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Abstract

We consider a new formulation of abduction in which degrees
of “plausibility” of explanations, along with the rules of the
domain, are learned from concrete examples (settings of at-
tributes). Our version of abduction thus falls in the “learn-
ing to reason” framework of Khardon and Roth. Such ap-
proaches enable us to capture a natural notion of “plausibil-
ity” in a domain while avoiding the extremely difficult prob-
lem of specifying an explicit representation of what is “plau-
sible.”
We specifically consider the question of which syntactic
classes of formulas have efficient algorithms for abduction.
We find that the class of k-DNF explanations can be found in
polynomial time for any fixed k; but, we also find evidence
that even weak versions of our abduction task are intractable
for the usual class of conjunctions. This evidence is pro-
vided by a connection to the usual, inductive PAC-learning
model proposed by Valiant. We also consider an exception-
tolerant variant of abduction. We observe that it is possible
for polynomial-time algorithms to tolerate a few adversarially
chosen exceptions, again for the class of k-DNF explanations.
All of the algorithms we study are particularly simple, and in-
deed are variants of a rule proposed by Mill.

1 Introduction

Abduction is the process of passing from an observation to
a plausible explanation or diagnosis. For example, to under-
stand a story in which a man is holding a gun in a bank,
one must “abduce” that (perhaps) the man wishes to rob
the bank. This is not a sound inference, of course – the
man could be a guard, the man could be seeking to place
the firearm in a safe deposit box, etc. – but it represents
at least a highly plausible explanation for the given facts.
Unlike the usual forms of inference of deduction and in-
duction, abduction as a form of inference was only brought
to prominence relatively recently, by Pierce (1931). It was
then promoted as a core task in AI by Charniak and McDer-
mott (1985). It has since been observed that problems as di-
verse as diagnosis (Reggia 1983; Reiter 1987), image under-

∗Work partially performed while the author was affiliated
with Harvard University and supported by ONR grant number
N000141210358. Currently supported by an AFOSR Young In-
vestgator award.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

standing (Cox and Pietrzykowski 1986; Poole 1990), natural
language understanding (Hobbs et al. 1990), planning (Es-
hghi 1988; Missiaen, Bruynooghe, and Denecker 1995), and
plan recognition (Charniak and McDermott 1985) all in-
volve abduction. We will discuss applications slightly fur-
ther in Section 5.

As we will review, the task of abduction itself has already
been formalized in (at least) three distinct ways, and we pro-
pose a new formalization of abduction using examples; the
examples here consist of settings of the various attributes,
e.g., encoding a concrete “scene” or “episode” in the im-
age units of Valiant’s neuroidal model (2000a), or more ab-
stractly, as in the entries in a database. We assume these
examples to have been drawn independently from a com-
mon unknown distribution D, modeling the frequency with
which such scenes occur in a domain. We formulate the task
as searching for a conditional distribution: in addition to this
data, we are given a Boolean query that we wish to “explain”
in a sense we will elaborate on below, and a class of Boolean
formulas H over a distinguished set of attributes of the data
A. A indicates the attributes that we wish to allow in our
explanations, for example, attributes that took values prior
to the condition to be explained, and might therefore be pre-
dictive. We then seek to find a (hypothesis) formula h in the
class H using only the attributes in A such that
(i) Approximate validity: the query is (almost) always true

on examples drawn from the conditional distribution D|h,
i.e., the distribution over assignments induced by D given
that h is satisfied, and

(ii) Plausibility: the probability of h being true under D is
at least some minimum value μ∗. We will often seek to
find a h attaining as large a plausibility μ as possible.

So, h is an “explanation” in the sense that the query empir-
ically follows from h, and h holds sufficiently often. For
example, in our model, the query might indicate whether or
not the key facts of the story – the gun in the bank – are
present in the examples, and the property h to be found rep-
resents the desired “explanation.” A slightly more precise
example that we will return to later involves formulating
a diagnosis. For example, we may have various attributes
about the state of a car, and the query may be something
like key turned ∧ ¬engine running, for which we may seek
an explanation such as h = key turned ∧ ¬gas in tank: al-
though Pr[key turned ∧ ¬gas in tank] may be low, it occa-
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sionally may happen, and surely

Pr

[
key turned∧

¬engine running

∣∣∣∣ key turned∧
¬gas in tank

]
= 1.

So, key turned ∧ ¬gas in tank may be a sufficiently plausi-
ble explanation for key turned ∧ ¬engine running. We will
return to this example when we discuss our algorithms.

We can refer directly to notions of (approximate) “valid-
ity” and “entailment” in this model because we assume that
we have completely specified examples, on which the vari-
ous formulas can be evaluated directly, much as in model-
based reasoning (Kautz, Kearns, and Selman 1995).1 We
stress that all of the entailment constraints of the domain
are thus properties of the distribution D, and are therefore
represented implicitly in the problem formulation by the ex-
amples drawn from D.

In other words, this entailment relation underlying our
abductive reasoning task must be learned from the exam-
ples drawn from D. We seek computationally efficient algo-
rithms with a “PAC” guarantee: that with high probability
(over the examples) both conditions are approximately sat-
isfied. (We will define the task more formally in Section 2.)
Our model thus belongs to the learning to reason frame-
work of Khardon and Roth (1997b). Indeed, Khardon and
Roth suggested in that work that such a learning formulation
of abduction was possible, although they did not actually
present a formalization of abduction in their framework. In
a later work, Roth (1996) also briefly indicated that various
aspects of an abduction task could be carried out in neural
networks (and thus learned) but again did not elaborate on
the semantics of the task. Similarly, in their work on model-
based reasoning, Kautz et al. (1995) likewise both consid-
ered model-based abduction and indicated that model-based
reasoning could use random examples, but again did not ac-
tually formally specify the semantics of the task. Our work
is thus (perhaps surprisingly) the first to explicitly consider
this formulation of abduction.

