
Boolean Functions with Ordered Domains in Answer Set Programming

Mario Alviano
University of Calabria, Italy

alviano@mat.unical.it

Wolfgang Faber
University of Huddersfield, UK

wf@wfaber.com

Hannes Strass
Leipzig University, Germany

strass@informatik.uni-leipzig.de

Abstract

Boolean functions in Answer Set Programming have proven
a useful modelling tool. They are usually specified by means
of aggregates or external atoms. A crucial step in computing
answer sets for logic programs containing Boolean functions
is verifying whether partial interpretations satisfy a Boolean
function for all possible values of its undefined atoms. In this
paper, we develop a new methodology for showing when such
checks can be done in deterministic polynomial time. This
provides a unifying view on all currently known polynomial-
time decidability results, and furthermore identifies promis-
ing new classes that go well beyond the state of the art. Our
main technique consists of using an ordering on the atoms to
significantly reduce the necessary number of model checks.
For many standard aggregates, we show how this ordering
can be automatically obtained.

Introduction

Answer set programming (ASP) is a declarative language
for knowledge representation and reasoning (Brewka, Eiter,
and Truszczynski 2011). ASP programs are interpreted ac-
cording to the stable model semantics (Gelfond and Lifs-
chitz 1988; 1991), and several definitions were proposed for
extensions of the basic language. A particularly useful con-
struct of ASP are aggregate functions (Simons, Niemelä,
and Soininen 2002; Liu et al. 2010; Bartholomew, Lee,
and Meng 2011; Pelov, Denecker, and Bruynooghe 2007;
Son and Pontelli 2007; Shen et al. 2014; Faber, Pfeifer,
and Leone 2011; Ferraris 2011; Alviano et al. 2011;
Gelfond and Zhang 2014), which allow for expressing prop-
erties on sets of atoms declaratively and in a space-efficient
way. For example, aggregates are widely used to enforce
functional dependencies, where a rule of the form

⊥ ← node(X), COUNT({C | hasColour(X,C)}) �= 1

in a graph-colouring problem asserts that the colour of a
node is a functional property. On the other hand, aggregates
often make the evaluation of programs harder. In fact, the
three-valued evaluation of an aggregate, that is, its evalu-
ation with respect to a partial interpretation I , depends in
general on the evaluation of the aggregate with respect to
exponentially many totalisations of I .

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

It is important to observe that many of the semantics
proposed for interpreting ASP programs with aggregates
are not limited to common aggregation functions such as
COUNT, SUM, and AVG, but are instead defined for Boolean
functions in general (Liu and Truszczynski 2006; Alviano
and Faber 2015). In fact, from a semantic viewpoint an
aggregate is seen as a black box whose relevant property
is the induced (partial) Boolean function mapping (par-
tial) interpretations to Boolean truth values. For example,
SUM({1 : p,−1 : q}) ≥ 0 maps to true any (partial) inter-
pretation assigning true to p or false to q, and maps to false
any (partial) interpretation assigning false to p and true to q.

It is thanks to this association with Boolean functions that
the several semantics for ASP programs with aggregates are
defined clearly and uniformly: stable models are defined for
programs with Boolean functions in general, and any aggre-
gation function can be added to the language by specifying
the associated Boolean function. Using Boolean functions
also makes the same definitions of semantics applicable to
similar language extensions, such as external or HEX atoms
(Eiter et al. 2014).

Another advantage of this generality is the identifica-
tion of semantic classes of programs with benign compu-
tational properties. For example, programs with monotone
and convex (Liu and Truszczynski 2006) Boolean functions
are associated with lower complexity classes in many cases
(Faber, Pfeifer, and Leone 2011). Many other tractability re-
sults were proven for programs with non-convex aggregates
of specific forms (Pelov 2004; Son and Pontelli 2007), pro-
viding ad-hoc proofs for each considered case. These results
hold for stable models as defined by Pelov, Denecker, and
Bruynooghe (2007) and Son and Pontelli (2007), for which
tractability of the three-valued evaluation of aggregates im-
plies tractability of the stability check.

Boolean functions were also considered in a related
knowledge representation formalism called abstract dialec-
tical frameworks (ADFs, Brewka and Woltran; Brewka et
al., 2010; 2013). There, argumentation scenarios are mod-
elled in terms of arguments and possible relationships be-
tween arguments. In the class of bipolar ADFs, relation-
ships between arguments are restricted to supports and at-
tacks, which decreases the computational complexity by one
level in the polynomial hierarchy (Strass and Wallner 2015).
It is interesting to observe that, under some syntactic restric-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

879



tions, the notion of stable model for ADFs by Brewka et
al. (2013) coincides with the definition of stable model for
ASP programs by Pelov, Denecker, and Bruynooghe (2007)
and Son and Pontelli (2007), as was recently observed (Al-
viano and Faber 2015). We use a similar observation to
define a new class of Boolean functions (and thus a new
class of aggregates in ASP). In fact, introducing the class of
bipolar Boolean functions is natural, and tractability is eas-
ily obtained by transferring the complexity results of Strass
and Wallner (2015). It was unexpected, however, that many
tractable cases proved by Pelov (2004) and Son and Pontelli
(2007) are actually bipolar, and therefore could be obtained
uniformly and in a straightforward way by our results.

