
Basic Probabilistic Ontological Data Exchange with Existential Rules

Thomas Lukasiewicz,1 Maria Vanina Martinez,2 Livia Predoiu,1,3 Gerardo I. Simari2
1Department of Computer Science, University of Oxford, UK

2Institute for Computer Science and Engineering (Universidad Nacional del Sur–CONICET), Bahia Blanca, Argentina
3Department of Computer Science, Otto-von-Guericke University, Magdeburg, Germany

{thomas.lukasiewicz, livia.predoiu}@cs.ox.ac.uk, {mvm, gis}@cs.uns.edu.ar

Abstract

We study the complexity of exchanging probabilistic data be-
tween ontology-based probabilistic databases. We consider
the Datalog+/– family of languages as ontology and ontology
mapping languages, and we assume different compact encod-
ings of the probabilities of the probabilistic source databases
via Boolean events. We provide an extensive complexity anal-
ysis of the problem of deciding the existence of a probabilistic
(universal) solution for a given probabilistic source database
relative to a (probabilistic) data exchange problem for the dif-
ferent languages considered.

Introduction

Being able to process uncertainty attached to data is becom-
ing increasingly important in many areas such as informa-
tion extraction, data cleaning, and Web data integration. Ap-
plications in these areas produce large volumes of uncertain
data. At the moment, the best way to model, store, and pro-
cess uncertain data is in probabilistic databases (Suciu et al.
2011). Enriching databases with ontological knowledge has
recently gained more importance through the requirement of
ontology-based data access (OBDA) (Poggi et al. 2008).

A crucial challenge of accessing distributed Web-based
knowledge as found in the Semantic Web and created
through distributed OBDA applications is to integrate and
exchange knowledge. We may have to map complex con-
cepts or queries over one or several ontologies to another
one. Apart from the uncertainty attached to source data,
a second kind of uncertainty may have to be considered
as well, namely, the uncertainty of automatically (or semi-
automatically) created ontology mappings.

Data exchange (Fagin et al. 2005) is an important and
powerful theoretical framework used for studying data-
interoperability tasks that require data to be transferred from
existing source databases to a target database that comes
with its own (independently created) schema (and schema
constraints). The data is translated from one database to
another one via schema mappings, which are declarative
specifications that describe the relationship between two
database schemas. Fagin, Kimelfeld, and Kolaitis (2011)
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proposed a probabilistic extension of the classical deter-
ministic framework to probabilistic databases and a prob-
abilistic source-to-target mapping. Recently, Lukasiewicz et
al. (2015b) have extended this probabilistic data exchange
framework towards probabilistic ontological data exchange.
In addition to weakly acyclic existential rules, which are
the only source-to-target mapping rules and constraints on
the target database that have been considered in data ex-
change so far (see, e.g., (Barcelo 2009)), in (Lukasiewicz et
al. 2015b), several other fragments of Datalog+/– are consid-
ered as ontology and source-to-target mapping languages.

In this paper, we continue this line of research. We con-
sider a more basic probabilistic model where probabilities
of annotations with Boolean events are specified via pair-
wise independent random variables (rather than Bayesian
networks). We study the data and combined complexity
of deciding the existence of (universal) probabilistic solu-
tions, obtaining a complete picture of the data complexity
and the general, bounded-arity, and fixed-program combined
complexity for the main Datalog+/– languages.

Note that annotations with Boolean events are widely
used for encoding probabilities in probabilistic logical
knowledge representation (Fuhr and Rölleke 1997; Suciu et
al. 2011) and are also known as data provenance and lineage
(Imielinski and Witold Lipski 1984; Fuhr and Rölleke 1997;
Green, Karvounarakis, and Tannen 2007; Suciu et al. 2011).
Note also that closely related to exchanging uncertain and/or
ontological data as studied in (Fagin, Kimelfeld, and Kolaitis
2011; Lukasiewicz et al. 2015b) is exchanging incomplete
databases as proposed in (Arenas, Pérez, and Reutter 2013),
which considers incomplete deterministic source and target
databases in the data exchange problem and deterministic
mappings. Also related is the approach to knowledge base
exchange between deterministic DL-LiteRDFS and DL-LiteR
ontologies in (Arenas et al. 2012; 2013).