It is already widely appreciated that learning is a highly
effective alternative to explicit knowledge engineering. In-
deed, machine learning (e.g., from examples) has been far
more effective than traditional knowledge engineering at ac-
quiring robust representations across a variety of domains
and tasks. Relatedly, Valiant (1994; 2000a) argued that
learned representations should enable systems to better cope
with an open world, and thus learning should be used as
a basis for robust cognition. But, the main motivation for
treating abduction itself as a learning task as we do is that
it provides a means of efficiently capturing natural, domain-
specific notions of the “plausibility” of explanations.

In particular here, we avoid the need to explicitly repre-
sent a (prior) distribution. Both the probabilistic version of
the “set covering” model of abduction presented by Bylan-
der et al. (1991) and the models of abduction based on prob-
abilistic graphical models (Pearl 1988; Poole 1993) were

1We note that the role of proofs in such models is that they serve
as a means to decide entailment under incomplete information. We
leave the extension of this model to partial information as a subject
for future work.

Bayesian models that depended on assigning some such
prior probabilities to the various explanations. In these
models, “plausibility” of the proposed conditions is evalu-
ated in terms of these probabilities. The need to estimate
such a prior was deemed to be one of the main drawbacks of
these previous probabilistic models of abduction (McIlraith
1998), as good priors are hard to estimate. In this way, our
formulation thus differs crucially from these previous mod-
els. This is also how our formulation differs from, for ex-
ample that of Hobbs et al. (1990), in which explicit weights
or costs (without necessarily having a probabilistic interpre-
tation) are attached to the various literals to be used in an
explanation. Hobbs et al. briefly suggest that an interpre-
tation in terms of conditional probabilities might be used to
obtain such weights, but the assignment of specific weights
to the literals is problematic unless they refer to events that
are for example either disjoint or uncorrelated. This is a
recurring limitation of the proposals that attach weights or
probabilities directly to attributes.

Moreover, in the non-probabilistic logic-based or logic
programming (Denecker and Kakas 2002) approaches, the
usual syntactic criteria, such as minimizing the number of
literals as done in ATMS (Reiter and de Kleer 1987), appear
to serve essentially a proxy for some other kind of unspec-
ified domain-specific “plausibility” notion, by appealing to
something like Occam’s razor. McIlraith (1998) nicely dis-
cusses the problems that may arise with these approaches,
for example they are highly representation-dependent. Pre-
vious works on combining learning and abduction sim-
ply used such syntactic minimization criteria for plausibil-
ity (Thompson and Mooney 1994; Flach and Kakas 2000).
Another probabilistic formulation, proposed by Bacchus et
al. (1996) proposed to use a maximum-entropy distribution
over the attributes as a prior, which is essentially similar to
these syntactic criteria. In particular, it is also representation
language dependent and may be simply inappropriate.

Our Results

The main question we consider in this work is, for which
classes of hypothesis formulas H do efficient algorithms
abduce explanations in our new model?2 We find that a
particularly simple algorithm abduces k-DNF explanations.
We further generalize this algorithm to provide some weak
“exception tolerance”: if the best k-DNF explanation only
gives the query conditional probability 1− ε for some ε > 0,
then the exception-tolerant algorithm finds a k-DNF that
gives the query conditional probability 1 − O(nkε) when
there are n attributes in the vocabulary. That is, the proba-
bility of counterexamples to the “explanation” we find may
be O(nk) times greater than that of the best possible expla-
nation.3 Thus, we see that this new abductive reasoning task

2We do not limit the class of representations that the query is
drawn from, apart from assuming that it can be evaluated efficiently
on an example. The complexity of the query representation appears
to be largely irrelevant in this model.

3Although this O(nk) increase is indeed somewhat large, we
stress that it should be contrasted with the state-of-the-art in such
exception-tolerant supervised learning of k-DNFs, which similarly
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is feasible for some natural classes of explanations, even in
the presence of some noise or rare exceptions.

We also stress that both the algorithms and the query rep-
resentations we use in these results are particularly sim-
ple, and interpretable by humans. In particular, the algo-
rithms, which essentially eliminate terms when they en-
counter (too many) bad examples for these terms, follow
a classical human strategy for identifying hypotheses pro-
posed by Mill (1843, Book III, Chapter 8). We therefore
view our algorithms and the representations we produce
as being cognitively plausible, although our model did not
strictly require it.

On the other hand, we find that abducing the usual class
of conjunctions as explanations is likely to be intractable,
even if we allow a richer representation as an explanation:
Any algorithm that finds explanations whenever there exists
a conjunction that is an explanation would yield an algo-
rithm for PAC-learning DNF formulas in the standard PAC-
learning model (Valiant 1984). This has been the central
open problem in PAC-learning since the model was first
proposed by Valiant (1984), and recent results by Daniely
et al. (2014) and Daniely and Shalev-Shwartz (2014) show
that the problem may be intractable, given a new assump-
tion about the hardness of refuting random k-SAT instances
(stronger than Feige’s assumption (2002)). Since most of
the usual classes of representations can either be expressed
by k-DNF formulas or can themselves express conjunctions,
this result together with our algorithms essentially settles the
question of which representations have efficient algorithms
in our model.