While a significant number of standard aggregates leads
to bipolar Boolean functions, there are still cases that are
known to be polytime-checkable but are not bipolar. For ex-
ample, COUNT({p, q}) = 1 is convex but not bipolar, and
COUNT({p, q}) �= 1 is polytime-checkable (Son and Pon-
telli 2007) but neither convex nor bipolar.

As the main contribution of this paper, we introduce a
new class of Boolean functions whose three-valued evalu-
ation can be done in polynomial time; we call them atom-
orderable Boolean functions. Our results are also transfer-
able to ADFs with the stable model semantics defined by
Brewka et al. (2013) thanks to the results of Alviano and
Faber (2015). In particular, this identifies a larger tractable
class of ADFs under this semantics than previously known.

Preliminaries

Let A be a finite set of (propositional) atoms. Boolean func-
tions map sets of atoms to Boolean truth values. For con-
venience, we will usually represent a Boolean function as
the set of sets mapped to true. Hence, a Boolean function
is a set C ⊆ 2A. In addition to this abstract representation
of Boolean functions, we will also use common notations for
denoting aggregates. Formally, let a1, . . . , am ∈ A be atoms
and w1, . . . , wm ∈ R be real numbers (m ≥ 0). A weighted
atom set over A is of the form S = {w1 : a1, . . . , wm : am}.
For such a set, we denote A(S) = {a1, . . . , am}. Using a
comparison ◦ ∈ {<,≤,=, �=,≥, >} and a value v ∈ R, the
following expressions represent Boolean functions:

SUM(S) ◦ v =̂

{
M ⊆ 2A(S)

∣∣∣∣∣
( ∑

ai∈M

wi

)
◦ v
}

PROD(S) ◦ v =̂

{
M ⊆ 2A(S)

∣∣∣∣∣
( ∏

ai∈M

wi

)
◦ v
}

COUNT(S) ◦ v =̂
{
M ⊆ 2A(S)

∣∣∣ |M | ◦ v}
AVG(S) ◦ v =̂

{
M ⊆ 2A(S)

∣∣∣∣
∑

ai∈M wi

|M | ◦ v
}

MIN(S) ◦ v =̂
{
M ⊆ 2A(S)

∣∣∣ min {wi | ai ∈M} ◦ v
}

MAX(S) ◦ v =̂
{
M ⊆ 2A(S)

∣∣∣ max {wi | ai ∈M} ◦ v
}

Note that the definition of COUNT(S)◦v does not depend on
the weights in S, and therefore in this case we will usually

omit the weights and only specify the atoms in A(S).
A logic program P is a set of rules of the following form:

a← a1, . . . , al, not b1, . . . , not bm, C1, . . . , Cn (1)

where l,m, n ∈ N are natural numbers, a ∈ A (the head),
a1, . . . , al, b1, . . . , bm ∈ A and C1, . . . , Cn are Boolean
functions (the body). We also write rules (1) as
r = a← B and use the notations B+ = {a1, . . . , al},
B− = {b1, . . . , bm} and BC = {C1, . . . , Cn} to access
body constituents.

A partial interpretation is represented by a pair (X,Y )
of sets of atoms with X ⊆ Y ⊆ A, where the atoms in the
lower bound X are true and the atoms not in the upper
bound Y are false. Thus, the atoms in Y \X are neither true
nor false, that is, they do not have a classical truth value yet
and are therefore undefined. A partial interpretation (X,Y )
is a model of a Boolean function C, denoted (X,Y ) |= C,
iff for all Z ⊆ A with X ⊆ Z ⊆ Y , we find Z ∈ C. Given a
partial interpretation (X,Y ) and a Boolean function C, the
(three-valued) model checking problem consists of verifying
whether (X,Y ) |= C holds.

The semantics of a logic program P is given by the set of
its stable models, where a stable model is a set of atoms sat-
isfying some stability condition. In this paper, the stability
condition is given by means of the least fixpoint of an infer-
ence operator. Formally, for each Y ⊆ A, define an operator
TY
P : 2A → 2A such that:

X �→ {a ∈ A | a← B ∈ P,B+ ⊆ X,B− ∩ Y = ∅,
(X,Y ) |= D for all D ∈ BC}.

A set M ⊆ A is a stable model of P if and only if M is
the ⊆-least fixpoint of TM

P . Clearly if (X,Y ) |= D then
(Z, Y ) |= D for all X ⊆ Z ⊆ Y , thus the operator TM

P is
⊆-monotone and always has a unique ⊆-least fixpoint.

Example 1. Consider A = {a, b, c} and logic program P :

a← SUM({1 : b, 1 : c}) > 0

b← a, not c

c← not b

The only two candidates for stable models are M = {a, b}
and N = {a, c}. For the first candidate, we find that

– a /∈ TM
P (∅) since (∅,M) �|= SUM({1 : b, 1 : c}) > 0,

– b /∈ TM
P (∅) since a /∈ ∅, and c /∈ TM

P (∅) since b ∈M .

Thus TM
P (∅) = ∅, which means that the ⊆-least fixpoint of

TM
P is ∅. Since ∅ �= M , the set M is not a stable model of P .