The main contributions of this paper are briefly as follows.

• We consider a more basic probabilistic model than the
one presented in (Lukasiewicz et al. 2015b). It involves
probabilistically independent Boolean random variables
representing possible worlds without dependencies. Our
complexity analysis of the problem of solution existence
reveals a lower data complexity, yielding tractability for
nearly all Datalog+/– languages considered.
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• We study three different kinds of annotations that pro-
vide compact encodings of the probabilities and analyze
their impact on the complexity of the problem of de-
ciding the existence of a solution. The most general en-
coding corresponds to fully expressive Boolean formu-
las over probabilistic events (Fuhr and Rölleke 1997;
Green and Tannen 2006; Fagin, Kimelfeld, and Kolaitis
2011). The other two are PosBool and tuple-independent
annotations (Green, Karvounarakis, and Tannen 2007;
Suciu et al. 2011). It turns out that they differ only in
the data complexity, and using PosBool has the same
complexity as tuple-independent annotations, despite be-
ing more expressive and also expressive enough to com-
pactly encode probabilistic databases.

Preliminaries

We now recall the basics of Datalog+/– (Calı̀, Gottlob, and
Lukasiewicz 2012; Calı̀ et al. 2010), including especially re-
lational databases, tuple-generating dependencies (TGDs),
and (Boolean) conjunctive queries ((B)CQs).

We assume infinite sets of constants C, (labeled) nulls
N, and variables V. A term t is a constant, null, or variable.
An atom has the form p(t1, . . . , tn), where p is an n-ary
predicate, and t1, . . . , tn are terms. Conjunctions of atoms
are often identified with the sets of their atoms. An instance
I is a (possibly infinite) set of atoms p(t), where t is a tuple
of constants and nulls. A database D is a finite instance that
contains only constants. A homomorphism is a mapping h :
C∪N∪V → C∪N∪V that is the identity on C. We assume
familiarity with conjunctive queries (CQs). The answer to
a CQ q over an instance I is denoted q(I). A Boolean CQ
(BCQ) q evaluates to true over I , denoted I |= q, if q(I) �=∅.

A tuple-generating dependency (TGD) σ is a first-order
formula ∀X∀Y ϕ(X,Y)→∃Z p(X,Z), where X ∪ Y ∪
Z ⊆ V, ϕ(X,Y) is a conjunction of atoms, and p(X,Z) is
an atom. We call ϕ(X,Y) the body of σ, denoted body(σ),
and p(X,Z) the head of σ, denoted head(σ). We consider
only TGDs with a single atom in the head, but our results
can be extended to TGDs with a conjunction of atoms in the
head. An instance I satisfies σ, written I |=σ, if whenever
there exists a homomorphism h such that h(ϕ(X,Y))⊆ I ,
then there exists h′ ⊇h|X∪Y, where h|X∪Y is the restric-
tion of h to X ∪ Y, such that h′(p(X,Z))∈ I . A negative
constraint (NC) ν is a first-order formula ∀Xϕ(X)→⊥,
where X⊆V, ϕ(X) is a conjunction of atoms, called the
body of ν, denoted body(ν), and ⊥ denotes the truth constant
false. An instance I satisfies ν, denoted I |= ν, if there is no
homomorphism h such that h(ϕ(X))⊆ I . Given a set Σ of
TGDs and NCs, I satisfies Σ, denoted I |=Σ, if I satisfies
each TGD and NC of Σ. For brevity, we omit the universal
quantifiers in front of TGDs and NCs.

Given a database D and a set Σ of TGDs and NCs, the
answers we consider are those that are true in all models
of D and Σ. Formally, the models of D and Σ, denoted
mods(D,Σ), is the set of instances {I | I ⊇ D and I |= Σ}.
The answer to a CQ q relative to D and Σ is defined as the
set of tuples ans(q,D,Σ)=

⋂
I∈mods(D,Σ){t | t∈ q(I)}.