2 Abduction for k-DNF Explanations

In this work, we are seeking to find explicit representations
of “explanations” of possibly low, but non-negligible prob-
ability for which conditioned on the corresponding event,
some given query condition to be explained or diagnosed is
(almost) always satisfied. Our probability distributions will
not be given explicitly, but instead will be represented by ex-
amples drawn from the distributions in question. Formally,
we focus on the following class of problems:

Definition 1 (Abduction) For a representation class H of
Boolean formulas over propositional attributes x1, . . . , xn,
the (proper) abduction task is as follows. We are given as
input m independent examples x(1), . . . , x(m) from an ar-
bitrary distribution D over {0, 1}n (assignments to the n
attributes), a query formula c(x) over x1, . . . , xn, and an
alphabet A ⊆ {x1, . . . , xn}, for which there exists h∗ ∈ H
only using attributes in A such that Pr[c(x) = 1|h∗(x) =
1] = 1 and Pr[h∗(x) = 1] ≥ μ. Then, with probability
1−δ, in time polynomial in n, 1/μ, 1/ε, and 1/δ, we find an
explanation h ∈ H only using attributes in A such that
1. Pr[c(x) = 1|h(x) = 1] ≥ 1− ε and

2. Pr[h(x) = 1] ≥ Ω
((

(1− ε)μn
)d)

for some d ∈ N.

(We will write events c(x) = 1 as c and h(x) = 1 as h.)

suffers a O(nk/3) blow-up of the error (Awasthi, Blum, and Sheffet
2010).

So, in our car diagnosis example, suppose H is the class
of 2-DNF formulas, and for the query c = key turned ∧
¬engine running we omit the attribute engine running from
A in order to avoid producing unenlightening formulas
that might otherwise “diagnose c” with properties that use
¬engine running, such as c itself. Then, key turned ∧
¬gas in tank, being a conjunction of two literals (a term of
size two), indeed counts as a 2-DNF and furthermore does
not mention engine running. Therefore, as argued in the In-
troduction, we expect that this formula would be a suitable
explanation h ∈ H solving the abduction task.

Remarks on the Definition

Naturally, the running time and sample complexity generally
depend polynomially on the number of attributes n, proba-
bility of observing the condition μ, and degree of approxi-
mation ε desired. As with PAC-learning, we will actually ob-
tain running times that only depend polynomially on log 1/δ
rather than 1/δ (but in general we might be satisfied with
the latter). Furthermore, we could consider an “improper”
version of the problem, finding representations from some
larger, possibly more expressive class than the H containing
the “optimal” hypothesis h∗. The form of the representation
is naturally important for some applications (we will discuss
an example in Section 5), though, and so in this work we
focus primarily on the proper version of the problem.

We formulated the second condition to include a relaxed
notion of plausibility, in which the probability of the diag-
nosis/explanation only needs to be polynomially related to
the promised minimum probability of an explanation μ; we
also allowed the loss of some polynomial factors in the di-
mension n, and multiplicative 1 − ε losses in the approx-
imation. Our positive results, for k-DNFs, do not require
any such notion of approximation—whenever a condition
h∗ that is satisfied with probability at least μ exists, our al-
gorithms will actually find a condition h that is also satisfied
with probability at least μ. But, the value of such an abstract
definition is in the power it grants to establish (1) connec-
tions to other models, in which case, it is quite typical to ob-
tain a (1− ε) multiplicative approximation, hence the use of
ε as a generic “approximation” parameter, and (2) negative
results, in which we would like the broadest possible defi-
nition. Indeed, we will see that for some extremely simple
representations – specifically, conjunctions – the abduction
task is unfortunately unlikely to have efficient algorithms,
even in this very liberal sense in which we allow arbitrary
polynomial dependence on the dimension n and the opti-
mum probability μ.

We note that we could also have formulated the second
condition as finding a h that makes Pr[h|c] suitably large,
that is, that h is sufficiently “plausible” given that c is known
or presumed to be true.4 We show in Appendix A that this
formulation of the abduction task is essentially equivalent to
the definition we use.

4We thank a reviewer for suggesting this formulation.
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The Elimination Algorithm for Abduction

Valiant (1984) gave an analysis showing that the “elimina-
tion algorithm” (Algorithm 1), a simple method essentially
proposed by Mill (1843, Book III, Chapter 8), is a PAC-
learning algorithm for disjunctions. We note that the same
algorithm also can be used to identify a k-DNF explanation
(in our sense) quite efficiently.

input : Examples x(1), . . . , x(m), query c, alphabet
A.

output: A k-DNF over attributes from A.
begin

Initialize h to be the disjunction over all terms of
at most k literals on the alphabet A.
for i = 1, . . . ,m do if c(x(i)) = 0 then

forall the T ∈ h do if T (x(i)) = 1 then
Remove T from h.

end

return h.
end

Algorithm 1: Elimination algorithm

Theorem 2 The abduction task for k-DNF explanations
can be solved by the elimination algorithm using O( 1

με (n
k+

log 1/δ)) examples, obtaining a k-DNF h with Pr[h] ≥ μ.
Proof: For the given sample size, it is immediate that
the elimination algorithm runs in polynomial time. We thus
need only establish correctness.

Initially every term of size at most k on A is contained
in h, so h contains all of the terms of h∗. We claim that
this invariant is maintained: since Pr[c|h∗] = 1, whenever
c(x(i)) = 0, it must be that every term of h∗ is falsified on
x(i). Thus, these terms are not removed during any iteration,
so they are included in the final k-DNF h. It therefore fol-
lows that since Pr[h∗] ≥ μ and {x : h∗(x) = 1} ⊆ {x :
h(x) = 1}, Pr[h] ≥ μ.