For the other candidate N = {a, c}, we get TN
P (∅) = {c}:

– a /∈ TN
P (∅) since (∅, N) �|= SUM({1 : b, 1 : c}) > 0,

– b /∈ TN
P (∅) since a /∈ ∅, and c ∈ TN

P (∅) since b /∈ N ,

and then TN
P ({c}) = {a, c} = N = TN

P (N) because

– ({c} , N) |= SUM({1 : b, 1 : c}) > 0 and
– (N,N) |= SUM({1 : b, 1 : c}) > 0.

Thus the ⊆-least fixpoint of TN
P is the set N = {a, c},

whence this set is also the only stable model of P . �

880



Note that the definition of stable model above is equiva-
lent to the one given by Pelov, Denecker, and Bruynooghe
(2007), and Son and Pontelli (2007). We reformulated it
in this way to clarify that model checking is the potentially
most complex part of verifying whether a given set of atoms
is a stable model of a logic program. In fact, dealing with
undefined atoms during the computation of the least fixpoint
of TM

P is the main source of complexity for checking the sta-
bility of a set of atoms. This is the case because in general
each Boolean function in P has to be evaluated with respect
to a number of sets of atoms that is exponential in the num-
ber of undefined atoms. However, it is important to observe
that in practice many Boolean functions do not require to be
evaluated on exponentially many sets of atoms in order to
answer the associated model checking problem. For these
reasons, we focus on identifying sufficient conditions for
guaranteeing tractability of model checking, which in turn
implies tractability of the stability check for logic programs.

Actually, for some subclasses of Boolean functions, the
model checking problem is already known to be tractable.
One example are convex Boolean functions, that intuitively
do not contain “gaps” in their sets of models. Formally,
a Boolean function C ⊆ 2A is convex if and only if for
all X ⊆ Y ⊆ Z ⊆ A we have: if X ∈ C and Z ∈ C then
Y ∈ C. It is well-known that convex Boolean functions are
closed under arbitrary conjunctions, but not under comple-
mentation and disjunction.

In the next section, we will introduce the notion of bipo-
lar Boolean functions, a different class closed under com-
plementation, conjunction and disjunction subject to some
compatibility conditions. Later on, we will present the class
of atom-orderable Boolean functions, an extension of both
convex and bipolar that also includes other standard aggre-
gates commonly used in logic programming.

Bipolar Boolean Functions

Bipolarity has hitherto predominantly been defined and used
in the context of ADFs (Brewka and Woltran 2010). Here,
we define bipolarity for Boolean functions in general by ex-
tending the notions of monotone and antimonotone Boolean
functions (Faber, Pfeifer, and Leone, 2011, Def. 2.4).
Definition 1. Let A be a set of atoms, C ⊆ 2A be a Boolean
function, and a ∈ A.
• C is monotone in a iff for all M ⊆ A, we find that:

M ∈ C implies M ∪ {a} ∈ C;
• C is antimonotone in a iff for all M ⊆ A, we find that:

M /∈ C implies M ∪ {a} /∈ C.
Define the sets

A+
C = {a ∈ A | C is monotone in a},

A−
C = {a ∈ A | C is antimonotone in a}.

A Boolean function C ⊆ 2A is:
• monotone iff A = A+

C ;
• antimonotone iff A = A−

C ;
• bipolar iff A = A+

C ∪A−
C . �

Synonymously to C is monotone in a, we say that a is
supporting in C; likewise, C is antimonotone in a iff a is at-
tacking in C. Being supporting or attacking is the polarity of
the argument a in C. As all atoms a ∈ A+

C ∩A−
C are redun-

dant, we also use the sets of strictly supporting arguments
A+

C \A−
C and strictly attacking arguments A−

C \A+
C .

First of all, we observe that the class of bipolar Boolean
functions captures quite a range of standard aggregates, as
shown below.
Proposition 1. Let A be a vocabulary, S be a weighted atom
set over A and v ∈ R. The following Boolean functions are
bipolar:

1. SUM(S) ◦ v for ◦ ∈ {<,≤,≥, >};
2. COUNT(S) ◦ v for ◦ ∈ {<,≤,≥, >};
3. AVG(S) ◦ v for ◦ ∈ {<,≤,≥, >};
4. MIN(S) ◦ v for ◦ ∈ {<,≤,=,≥, >};
5. MAX(S) ◦ v for ◦ ∈ {<,≤,=,≥, >}.
Proof. 1. For ◦ ∈ {<,≤}, atoms ai with non-negative

weights (wi ≥ 0) are attacking, atoms ai with
non-positive weights (wi ≤ 0) are supporting. For
◦ ∈ {≥, >}, atoms with non-negative weights are sup-
porting, atoms with non-positive weights are attacking.

2. For ◦ ∈ {<,≤} all atoms are attacking, for ◦ ∈ {≥, >}
all atoms are supporting.

3. For ◦ ∈ {<,≤}, all atoms ai with weight wi ≥ v are
attacking, atoms ai with weight wi ≤ v are supporting;
◦ ∈ {≥, >} is symmetric (atoms ai with weight wi ≥ v
are supporting, those with weight wi ≤ v are attacking).

4. For MIN(S) = v, all atoms ai with weight wi ≥ v are
supporting, additionally all atoms ai with wi �= v are at-
tacking. For MIN(S) < v, all atoms are supporting, and
additionally all atoms ai with wi ≥ v are attacking; sim-
ilarly, for MIN(S) ≤ v, all atoms are supporting, and ad-
ditionally all atoms ai with wi > v are attacking. For
◦ ∈ {≥, >}, all atoms ai with weight wi ◦ v are support-
ing, all others attacking.

