In Proc. 7th Int. Conf. on the Prin-
ciples of Knowledge Representation and Reasoning (KR
2000), 176-185.

Calvanese, D.; De Giacomo, G.; Lenzerini, M.; and Vardi,
M. Y. 2003. Reasoning on regular path queries. SIGMOD
Record 32(4):83-92.

Calvanese, D.; Giacomo, G. D.; and Lenzerini, M. 2008.
Conjunctive query containment and answering under de-
scription logic constraints. ACM Transactions on Compu-
tational Logic (TOCL) 9(3):22.

Chekol, M. W.; Euzenat, J.; Geneves, P.; and Layaida, N.
2012a. SPARQL query containment under RDFS entailment
regime. In Proc. IJCAR, 134—148.

942

Chekol, M. W.; Euzenat, J.; Geneves, P.; and Layaida, N.
2012b. SPARQL query containment under SHI axioms. In
Proc. AAAI, 10-16.

Chekol, M. W.; Euzenat, J.; Geneves, P.; and Layaida, N.
2013. Evaluating and Benchmarking SPARQL Query Con-
tainment Solvers. In International Semantic Web Confer-
ence (2), 408-423.

Chekol, M. W. 2012. Static Analysis of Semantic Web
Queries. Ph.D. Dissertation, Université de Grenoble.

Geneves, P., and Layaida, N. 2006. A system for the static
analysis of XPath. ACM Trans. Inf. Syst. 24(4):475-502.

Geneves, P., and Schmitt, A. 2015. Expressive logical com-
binators for free. In IJCAI, 311-317.

Geneves, P; Layaida, N.; and Schmitt, A. 2007. Efficient
static analysis of XML paths and types. In Proc. PLDI, 342—
351. ACM.

Glimm, B., and Krotzsch, M. 2010. SPARQL beyond sub-
graph matching. The Semantic Web—ISWC 2010 241-256.

Glimm, B. 2011. Using SPARQL with RDFS and OWL
entailment. Reasoning Web. Semantic Technologies for the
Web of Data 137-201.

Hansen, P.; Lutz, C.; Seylan, I.; and Wolter, F. 2015. Effi-
cient query rewriting in the description logic EL and beyond.
In 1JCAI, 3034-3040.

Toannidis, Y. E., and Ramakrishnan, R. 1995. Contain-
ment of conjunctive queries: Beyond relations as sets. ACM
Transactions on Database Systems (TODS) 20(3):288-324.

Kazakov, Y.; Krotzsch, M.; and Simancik, F. 2014. The
incredible ELK - from polynomial procedures to efficient
reasoning with EL ontologies. J. Autom. Reasoning 53(1):1—
61.

Kostylev, E. V.; Reutter, J. L.; Romero, M.; ; and Vrgoc, D.
2015. Sparql with property paths. In International Semantic
Web Conference.

Kozen, D. 1983. Results on the propositional p-calculus.
Theoretical computer science 27(3):333-354.

Krotzsch, M., and Rudolph, S. 2007. Conjunctive queries
for EL with composition of roles. In Proceedings of the 2007
International Workshop on Description Logics (DL2007),
Brixen-Bressanone, Italy, 8-10 June, 2007.

Krotzsch, M. 2011. Efficient rule-based inferencing for owl
el. In IJCAI, volume 11, 2668-2673.

Letelier, A.; Pérez, J.; Pichler, R.; and Skritek, S. 2013.
Static analysis and optimization of semantic web queries.
ACM Transactions on Database Systems (TODS) 38(4):25.
Pérez, J.; Arenas, M.; and Gutierrez, C. 2009. Semantics
and complexity of sparql. ACM Transactions on Database
Systems (TODS) 34(3):16.

Pichler, R., and Skritek, S. 2014. Containment and Equiva-
lence of Well-designed SPARQL. 39-50.

Rosati, R. 2007. On conjunctive query answering in el. In

20th International Workshop on Description Logics DLO7.
Citeseer.