We now bound the probability that the algorithm ter-
minates with a h such that Pr[c|h] < 1 − ε. We note
that for such h, Pr[¬c ∧ h] > εPr[h]. For any h with
Pr[h] ≥ μ, it follows that Pr[¬c ∧ h] > με. Thus, for
N

def
=

∑k
i=1

(
2n
i

) ≤ (
2en
k

)k
(the number of terms of size at

most k), after m = 1
με (N ln 2+ ln 1/δ) examples, the prob-

ability that such a h is falsified when c(x(i)) = 0 for all i is
at most (1 − με)m ≤ e− ln(2N/δ) = δ/2N . So, by a union
bound over the (at most) 2N such k-DNFs, we find that the
probability of any of them being false on every example is at
most δ. Since the h we output is guaranteed by construction
to be false for every x(i) where c(x(i)) = 0, we find that
with probability 1− δ, Pr[c|h] ≥ 1− ε as needed.

For our example problem of generating a k-DNF diag-
nosis for key turned ∧ ¬engine running given a set of ex-
ample situations, the elimination algorithm simply rules out
all of the terms which were true in examples where ei-
ther key turned was false or engine running was true. For

k ≥ 2, this will yield a disjunction of terms that includes the
term key turned ∧ ¬gas in tank, possibly among some oth-
ers that either are possible explanations or never occurred
in our examples. For example, perhaps wiper fluid low ∧
¬tire pressure ok never occurred in any example. It is intu-
itively unlikely to be an explanation of the query, but without
examples in which wiper fluid low ∧ ¬tire pressure ok ac-
tually occurred, it remains in the h we return as a possible
explanation (that has not yet been ruled out). The disjunc-
tion of such terms is our maximally plausible condition.

We note that we could modify the algorithm to also elimi-
nate such spurious terms that never occurred in any example;
so, in our example scenario, this will only leave those terms
that have been observed to be satisfied when both key turned
and ¬engine running hold. Then as long as this modified al-
gorithm is provided with O(n

k

με (k log n + log 1/δ)) exam-
ples, it still returns explanations with plausibility at least
(1 − ε)μ. Indeed, letting N continue to denote the number
of terms of size at most k, if a term is true with probability
greater than με/N over D, then N

με (logN + log 2/δ) exam-
ples only fail to include an example of such a term being
satisfied with probability at most δ/2N . Thus, with proba-
bility 1− δ/2, the only terms of the optimal h∗ that may be
deleted are only individually satisfied with probability εμ/N
over D—in aggregate, with probability at most εμ. Hence
with probability at least (1 − ε)μ over D, h∗ must be satis-
fied by some term that is included in the returned h. The rest
of the analysis is the same.

3 Exception-Tolerant Abduction

We now consider a variant of our basic model in which
no explanation entails the target condition with conditional
probability 1. For example, we may be looking for an ex-
planation for the observation that “Tweety flies,” but no
representation in our class may possibly perfectly explain
“flying”—we may have that 99.99% of the birds we have ob-
served fly, but as this is less than 100%, our earlier method
cannot propose flying if we have seen enough examples
of birds, since an encounter with a counterexample causes
terms of the desired explanation to be deleted. Or, in our car
example, suppose that we would like to identify a condition
that entails engine running. The qualification problem (Mc-
Carthy 1980) is that it is generally impossible to identify a
condition that strictly entails such things. But, in the vast
majority of cases, we expect that when key turned holds, so
does engine running. Formally, this is true if ¬gas in tank
and other, perhaps even unformalized conditions are indeed
relatively rare occurrences, say occurring no more than 0.1%
of the time in total. We would like an alternative framework
that allows us to find such slightly imperfect explanations.

We will not assume any additional structure on the errors,
e.g., that they are the result of independent noise. This “ag-
nostic” formalization captures the philosophy that the world
may actually be described precisely by complicated rules,
but we wish to merely find an explanation that is often suffi-
cient. This is one possible PAC-learning style solution to the
qualification problem in general (see works by Roth (1995)
and Valiant (1994; 1995; 2006) for more on this aspect).
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We observe that a simple variant of the elimination algo-
rithm achieves a weak kind of exception tolerance: suppose
that we only delete the literals that are true on more than
8μεm examples where c is false out of the m total exam-
ples. (8 is a convenient constant larger than 1.) Then:
Theorem 3 If there is a k-DNF h∗ with probability at least
μ/4 and at most 4μ that gives c conditional probability 1−ε,
then given Ω( 1

με (log
nk

δ )) examples, we find that the above
ε-tolerant elimination algorithm obtains a k-DNF explana-
tion with probability at least that of h∗ of being satisfied,
under which c is true with probability 1−O(nkε).

So, for example if key turned ∧ ¬engine running only
holds ∼ 0.1% of the time, and our car is described by
∼ 100 possible terms (say pairs of ∼ 10 attributes), then we
could obtain a rule such as key turned as an explanation for
engine running that is good except with probability ∼ 10%
(i.e., ∼ 10−3 × 102 = 10−1). Of course we would like a
better dependence on the size of our vocabulary, for exam-
ple matching the dependence of nk/3 achieved by Awasthi
et al. (2010) for agnostic PAC-learning for k-DNFs; we sug-
gest this as a natural direction for future work. Nevertheless,
we again find that our new formulation of abduction also
permits a rather simple algorithm to find the same simple
kind of explanations, but now moreover features some ro-
bustness to rare counterexamples, as might occur in a com-
plex open world.