5. Dual to MIN(S) ◦ v. �
Comparing the different classes of Boolean functions that

we introduced so far, we can observe that by definition all
monotone Boolean functions are bipolar and convex, but
the converse does not hold. It is similar for antimonotone
Boolean functions.
Example 2. For vocabulary A = {a, b}, the Boolean func-
tion Ca∧¬b = {{a}} is bipolar and convex, but neither
monotone (b is strictly attacking) nor antimonotone (a is
strictly supporting). �

Even more importantly, we have to clarify that the two
notions bipolar and convex are independent of each other.
Example 3. Consider the vocabulary A = {a, b}. The
Boolean function C¬a∨b = {∅, {b} , {a, b}} is bipolar (a is
strictly attacking, b is strictly supporting), but not convex
(for ∅ ⊆ {a} ⊆ {a, b}, we have that ∅, {a, b} ∈ C¬a∨b while
{a} /∈ C¬a∨b). On the other hand, the Boolean function
Ca⊕b = {{a} , {b}} is convex, but not bipolar (for exam-
ple, a is not supporting, as {b} ∈ Ca⊕b but {a, b} /∈ Ca⊕b;
neither is a attacking, as ∅ /∈ Ca⊕b but {a} ∈ Ca⊕b). �

881



Hence, even if there is some overlap, bipolar Boolean
functions and convex Boolean functions seem to have or-
thogonal expressive capabilities. The two classes also differ
with respect to closure under common set operators. In fact,
it can be shown that the complement of a bipolar Boolean
function is again bipolar but with the polarities switched.
Proposition 2. Let A be a set of atoms and C ⊆ 2A be a
bipolar Boolean function. Then the set C = 2A \ C is a
bipolar Boolean function with A+

C
= A−

C and A−
C
= A+

C .

Therefore, bipolar Boolean functions are closed under
complementation, while this is not the case for intersection
and union in general.
Example 4. Consider the vocabulary A = {a, b, c}. For the
bipolar Boolean functions Ca∨b = {{a} , {b} , {a, b}} and
C¬a∨¬b = {∅, {a} , {b}} we get the resulting (non-bipolar)
intersection Ca∨b ∩ C¬a∨¬b = {{a} , {b}} = Ca⊕b. �

However, closure under union and intersection can be re-
gained by stipulating a compatibility condition on bipolar
Boolean functions.
Definition 2. Let A be a set of atoms and C,D ⊆ 2A be
bipolar Boolean functions. C and D are compatible iff
• A+

C ∩A−
D ⊆ A−

C ∪A+
D, and

• A−
C ∩A+

D ⊆ A+
C ∪A−

D. �
Intuitively, two Boolean functions over the same vocab-

ulary are compatible iff for each atom, the polarities of
the arguments in the Boolean functions match point-wise.
The polarities match if the argument is supporting in both
Boolean functions or attacking in both Boolean functions.
Put another way, for two Boolean functions to be compat-
ible, whenever an argument is supporting in one Boolean
function and attacking in the other, then it must be redun-
dant in one of them, which is what the definition above says.
Example 5. Consider the vocabulary A = {a, b, c}. The
bipolar Boolean functions Ca∧¬b = {{a} , {a, c}} (a sup-
porting, b attacking, c redundant) and C¬b∨c =
{{} , {a} , {c} , {a, c} , {b, c} , {a, b, c}} (a redundant, b at-
tacking, c supporting) are compatible: A+

Ca∧¬b
= {a, c},

A−
Ca∧¬b

= {b, c}, A+
C¬b∨c

= {a, c}, A−
C¬b∨c

= {a, b}, thus:

A+
Ca∧¬b

∩A−
C¬b∨c

= {a} ⊆ {a, b, c} = A−
Ca∧¬b

∪A+
C¬b∨c

;

A−
Ca∧¬b

∩A+
C¬b∨c

= {c} ⊆ {a, b, c} = A+
Ca∧¬b

∪A−
C¬b∨c

.

Clearly Ca∧¬b ∩ C¬b∨c = Ca∧¬b is again bipolar. For the
Boolean functions in Example 4 we get A+

Ca∨b
= {a, b},

A−
Ca∨b

= ∅, A+
C¬a∨¬b

= ∅, A−
C¬a∨¬b

= {a, b}, whence

A+
Ca∨b

∩A−
C¬a∨¬b

= {a, b} �⊆ ∅ = A−
Ca∨b

∪A+
C¬a∨¬b

and the two are not compatible. �
It is easy to show that Boolean combinations of compat-

ible bipolar Boolean functions again yield bipolar Boolean
functions.
Proposition 3. Let A be a set of atoms and C,D ⊆ 2A be
bipolar Boolean functions such that C and D are compatible.
Then C ∩D and C ∪D are bipolar Boolean functions.

To sum up, bipolar Boolean functions are closed under
complementation, and compatible union and intersection.

Atom-Orderable Boolean Functions

The class of bipolar Boolean functions captures many stan-
dard aggregates widely used in logic programming, but not
all of them. In this section we introduce and study a broader
class in order to cover the missing polytime-decidable cases.