The answer to a BCQ q is true, denoted D∪Σ |= q, if

ans(q,D,Σ) �=∅. The problem of CQ answering is de-
fined as follows: given a database D, a set Σ of TGDs and
NCs, a CQ q, and a tuple of constants t, decide whether
t∈ ans(q,D,Σ). It is well-known that such CQ answering
can be reduced in LOGSPACE to BCQ answering, and we
thus focus on BCQ answering only. Following Vardi’s tax-
onomy (Vardi 1982), the combined complexity of BCQ an-
swering is calculated by considering all the components, i.e.,
the database, the set of dependencies, and the query, as part
of the input. The bounded-arity combined complexity (ba-
combined complexity) is calculated by assuming that the ar-
ity of the underlying schema is bounded by an integer con-
stant. Notice that in the context of description logics (DLs),
whenever we refer to the combined complexity in fact we re-
fer to the ba-combined complexity since, by definition, the
arity of the underlying schema is at most two. In the data
complexity, only the database is part of the input; the fixed-
program combined complexity (fp-combined complexity) is
calculated by considering the set of TGDs and NCs as fixed.

Ontological Data Exchange

The source (resp., target) of the ontological data exchange
problem that we consider here in this paper is a probabilis-
tic database (resp., probabilistic instance), each relative to a
deterministic ontology.

A probabilistic database (resp., probabilistic instance)
over a schema S is a probability space Pr = (I, μ) such
that I is the set of all (possibly infinitely many) databases
(resp., instances) over S, and μ : I → [0, 1] is a function that
satisfies

∑
I∈I μ(I) = 1.

The next two sections provide the definitions of determin-
istic and probabilistic ontological data exchange (as pro-
posed in (Lukasiewicz et al. 2015b)).

Deterministic Ontological Data Exchange

Ontological data exchange formalizes data exchange from a
probabilistic database relative to a source ontology Σs (con-
sisting of TGDs and NCs) over a schema S to a probabilis-
tic target instance Prt relative to a target ontology Σt (con-
sisting of a set of TGDs and NCs) over a schema T via a
(source-to-target) mapping (also a set of TGDs and NCs).

More specifically, an ontological data exchange (ODE)
problem M = (S,T,Σs,Σt,Σst) consists of (i) a source
schema S, (ii) a target schema T disjoint from S, (iii) a finite
set Σs of TGDs and NCs over S (called source ontology),
(iv) a finite set Σt of TGDs and NCs over T (called target
ontology), and (v) a finite set Σst of TGDs and NCs σ over
S∪T (called (source-to-target) mapping) such that body(σ)
and head(σ) are defined over S ∪ T and T, respectively.

Ontological data exchange with deterministic databases
is based on defining a target instance J over T as being a
solution for a deterministic source database I over S relative
to the ODE problem M = (S,T,Σs,Σt,Σst) iff (I ∪ J) |=
Σs∪Σt∪Σst. We denote by SolM the set of all such (I, J).

Among the possible deterministic solutions J to a deter-
ministic source database I relative to M in SolM, we prefer
universal solutions which are the most general ones carrying
only the necessary information for data exchange, i.e., those
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that transfer only the source database along with the relevant
implicit derivations via Σs to the target ontology. A univer-
sal solution can be homomorphically mapped to all other
solutions leaving the constants unchanged. Hence, a deter-
ministic target instance J over S is a universal solution for a
deterministic source database I over T relative to a schema
mapping M iff (i) J is a solution, and (ii) for each solution
J ′ for I relative to M, there is a homomorphism h : J → J ′.
We denote by USolM (⊆ SolM) the set of all pairs (I, J) of
deterministic source databases I and target instances J such
that J is a universal solution for I relative to M.

When considering probabilistic databases and instances,
a joint probability space Pr over the solution relation SolM
and the universal solution relation USolM must exist.

More specifically, a probabilistic target instance Prt =
(J , μt) is a probabilistic solution (resp., probabilistic uni-
versal solution) for a probabilistic source database Prs =
(I, μs) relative to an ODE problem M=(S,T,Σs,Σt,Σst)
iff there exists a probability space Pr=(I ×J , μ) such that
(i) the left and right marginals of Pr are Prs and Prt, re-
spectively, i.e., (i.a)

∑
J∈J (μ(I, J))=μs(I) for all I ∈I

and (i.b)
∑

I∈I(μ(I, J))=μt(J) for all J ∈J , and (ii)
μ(I, J)= 0 for all (I, J) �∈ SolM (resp., (I, J) �∈ USolM).