The proof will require the Chernoff bound:
Theorem 4 (Chernoff bound) Let X1, . . . , Xm be inde-
pendent random variables taking values in [0, 1], such that
E[ 1m

∑
i Xi] = p. Then for γ ∈ [0, 1],

Pr

[
1

m

∑
i

Xi > (1 + γ)p

]
≤ e−mpγ2/3

and Pr

[
1

m

∑
i

Xi < (1− γ)p

]
≤ e−mpγ2/2

Proof of Theorem 3: We first observe that for the “ideal”
k-DNF h∗ for which Pr[c|h∗] ≥ 1 − ε and 4μ ≥ Pr[h∗] ≥
μ/4, Pr[¬c ∧ h∗] ≤ Pr[h∗]ε ≤ 4με. So, no term of h∗ may
be true when c is false with probability greater than 4με.
Given more than 3

4με ln
N
δ examples (where N is the number

of terms of size at most k), it follows from the Chernoff
bound that the probability that any one of these (at most N )
terms is true when c is false in more than a 8με fraction of
the examples is at most δ

N .
At the same time, taking γ = 1/2, we find that the prob-

ability that any term T for which Pr[¬c ∧ T ] ≥ 16με re-
mains in our k-DNF after 8

16με ln
N
δ examples is also at most

δ
N . Noting that no term T can give ¬c ∧ T probability both
greater than 16με and less than 4με simultaneously, we can
simply take a union bound over the appropriate event for all
of the at most N terms to find that the overall probability of
any occurring is at most δ. When none occur, the algorithm
obtains a k-DNF h that contains all of the terms of h∗ – and
so Pr[h] ≥ Pr[h∗] ≥ μ/4 – and moreover (by a union bound
over the terms) gives Pr[¬c ∧ h] ≤ 16Nμε. Hence, for this
h, Pr[¬c|h] ≤ 64Nε. Thus, Pr[c|h] ≥ 1− 64Nε.

Obtaining a value for μ. Although we have placed a
stronger condition on h∗ – we now require an upper bound
on its probability in addition to a lower bound – we now
argue that we can find a satisfactory estimate of μ by re-
peatedly running the algorithm as follows. We start by
making a conservative “guess” of μ1 = 1/4; certainly,
Pr[h] ≤ 1 = 4μ1. In general, given a guess μi, we run
our algorithm using μi to obtain a candidate h. We then
check to see that h is true on at least a μi/2-fraction out of
m ≥ 12

μi
ln 1

δi
examples for δi = δ/i(i + 1). If so, then we

return h, and if not, we put μi+1 = μi/4 and repeat.
This works for the following reason. First, the Chernoff

bound guarantees that when Pr[h] < μi/4, h will not pass
except with probability δi; so if h does pass, there is some h
with Pr[h] ≥ μi/4 (with probability 1− δi). Moreover, the
Chernoff bound also guarantees that h will pass if Pr[h] ≥
μi (except with probability δi). So, overall with probability
1−∑

i δi ≥ 1− δ, the tests will fail until some iteration i∗
in which Pr[h∗] ≥ μi∗/4 for some h∗; we know that since
iteration i∗ − 1 failed, for any h, Pr[h] < μi∗−1 = 4μi∗ .
We may or may not obtain a h that passes on this iteration,
but if we do, our estimate μi∗ suffices for the guarantee of
our algorithm to ensure that h is a solution to the abduction
task. Regardless, on iteration i∗ + 1, we have that Pr[h∗] ≥
μi∗/4 = μi∗+1, and then the Chernoff bound guarantees
that such an h will pass (except with probability δi∗+1), and
also Pr[h∗] ≤ μi∗ = 4μi∗+1 (with probability 1 − δi∗ ), so
again μi∗+1 is a sufficiently close estimate that our guarantee
applies and h is a solution to the abduction task.

4 Abduction for Conjunctions Solves Hard

Learning Problems

Abduction is frequently cast as the task of finding explana-
tions given as a conjunction of literals. It is therefore nat-
ural to ask whether our abduction task for conjunctions is
tractable. Unfortunately, we obtain evidence that it is not:

Theorem 5 If the abduction task for conjunctions can be
solved (even improperly), then DNF is PAC-learnable in
polynomial time.

We remind the reader of the definition of PAC-learning:

Definition 6 (PAC-learning (Valiant 1984)) A class C of
representations of Boolean predicates is said to be (improp-
erly) PAC-learnable if the following kind of polynomial time
algorithm exists. Given access to examples drawn indepen-
dently from an unknown distribution D together with the
evaluation of some unknown h∗ ∈ C on the examples and
input parameters ε and δ, it returns an efficiently evaluable
hypothesis h such that with probability 1− δ over the exam-
ples, for x drawn from D, Pr[h(x) = h∗(x)] ≥ 1− ε.

The proof is actually quite similar to the analogous result
for agnostic learning of conjunctions by Kearns et al. (1994):
Recall that a weak learning algorithm is a PAC-learning
algorithm that merely produces a hypothesis h such that
Pr[h = h∗] ≥ 1/2 + 1/poly(n, |h∗|) (i.e., for some arbi-
trary polynomial in the size of the examples and representa-
tion h∗). A famous result by Schapire (1990) showed how to
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efficiently reduce PAC-learning to weak learning by “boost-
ing.”
Proof of Theorem 5: Suppose our examples are of the
form (x, b) where b = ϕ(x) for some DNF ϕ. We will
show how to obtain a weak learner for ϕ from an algorithm
for abducing conjunctions, thus obtaining a PAC-learning
algorithm by boosting.