Definition 3. Let A be a set of atoms. A Boolean function
C ⊆ 2A is called atom-orderable if and only if there exists a
total order � on A such that for all X ⊆ Y ⊆ A the follow-
ing two conditions are equivalent:

1. (X,Y ) |= C, that is, for all Z ⊆ A with X ⊆ Z ⊆ Y we
find Z ∈ C;

2. for all i ∈ {0, . . . , k} (where k = |Y \X|), we find
Xi ∈ C, where X0 = X and for 0 ≤ j ≤ k − 1 we de-
fine Xj+1 = Xj ∪ {min�(Y \Xj)}.1 �
Intuitively, the first condition needs to evaluate the

Boolean function on an exponential number of sets of atoms.
On atom-orderable aggregates, the second condition yields
the equivalent result using only a linear number of sets of
atoms by exploiting the ordering on the atoms, adding them
one by one in ascending order from X0 = X to Xk = Y .

Example 6. Consider the vocabulary A = {a, b, c, d} and
the Boolean function C given by COUNT({a, b, c, d}) �= 1.
This function is neither bipolar nor convex, but
atom-orderable with a ≺ b ≺ c ≺ d: To show that
(∅, A) �|= COUNT({a, b, c, d}) �= 1, we need only check
1. ∅ ∈ C? (yes), 2. {a} ∈ C? (no) and are done (instead
of naively searching among the 16 counterexample candi-
dates). To show that ({a, b} , {a, b, c, d}) |= C, it suffices to
show that {a, b}, {a, b, c}, {a, b, c, d} are contained in C. �

It is easy to see that condition (2) can be checked in de-
terministic polynomial time (in n) whenever Z ∈ C can be
decided in polynomial time and the ordering � is given.

Proposition 4. Let A be a set of atoms, C ⊆ 2A be an atom-
orderable Boolean function with � given, and X ⊆ Y ⊆ A.
Furthermore assume that the problem “given Z ⊆ A, is
Z ∈ C?” is in P. Then checking (X,Y ) |= C is in P.

We will usually represent atom-orderable Boolean func-
tions by giving the ordering �; if we specify � as a partial
order only, then any total order extending � will do as a
witness for the Boolean function being atom-orderable. We
first show that our new class generalises the class of bipolar
Boolean functions.

Proposition 5. All bipolar Boolean functions are atom-
orderable.

Proof. Let A be a set of atoms and C ⊆ 2A be bipolar. Then
A = A+

C ∪A−
C . We define the partial order � such that

A−
C \A+

C ≺ A+
C \A−

C ≺ A+
C ∩A−

C .

Let X ⊆ Y ⊆ A be arbitrary. We have to show that condi-
tions (1) and (2) of Definition 3 are equivalent.

1Here, min�(Y \Xj) denotes the �-least element of the set
Y \Xj , which is unique since � is total and Y \Xj is non-empty.

882



(1)⇒ (2): Assume that for all Z ⊆ A with X ⊆ Z ⊆ Y ,
we find Z ∈ C. Recall that X0 = X and for
0 ≤ j ≤ n− 1 we set Xj+1 = Xj ∪min�(Y \Xj).
Clearly X ⊆ Xi ⊆ Y for all i ∈ {0, . . . , k}, whence (2)
follows.

(2)⇒ (1): Assume that for all i ∈ {0, . . . , k}, we
find Xi ∈ C. By our definition of �, there
is in particular an i ∈ {0, . . . , k} such that
Xi = X ∪ ((A−

C \A+
C) ∩ Y ) ∈ C. Now let Z ⊆ A

with X ⊆ Z ⊆ Y be arbitrary. We have to show
Z ∈ C. Since Xi contains all attackers and no sup-
porters (relative to Y \X), we can reconstruct Z from
Xi by “adding” supporters and “removing” attack-
ers: there exist Z+ ⊆ A+

C and Z− ⊆ A−
C such that

Z = (Xi ∪ Z+) \ Z−. Since Xi ∈ C and C is bipolar, it
follows that Z ∈ C as desired. �

This new class is furthermore a strict generalisation, as it
allows us to treat a maximum possible number of additional
cases. This, together with Definition 3, is the main result of
the paper.

Theorem 6. Let A be a vocabulary, S be a weighted atom
set over A and v ∈ R. The following Boolean functions are
atom-orderable:

1. COUNT(S) ◦ v for ◦ ∈ {=, �=};
2. SUM(S) = v;
3. AVG(S) = v;
4. MIN(S) �= v;
5. MAX(S) �= v;
6. PROD(S) ◦ v for ◦ ∈ {<,≤,=,≥, >}.
Proof. 1. COUNT(S) ◦ v for ◦ ∈ {=, �=}: We can

set � arbitrary in both cases: for X ⊆ Y ⊆ A,
(X,Y ) |= COUNT(S) = v iff |X ∩A(S)| = v and
Y ∩A(S) = X ∩A(S); (X,Y ) |= COUNT(S) �= v iff
|X ∩A(S)| > v or |Y ∩A(S)| < v. In both cases,
it is only important that we check the two extremal
interpretations (X,X) and (Y, Y ), which is achieved by
any ordering.