Note that this intuitively says that all non-solutions (I, J)
have probability zero, and that the existence of a solution
does not exclude that some source databases with probabil-
ity zero have no corresponding target instance.

Example 1. An ontological data exchange (ODE) prob-
lem M=(S,T,Σs,Σt,Σst) is given by the source schema
S= {Researcher/2, ResearchArea/2, Publication/3} (the
number after the relation name denotes its arity), the target
schema T= {UResearchArea/3, Lecture/2}, the source on-
tology Σs = {σs, νs}, the target ontology Σt = {σt, νt}, and
the mapping Σst = {σst, νm}, where:

σs : Publication(X,Y,Z) → ResearchArea(X,Y),
νs : Researcher(X,Y) ∧ ResearchArea(X,Y) → ⊥,

σt : UResearchArea(U,D,T) → ∃Z Lecture(T,Z),
νt : Lecture(X,Y) ∧ Lecture(Y,X) → ⊥,

σst : ResearchArea(N,T)∧
Researcher(N,U) → ∃D UResearchArea(U,D,T),

νm : ResearchArea(N,T) ∧ UResearchArea(U,T,N) → ⊥.

Given the probabilistic source database in Table 1, two pos-
sible probabilistic solution instances Prt1 =(J1, μt1) and
Prt2 =(J2, μt2) are shown in Table 1: Prt1 and Prt2. Note
that while both Prt1 and Prt2 are probabilistic solutions,
only Prt1 is also a probabilistic universal solution.

Query answering in ontological data exchange is per-
formed over the target ontology and is generalized from de-
terministic data exchange; see (Lukasiewicz et al. 2015b) for
a formal definition.

Probabilistic Ontological Data Exchange

Probabilistic ontological data exchange extends determin-
istic ontological data exchange by turning the determinis-
tic source-to-target mapping into a probabilistic source-to-
target mapping, i.e., we now have a probability distribution
over the set of all subsets of Σst.

More specifically, a probabilistic ontological data ex-
change (PODE) problem M=(S,T,Σs,Σt,Σst, μst) con-
sists of (i) a source schema S, (ii) a target schema T dis-
joint from S, (iii) a finite set Σs of TGDs and NCs over
S (called source ontology), (iv) a finite set Σt of TGDs
and NCs over T (called target ontology), (v) a finite set
Σst of TGDs and NCs σ over S ∪ T, and (vi) a function
μst : 2

Σst → [0, 1] such that
∑

Σ′⊆Σst
μst(Σ

′) = 1 (called
probabilistic (source-to-target) mapping).

A probabilistic target instance Prt =(J , μt) is a proba-
bilistic solution (resp., probabilistic universal solution) for
a probabilistic source database Prs =(I, μs) relative to a
PODE problem M=(S,T,Σs,Σt, Σst, μst) iff there ex-
ists a probability space Pr=(I × J × 2Σst , μ) such that:
(i) The three marginals of μ are μs, μt, and μst, such
that: (i.a)

∑
J∈J ,Σ′⊆Σst

μ(I, J,Σ′)=μs(I) for all I ∈I,
(i.b)

∑
I∈I,Σ′⊆Σst

μ(I, J,Σ′)=μt(J) for all J ∈J , and
(i.c)

∑
I∈I, J∈J μ(I, J,Σ′)=μst(Σ

′) for all Σ′ ⊆Σst; (ii)
μ(I, J,Σ′)= 0 for all (I, J) �∈ Sol (S,T,Σ′) (resp., (I, J) �∈
USol (S,T,Σ′)).

Using probabilistic (universal) solutions for probabilistic
source databases relative to PODE problems, the semantics
of UCQs can be lifted to PODE problems; cf. (Lukasiewicz
et al. 2015b) for a formal definition.

Compact Encoding

We use a compact encoding of both probabilistic databases
and probabilistic mappings, which is based on annotating
database atoms, TGDs, and NCs by probabilistic Boolean
events rather than explicitly specifying the whole probabil-
ity space. That is, database atoms, TGDs, and NCs are an-
notated with Boolean combinations of elementary events,
where every annotation describes when the annotated item
is true and is associated with a probability. We first define
general annotations and general annotated atoms.