Suppose ϕ has size s. If ϕ is satisfied with probabil-
ity greater than 1/2 + 1/s or less than 1/2 − 1/s, then
the constant functions will do as weak learners, so assume
ϕ is satisfied with probability 1/2 ± 1/s. Then, we see
that some term T in ϕ is satisfied with probability at least
1/2s − 1/s2

def
=μ. We note that Pr[ϕ|T ] = 1. An algorithm

for abducing conjunctions (with ε = 1/4) for c(x, b) = b

and A = {x1, . . . , xn} therefore finds a hypothesis T̃ such
that Pr[T̃ ] ≥ 1/p(1/μ, n, 4/3) ≥ 1/p′(n, s) for some poly-
nomial p′(n, s) and Pr[ϕ|T̃ ] ≥ 3/4.

Our weak learner is now as follows: if Pr[ϕ|¬T̃ ] ≥ 1/2,
we use the constant 1, and otherwise we use T̃ . Note that
this is equivalent to a hypothesis that predicts according to a
majority vote on ¬T̃ (and predicts 1 on T̃ ). We note that it
is correct with probability at least
1

2
(1− Pr[T̃ ]) + Pr[ϕ|T̃ ] Pr[T̃ ] ≥ 1

2
+

(
3

4
− 1

2

)
Pr[T̃ ]

≥ 1

2
+

1

4p′(n, s)
which is sufficient for weak learning.

As a consequence, we obtain evidence that abducing con-
junctons is hard: recent work by Daniely et al. (2014)
and Daniely and Shalev-Shwartz (2014) has established that
learning DNF is hard under a plausible conjecture:
Theorem 7 (Daniely and Shalev-Shwartz 2014) If there
is some f : N → N such that f → ∞ for which no
polynomial-time algorithm can refute random k-SAT in-
stances with nf(k) clauses, then there is no polynomial-time
PAC-learning algorithm for DNF.
The premise of the theorem is a strengthening of Feige’s hy-
pothesis (Feige 2002), which was that a linear number of
constraints are hard to refute. (Note that the state of the
art requires nk/2 clauses (Coja-Oghlan, Cooper, and Frieze
2010); as we add more constraints, it becomes easier to find
a refutation.) Thus, as a corollary of Theorem 5, we find:
Corollary 8 If there is some f : N → N such that f → ∞
for which no polynomial-time algorithm can refute random
k-SAT instances with nf(k) constraints, then there is no al-
gorithm that solves the abduction task for conjunctions.

So, although this hypothesis is new and largely untested,
it still provides some complexity-theoretic evidence that we
should not expect to find a tractable algorithm for abduc-
ing conjunctions in our new model. This result essentially
settles the question of which (natural) representations can
be produced as explanations in our new model: Most natu-
ral knowledge representations are either expressible by a k-
DNF, and thus fall within the scope of our earlier algorithms,
or can themselves express conjunctions, and thus seem to be
outside the scope of any algorithm on account of Theorem 5.

5 Applications and Further Motivations

Our use of k-DNF representations for abduction is a bit un-
usual. To our knowledge, only Inoue (2012) has previously
considered abducing DNF representations. We therefore
conclude with a brief discussion of some notable potential
applications.

Goal Formulation

Our results seem particularly suitable for the following ap-
plication in planning: consider an essentially propositional
formulation of planning such as in STRIPS or a factored
(PO)MDP. Suppose we are given a collection of example
traces of the agent interacting with the (possibly nondeter-
ministic) environment and a (possibly complex) goal predi-
cate. Then our algorithm, given the traces as examples to-
gether with the goal as the query c and an alphabet compris-
ing all of the state attributes (for example), can identify a
k-DNF condition that is satisfied moderately often, that en-
tails the goal is satisfied (when such a k-DNF exists). This
k-DNF can then be provided as a representation of the goal
for planning. This is particularly useful if c does not have
a representation as a k-DNF—for example, perhaps we do
not have an attribute for it and the actual representation of c
requires large terms.

As an informal example, if our goal is “be in San Diego
and have a car and eat fish tacos,” then perhaps a suitable
2-DNF subgoal is “be on an airplane” and “the airplane is
bound for SAN,” or “be on a train” and “the train is bound
for San Diego,” or “drive a car” and “hold a map to San
Diego,” since we’d anticipate that in the traces where any
of these terms is satisfied, the agent reached San Diego and
then obtaining the car and eating fish tacos followed as a
matter of course. Providing “be in San Diego and have a
car and eat fish tacos” to an algorithm for our abduction task
as the query c will obtain such a 2-DNF as h if we have a
suitable set of example traces, in which the agent sometimes
actually arrives in San Diego via such means.

Note that some applications for SAT-solvers/resolution
theorem-proving in planning require DNF goals: Suppose
we want to use resolution (equivalently, clause-learning
SAT-solvers (Beame, Kautz, and Sabharwal 2004)) to prove
that a fixed plan in a given nondeterministic environment
satisfies a goal, along the lines of the “plan test” step
of Castellini et al. (2003) (such a step also appears in
Juba (2016)). Then, since resolution is a proof system
for DNFs (by refuting their negations, which are CNFs),
we would need to represent the goal by a DNF. Moreover,
DNFs of low width (i.e., few literals per clause) are gener-
ally considered preferable: In addition to a preference for
short clauses being a standard heuristic in clause learning
SAT solvers (but see Zhang et al. (2001)), SAT solvers are
guaranteed to be efficient whenever a small-width proof ex-
ists (Atserias, Fichte, and Thurley 2011); but, the input must
have small width in order for such a proof to exist. A k-DNF
representation is thus a good fit: we need a DNF in order
to apply such planning techniques, and we would generally
prefer a DNF with at most k literals per clause (as found by
our algorithm), if one can be found.
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Selection of Preconditions