2. SUM(S) = v: Again, the ordering � is irrelevant:
(X,Y ) |= SUM(S) = v iff (X,X) |= SUM(S) = v and
all atoms in A(S) ∩ (Y \X) have weight zero. Clearly,
testing the atoms one by one will correctly check whether
their weights are zero, the order in which they are tested
is irrelevant.

3. AVG(S) = v: Similarly as for SUM(S) = v, the or-
dering is irrelevant since we have to check whether
(X,X) |= AVG(S) = v and all atoms in A(S) ∩ (Y \X)
have weight v.

4. MIN(S) �= v: Let S = {w1 : a1, . . . , wm : am}. We de-
fine ai � aj iff wj ≤ wi, for all i, j ∈ {1, . . . ,m}. Effec-
tively, we have to check whether v is among the weights
of the atoms in A(S) ∩ (Y \X) (if the minimum weight
in X is greater than v). This is guaranteed in our approach
by considering the atoms in order of decreasing weights.

5. MAX(S) �= v: This case is dual to MIN(S) �= v, define
ai � aj iff wi ≤ wj for S = {w1 : a1, . . . , wm : am}.

6. PROD(S) ◦ v for ◦ ∈ {>,≥,=}: Let
S = {w1 : a1, . . . , wm : am}. Consider X ⊆ Y ⊆ A
with |Y \X| = n. The proof uses a case distinction,
where in each case of comparison operator and bound we
define an ordering � and show that conditions 1 and 2 of
Definition 3 are equivalent.
• PROD(S) = 0: For (X,Y ) |= PROD(S) = 0 it is nec-

essary that X contain an atom with weight zero. In this
case, the ordering � is irrelevant.
• PROD(S) = v: In order for (X,Y ) to be a model for

this aggregate, the product of the weights in X must
equal v, and the weights of all atoms in Y \X must
equal one. Since in this case all atoms in Y \X have
the same weight, adding them in any order will work.
• PROD(S) ≥ 0: It is clear that (X,Y ) |= PROD(S) ≥ 0

iff there are no atoms with negative weights in Y \X .
By adding all negatively weighted atoms (if any) one by
one before adding all the zero-weighted atoms, we will
correctly identify the presence of an atom with negative
weight in Y \X . Thus a possible ordering is given by
aj � ak iff wj ≤ wk for 1 ≤ j, k ≤ m.
• PROD(S) ≥ v and PROD(S) > v for v > 0: Define �

such that

{ai | wi > 0} ≺ {ai | wi < 0} ≺ {ai | wi = 0}
and furthermore for all ai ∈ A(S) with wi > 0, we
have aj � ak iff wj ≤ wk for 1 ≤ j, k ≤ m. To fig-
ure out whether (X,Y ) |= PROD(S) ≥ v, we essen-
tially have to find the set Z with X ⊆ Z ⊆ Y such that
the value

∏
ai∈Z∩A(S) wi is ≤-minimal. If there are

ai ∈ Y \X with wi ≤ 0, then they will be detected.
Assuming that all weights are positive, the least pos-
sible product is given by

∏
ai∈Y \X,0<wi<1 wi. Due

to the increasing ordering of the positively weighted
atoms, there will be a j ∈ {0, . . . , n} such that
Xj = X ∪ {ai | 0 < wi < 1}. That is, the atom set
leading to the least possible product will be checked.
• PROD(S) ≥ v and PROD(S) > v for v < 0: Define �

such that

{ai | wi ≥ 1} ≺ {ai | wi < 0} ≺
{ai | 0 < wi < 1} ≺ {ai | wi = 0}

and furthermore for all ai ∈ A(S) with wi < 0, we
have aj � ak iff wj ≤ wk for 1 ≤ j, k ≤ m. In
essence, we have to find the set Z with X ⊆ Z ⊆ Y
such that the value

∏
ai∈Z∩A(S) wi is ≤-minimal. Our

ordering achieves this by considering first all weights
greater than 1 (to reach the maximal absolute value)
and then all negative weights. If there is an overall odd
number of negative weights, all of them will contribute
to the least possible product. If the number of negative
weights is even, then the least possible overall product
is obtained by taking all positive weights and all but one
(the one with the least absolute value) negative weights.
• The remaining cases with ◦ ∈ {<,≤} can be reduced

to the cases above by multiplying the given inequality
with −1. �

883



Since all bipolar Boolean functions are also atom-
orderable, we get the following overall result.

Corollary 7. Let A be a vocabulary, S be a weighted atom
set over A and v ∈ R. The following Boolean functions are
atom-orderable:

1. COUNT(S) ◦ v for ◦ ∈ {<,≤,=, �=,≥, >};
2. SUM(S) ◦ v for ◦ ∈ {<,≤,=,≥, >};
3. AVG(S) ◦ v for ◦ ∈ {<,≤,=,≥, >};
4. MIN(S) ◦ v for ◦ ∈ {<,≤,=, �=,≥, >};
5. MAX(S) ◦ v for ◦ ∈ {<,≤,=, �=,≥, >};
6. PROD(S) ◦ v for ◦ ∈ {<,≤,=,≥, >}.

This result is optimal, as model checking is coNP-hard
for the cases SUM(S) �= v, AVG(S) �= v and PROD(S) �= v
(Pelov 2004; Son and Pontelli 2007). As a final note, we
observe that the class of atom-orderable Boolean functions
is not closed under common set operations: for example,
SUM(S) > v ∪ SUM(S) < v is equivalent to SUM(S) �= v.