The problems we consider here arise in Valiant’s Robust
Logic framework (Valiant 2000b), which was a proposal to
capture certain kinds of common sense reasoning (Valiant
1994; 1995; 2006); the problem also arises in a simi-
lar probabilistic formalization of common sense reason-
ing by Roth (1995), developed further by Khardon and
Roth (1997a). Roughly, the issue is that Valiant and Roth
show that the famous non-monotonic effects of common
sense reasoning can be captured naturally by a probabilis-
tic semantics, in which the incorporation of new knowledge
is captured by filtering the examples used for reasoning, re-
ferred to by Valiant as “applying a precondition.” So for
example, one makes the nonmonotonic inference that birds
fly as follows: given that a scene x∗ concerns a bird (say,
has bird = 1 for some such attribute) we filter our set of ex-
amples X to obtain X|bird = {x ∈ X : xbird = 1}. Now,
in this set X|bird, we decide can fly by examining the frac-
tion of x ∈ X|bird for which can fly = 1, and asserting
can fly = 1 if this fraction is sufficiently large.5 The condi-
tion bird used to filter the examples is the precondition for
the scene x∗ here.

In these works, the precondition is simply assumed to be
given; how it would be selected is not explicitly considered.
Another work by Valiant (1994, p.164) informally suggests
that such “context” might be simply given by the attributes
that are currently firing in the neuroidal model. But, this
view leads to problems: the specific, irrelevant details of
the scene may never have been encountered before, leaving
no examples to perform the common sense reasoning. The
problems we formalize here might be viewed as the prob-
lem of proposing a candidate precondition (relative to some
desired property) that has enough data to offer meaningful
predictions.

We can formalize such a problem as:

Definition 9 (Precondition search) The (optimal) precon-
dition search task for a class of representations H over
n attributes is as follows. Given an observation example
x∗ ∈ {0, 1}n and a query representation c for some arbi-
trary distribution D over {0, 1}n such that D(x∗) > 0, if
there exists some h∗ ∈ H such that h∗(x∗) = 1, Pr[c(x) =
1|h∗(x) = 1] = 1, and Pr[h∗(x) = 1] ≥ μ, using examples
drawn from D, find an h ∈ H in time polynomial in n, 1/ε,
1/μ, and 1/δ such that with probability 1 − δ over the ex-
amples, h(x∗) = 1, Pr[c(x) = 1|h(x) = 1] ≥ 1 − ε, and
Pr[h(x) = 1] ≥ μ. Such an h is said to be a precondition
for x∗ relative to c.

Theorem 10 The elimination algorithm solves optimal pre-
condition search for k-DNFs.

Proof: Notice, the disjunction of all h ∈ H for which
Pr[¬c ∧ h] = 0 has probability equal to at least that of any
h∗ ∈ H that maximizes Pr[h∗]. So, since H is the class of

5Naturally, this is only interesting for example scenes x∗ in
which can fly is unknown, but we won’t treat incomplete informa-
tion in depth here. Valiant and Roth simply assume that x∗ is miss-
ing attributes, whereas the “training” examples X are complete.
See Michael (2010; 2014) and Juba (2013) for a fuller treatment.

k-DNFs, h∗ must be equal to the disjunction over all such
h ∈ H with probability 1 over the distribution over exam-
ples D. In particular, since D(x∗) > 0, if x∗ satisfies any
h ∈ H, x∗ must satisfy h∗. Moreover, our analysis of the
elimination algorithm in the proof of Theorem 2 also shows
that whenever x∗ satisfies h∗, it also satisfies the h we ob-
tain, as h contains all of the terms of h∗. So, the elimination
algorithm is also solving this precondition selection problem
relative to a query for k-DNFs.

In a standard example, we wish to select a precondi-
tion with respect to which we will make judgments about
whether or not a bird Tweety flies in some particular ex-
ample scene x∗. Let’s suppose that we want to determine
if there are preconditions supporting the conclusions that
Tweety flies or Tweety does not fly—so we will search
for preconditions that would support the conclusion c1 =
can fly and that would support c2 = ¬can fly. Now, fur-
ther suppose that Tweety is a penguin, so x∗

bird = 1 and
x∗
penguin = 1. We can now find preconditions h1 for c1 and

h2 for c2—say h1 = bird and h2 = penguin (we’ll suppose
that can fly is unknown in x∗). In both cases, the abduced
condition is more specific than either c1 or c2 in that it (ap-
proximately) entails the query in each case, and yet it is gen-
eral as possible with respect to H, given that it is true of the
specific scene x∗ and (approximately) entails the query. So,
intuitively, the preconditions give “evidence” for or against
can fly in the scene x∗. We might prefer ¬can fly since,
within the filtered set of examples X|bird, we could again
search for a precondition for ¬can fly which would turn up
the precondition penguin; but for X|penguin, there does not
exist any precondition for the query can fly, since any such
h will eliminate all examples in X|penguin. This suggests
a connection to argument semantics (Dung 1995) (see also
Michael (2015)), which we leave for future work.