Related Work

Properties of logic programs with Boolean functions have
been analysed extensively in the literature. Among the sev-
eral semantics that were proposed (Ferraris 2011; Faber,
Pfeifer, and Leone 2011; Gelfond and Zhang 2014), we have
considered the one by Pelov, Denecker, and Bruynooghe
(2007) and Son and Pontelli (2007) with the aim of extend-
ing the currently largest class of Boolean functions for which
the stability check is tractable. In fact, concerning stable
models by Ferraris (2011) and Faber, Pfeifer, and Leone
(2011), it is known that convex Boolean functions are the
complexity boundary for this task (Alviano and Faber 2013).
Moreover, concerning stable models by Gelfond and Zhang
(2014), it is known that the task is tractable in general if
disjunction in rule heads is forbidden (Alviano and Leone
2015).

Complexity of logic programs with Boolean functions
can be analysed by considering each specific case by it-
self (Pelov 2004; Son and Pontelli 2007), or by identify-
ing some semantic classes such as monotone, antimono-
tone and convex that cover practical cases (Pelov 2004;
Liu and Truszczynski 2006; Faber, Pfeifer, and Leone 2011).
In this paper, we followed this second approach and intro-
duced the notion of bipolarity in logic programming. Even if
the definition stems from ADFs (Brewka and Woltran 2010),
it is interesting to observe that many common aggregates are
actually bipolar, as shown in Proposition 1. This is an origi-
nal result, which eventually provides an alternative proof for
several complexity results by Son and Pontelli (2007).

Since other known tractability results are not covered by
the class of bipolar Boolean functions, we also introduced
the larger class of atom-orderable Boolean functions, and
proved that the missing cases fall in this class (see Theo-
rem 6). Interesting cases are those associated with PROD,
originally considered by Pelov (2004). In fact, several algo-
rithms were given by Pelov (2004, Figures 5.1–5.3) in order
to show tractability of model checking for Boolean func-
tions induced by PROD. Within our approach, we only had

to show the existence of an ordering for the aggregate atoms
with the desired properties (see the proof of Theorem 6).

Stable models by Pelov, Denecker, and Bruynooghe
(2007) and Son and Pontelli (2007) were recently extended
to the disjunctive case by Shen et al. (2014). The notion of
bipolar and atom-orderable Boolean functions can also be
used in the disjunctive case, and the complexity results are
expected to extend as well in all cases in which the disjunc-
tion is not a complexity source itself (for example, in the
head-cycle free case; Ben-Eliyahu and Dechter, 1994).

The notion of bipolarity, and even more that of atom-
orderability, may be useful for other constructs such as HEX
atoms (Eiter et al. 2014), whose semantics is also defined by
means of Boolean functions. In fact, knowing that an HEX
atom is atom-orderable may allow to implement a more effi-
cient evaluation algorithm depending on the desired seman-
tics (Shen et al. 2014).

Recently, Strass (2015) presented a syntactic counterpart
of bipolar Boolean functions, that is, a subset of the for-
mulas of classical propositional logic whose elements have
all and only bipolar Boolean functions associated to them.
(Roughly, these “bipolar formulas” are in negation normal
form and no propositional atom may occur both positively
and negatively in the formula.) It would certainly be useful
to have a syntactic counterpart of atom-orderable functions.

Discussion

Boolean functions are among the most used extensions of
logic programs. Identifying classes of Boolean functions
with good computational properties is important from a
practical viewpoint because any concrete implementation
must face the complexity of the model checking problem.
In this work, we introduced a unifying semantic class cov-
ering all known tractable cases. It is called atom-orderable
because its main property is that the Boolean function’s ar-
guments – its input atoms – can be ordered so that model
checking can be efficiently done by evaluating Boolean
functions with respect to linearly many sets of atoms. For
common aggregates such an ordering is also efficiently com-
putable, while in general the language can be extended by
allowing the user to specify the ordering along with each
Boolean function in the input program.

There are other advantages resulting from our approach.
In fact, tractability of other aggregates can be easily proved
by showing membership in the class of atom-orderable
Boolean functions. This is the case, for example, of the
median, that is, the number separating the higher half of a
data sample from the lower half. It can be observed that
MEDIAN(S) ◦ v, for ◦ ∈ {<,≤,≥, >}, is atom-orderable:
for S = {w1 : a1, . . . , wm : am}, the ordering � is such
that ai ≺ aj iff wi � ◦ v and wj ◦ v. It is also interesting to
note that the missing cases, that is, MEDIAN(S) ◦ v with
◦ ∈ {=, �=}, can be captured by slightly extending the class
of atom-orderable Boolean functions. In fact, in this case
the aggregate atoms can be ordered by increasing weight,
but in order to obtain a sound model checking procedure
the ordering has to be checked in two directions, ascending
and descending. It is natural to generalise atom-orderable

884



Boolean functions to this case – essentially condition (2) of
Definition 3 is replaced by the following:

For all i ∈ {0, . . . , k} (where k = |Y \X|), we find
Xi ∈ C and Yi ∈ C, where X0 = X , Y0 = Y , and for
0 ≤ j ≤ k − 1 we set Xj+1 = Xj ∪ {min�(Y \Xj)}
and Yj+1 = Yj \ {min�(Yj \X)}.
Similar observations hold for the mode of a distribution.

Median and mode have practical applications in statistics
and probability theory. As an example, we report the case
of the Italian scientific habilitation for university professors,
which requires to have some bibliometric parameters above
the median of the professors currently employed.

Acknowledgements. Mario Alviano was partly supported
by MIUR within project “SI-LAB BA2KNOW – Busi-
ness Analitycs to Know”, by Regione Calabria, POR Cal-
abria FESR 2007-2013, within project “ITravel PLUS” and
project “KnowRex”, by the National Group for Scientific
Computation (GNCS-INDAM), and by Finanziamento Gio-
vani Ricercatori UNICAL.

References

Alviano, M., and Faber, W. 2013. The complexity bound-
ary of answer set programming with generalized atoms un-
der the FLP semantics. In Cabalar, P., and Son, T. C., eds.,
LPNMR 2013, volume 8148 of Lecture Notes in Computer
Science, 67–72. Springer.
Alviano, M., and Faber, W. 2015. Stable model semantics of
abstract dialectical frameworks revisited: A logic program-
ming perspective. In Yang, Q., and Wooldridge, M., eds.,
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence (IJCAI), 2684–2690. AAAI
Press.
Alviano, M., and Leone, N. 2015. Complexity and compi-
lation of GZ-aggregates in answer set programming. Theory
and Practice of Logic Programming 15(4-5):574–587.
Alviano, M.; Calimeri, F.; Faber, W.; Perri, S.; and Leone,
N. 2011. Unfounded sets and well-founded semantics of
answer set programs with aggregates. Journal of Artificial
Intelligence Research. AAAI Press 42:487–527.
Bartholomew, M.; Lee, J.; and Meng, Y. 2011. First-
order semantics of aggregates in answer set programming
via modified circumscription. In Papers from the 2011 AAAI
Spring Symposium on Logical Formalizations of Common-
sense Reasoning. AAAI.
Ben-Eliyahu, R., and Dechter, R. 1994. Propositional se-
mantics for disjunctive logic programs. Annals of Mathe-
matics and Artificial Intelligence 12(1-2):53–87.
Brewka, G., and Woltran, S. 2010. Abstract Dialectical
Frameworks. In Proceedings of the Twelfth International
Conference on the Principles of Knowledge Representation
and Reasoning (KR), 102–111.
Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; and
Woltran, S. 2013. Abstract Dialectical Frameworks Revis-
ited. In Proceedings of the Twenty-Third International Joint

Conference on Artificial Intelligence (IJCAI), 803–809. IJ-
CAI/AAAI.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92–103.
Eiter, T.; Fink, M.; Krennwallner, T.; Redl, C.; and Schüller,
P. 2014. Efficient hex-program evaluation based on un-
founded sets. J. Artif. Intell. Res. (JAIR) 49:269–321.
Faber, W.; Pfeifer, G.; and Leone, N. 2011. Semantics and
complexity of recursive aggregates in answer set program-
ming. Artificial Intelligence 175(1):278–298.
Ferraris, P. 2011. Logic programs with propositional con-
nectives and aggregates. ACM Transactions on Computa-
tional Logic 12(4):25.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Kowalski, R. A., and
Bowen, K. A., eds., Proceedings of the Fifth International
Conference and Symposium on Logic Programming, 1070–
1080. MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9(3/4):365–386.
Gelfond, M., and Zhang, Y. 2014. Vicious circle principle
and logic programs with aggregates. Theory and Practice of
Logic Programming 14(4-5):587–601.
Liu, L., and Truszczynski, M. 2006. Properties and appli-
cations of programs with monotone and convex constraints.
Journal of Artificial Intelligence Research 27:299–334.
Liu, L.; Pontelli, E.; Son, T. C.; and Truszczynski, M. 2010.
Logic programs with abstract constraint atoms: The role of
computations. Artif. Intell. 174(3-4):295–315.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2007. Well-
founded and stable semantics of logic programs with aggre-
gates. Theory and Practice of Logic Programming 7(3):301–
353.
Pelov, N. 2004. Semantics of logic programs with ag-
gregates. Ph.D. Dissertation, Katholieke Universiteit Leu-
ven, Departement Computerwetenschappen, Celestijnen-
laan 200A, 3001 Heverlee, Belgium.
Shen, Y.; Wang, K.; Eiter, T.; Fink, M.; Redl, C.; Krennwall-
ner, T.; and Deng, J. 2014. FLP answer set semantics with-
out circular justifications for general logic programs. Artifi-
cial Intelligence 213:1–41.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extend-
ing and implementing the stable model semantics. Artificial
Intelligence 138(1-2):181–234.
Son, T. C., and Pontelli, E. 2007. A constructive semantic
characterization of aggregates in answer set programming.
Theory and Practice of Logic Programming 7(3):355–375.
Strass, H., and Wallner, J. P. 2015. Analyzing the Compu-
tational Complexity of Abstract Dialectical Frameworks via
Approximation Fixpoint Theory. Artif. Intell. 226:34–74.
Strass, H. 2015. Expressiveness of two-valued semantics
for abstract dialectical frameworks. Journal of Artificial In-
telligence Research 54:193–231.

885