This application is related to the selection of a “refer-
ence class” for estimation, a problem that featured promi-
nently in Reichenbach’s theory of probability (1949). Our
use of disjunctive representations here does not follow Re-
ichenbach’s suggestion or its refinements by Kyburg (1974)
or Pollock (1990), to find a most specific reference class,
and relatedly, to disallow disjunctive classes; see Bacchus et
al. (1996) for a discussion of this approach and some prob-
lems it encounters. Alas, the most natural representations
for reference classes are arguably conjunctions, which The-
orem 5 suggests may be out of reach.
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A An Alternative Formulation

Recall that we defined the abduction task as, given a tar-
get condition c(x), finding a h ∈ H that gives Pr[c(x) =
1|h(x) = 1] ≥ 1 − ε and Pr[h(x) = 1] ≥ μ (or in many
cases, simply maximizing Pr[h(x) = 1] subject to the first
constraint). We could have formulated this instead as a prob-
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lem of computing a “maximum posterior” hypothesis, i.e.,
given the “data” that c(x) = 1.6

Definition 11 (MP Abduction) For a representation class
H of Boolean formulas over propositional attributes
x1, . . . , xn, the MP abduction task is as follows. We are
given as input m independent examples x(1), . . . , x(m) from
an arbitrary distribution D over {0, 1}n, a query formula
c(x) over x1, . . . , xn, and an alphabet A ⊆ {x1, . . . , xn},
for which there exists h∗ ∈ H only using attributes in A
such that Pr[c(x) = 1|h∗(x) = 1] = 1 and Pr[h∗(x) =
1|c(x) = 1] ≥ α. Then, with probability 1− δ, in time poly-
nomial in n, 1/α, 1/Pr[c(x) = 1], 1/ε, and 1/δ, we find an
explanation h ∈ H only using attributes in A such that
1. Pr[c(x) = 1|h(x) = 1] ≥ 1− ε and

2. Pr[h(x) = 1|c(x) = 1] ≥ Ω

((
(1− ε)αPr[c(x)=1]

n

)d
)

for some d ∈ N.

We included factors of Pr[c] in the time and approximation
bounds which were not present in the original parameters; it
was not necessary since given Pr[c|h] ≥ 1 − ε (i.e., con-
dition 1), Pr[c] ≥ Pr[c ∧ h] ≥ (1 − ε) Pr[h], and thus
(1 − ε)μ ≤ Pr[c], so any factor of Pr[c] in such a bound
can be replaced by additional factors of (1 − ε)μ. Similar
calculations show that this formulation is essentially equiva-
lent to the “prior plausibility” formulation of abduction that
we originally proposed:

Theorem 12 Optimal solutions to MP abduction solve the
original abduction task with plausibility Pr[h(x) = 1] ≥
(1−ε)μ and optimal solutions to the original abduction task
solve MP abduction with Pr[h(x) = 1|c(x) = 1] ≥ (1 −
ε)α; more generally, solutions to the MP abduction task are
solutions to the original task and vice-versa.

Proof: First suppose that h ∈ H satisfies the common
condition 1, that Pr[c|h] ≥ 1− ε. Now, we write

Pr[h(x) = 1|c(x) = 1]
def
=α(h).

Equivalently, Pr[h ∧ c] = α(h) Pr[c]. Now, notice: we can
rewrite Pr[h] = Pr[h∧ c] +Pr[¬c∧ h], so Pr[h]−Pr[¬c∧
h] = Pr[h∧c]. Therefore, Pr[h]−Pr[¬c∧h] = α(h) Pr[c],
where Pr[c] is fixed independent of h (since c is given). We
can rewrite the first condition, Pr[c|h] ≥ 1 − ε as Pr[¬c ∧
h] ≤ εPr[h]; so, since the first condition is satisfied,

(1− ε) Pr[h] ≤ Pr[h]− Pr[¬c ∧ h] ≤ Pr[h].

Hence, (1− ε) Pr[h] ≤ α(h) Pr[c] ≤ Pr[h] and so choosing
h to maximize Pr[h] is equivalent to choosing h to maximize
α(h) (and hence, Pr[h|c]) within a multiplicative 1−ε factor.
That is, optimal solutions to MP abduction solve the original
abduction task with plausibility Pr[h] ≥ α(h∗) Pr[c] ≥ (1−

6MP abduction resembles the Bayesian “maximum a posteri-
ori” (MAP) inference, but note that we do not have a prior distri-
bution over representations, only a distribution over attributes that
may or may not satisfy representations. Naturally, if the examples
uniquely satisfied one representation, these would be equivalent,
but in general there may be many representations satisfied by any
given example.

ε)μ and an optimal solution to the original abduction task
solves MP abduction with α(h) ≥ (1 − ε) Pr[h∗]/Pr[c] ≥
(1− ε)α(h∗) = (1− ε)α.

For the final part, we transform the inequalities by ap-
plying f(p) = 1

C

(
(1− ε) pn

)d
for appropriate C and d

since f is monotonic for p ∈ [0, 1]. Given a solution

to MP abduction with α(h) ≥ 1
C

(
(1− ε)αPr[c]

n

)d

, using
Pr[h] ≥ α(h) Pr[c] and αPr[c] ≥ (1− ε)μ, we get

Pr[h] ≥ 1

C

(
(1− ε)

αPr[c]

n

)d

Pr[c] ≥ 1

C

(
(1− ε)

μ

n

)2d

and h is thus a solution to the standard abduction task.
Likewise, given an approximate solution to the standard ab-
duction, i.e., h with Pr[h] ≥ Ω

(
((1− ε)(μ/n))

d
)

, using
α(h) Pr[c] ≥ (1− ε) Pr[h] and μ ≥ αPr[c], we get

α(h) Pr[c] ≥ (1− ε)
1

C

(
(1− ε)

αPr[c]

n

)d

.

So, α(h) ≥ Ω
(
((1− ε)αPr[c]/n)

d+1
)

, and therefore h is

a solution to MP abduction.
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