Definition 1 (Annotations and Annotated Atoms). Let
e1, . . . , en be n ≥ 1 elementary events. A world w is a con-
junction �1∧· · ·∧�n, where each �i, i ∈ {1, . . . , n}, is either
the elementary event ei or its negation ¬ei. An annotation
λ is any Boolean combination of elementary events (i.e., all
elementary events are annotations, and if λ1 and λ2 are an-
notations, then also ¬λ1 and λ1 ∧ λ2); as usual, λ1 ∨ λ2

abbreviates ¬(¬λ1 ∧¬λ2). An annotated atom has the form
a : λ, where a is an atom, and λ is an annotation.

The compact encoding of probabilistic databases is then
defined as follows. Note that this encoding is also underlying
our complexity analysis below.

Definition 2 (Compact Encoding of Probabilistic Data-
bases). A set A of annotated atoms along with a probability
μ(w)∈ [0, 1] for every world w compactly encodes a proba-
bilistic database Pr = (I, μ) whenever:

(1) the probability μ of every annotation λ is the sum of the
probabilities of all worlds in which λ is true, and

(2) the probability μ of every subset-maximal database
{a1, . . . , am}∈I such that {a1 : λ1, . . . , am : λm} ⊆ A
for some annotations λ1, . . . , λm is the probability μ
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Possible source database facts
ra Researcher(Alice, UniversityOfOxford)
rp Researcher(Paul, UniversityOfOxford)
paml Publication(Alice, ML, JMLR)
padb Publication(Alice, DB, TODS)
ppdb Publication(Paul, DB, TODS)
ppai Publication(Paul, AI, AIJ)

Derived source database facts
aaml ResearchArea(Alice, ML)
aadb ResearchArea(Alice, DB)
apdb ResearchArea(Paul, DB)
apai ResearchArea(Paul, AI)

Probabilistic source database Prs = (I, μs)

I1 = {ra, rp, paml, ppdb, aaml, apdb} 0.3
I2 = {ra, rp, paml, ppai, aaml, apai} 0.3
I3 = {ra, rp, padb, ppai, aadb, apai} 0.2
I4 = {ra, rp, padb, ppdb, aadb, apdb} 0.1
I5 = {ra, padb, aadb} 0.1

Possible target instance facts
uml UResearchArea(UniversityOfOxford, N1, ML)
uai UResearchArea(UniversityOfOxford, N2, AI)
udb UResearchArea(UniversityOfOxford, N3, DB)
lml Lecture(ML, N4)
lai Lecture(AI, N5)
ldb Lecture(DB, N6)

Probabilistic target instance Prt1 = (J1, μt1)

J1 = {uml, udb, lml, ldb} 0.3
J2 = {uml, uai, lml, lai} 0.3
J3 = {uai, udb, lai, ldb} 0.2
J4 = {udb, ldb} 0.2

Probabilistic target instance Prt2 = (J2, μt2)

J5 = {uml, udb, lml, ldb} 0.35
J6 = {uml, uai, lml, lai} 0.2
J7 = {uml, uai, udb, lml, lai, ldb} 0.45

Table 1: Probabilistic source database and two probabilistic target instances for Example 1 (N1, . . . , N5 are nulls); both are
probabilistic solutions, but only Prt1 is universal.

of λ1 ∧ · · · ∧ λm (and the probability μ of every other
database in I is 0).

We assume that all annotations are in disjunctive normal
form (DNF), i.e., disjunctions of conjunctions of literals, and
we consider the following three cases:
Elementary-event-independence: elementary events and
their negations are pairwise probabilistically independent
(i.e., the probability of worlds �1 ∧ · · · ∧ �n of elementary
events (�i = ei) and their negations (�i = ¬ei) is defined
as Πn

i=1ν(�i), where ν(�i) = μ(ei) and ν(�i) = 1 − μ(ei),
respectively);
PosBool: a special case of elementary-event-independence
where all annotations are arbitrary many disjunctions of ar-
bitrary many conjunctions of positive elementary events.
Again, elementary events are pairwise probabilistically in-
dependent (i.e., the probability of worlds �1 ∧ · · · ∧ �n of
elementary events (�i = ei) is defined as Πn

i=1ν(�i), where
ν(�i) = μ(ei));
Tuple-independence: special case of PosBool where anno-
tations are elementary and worlds have positive probability.

Note that in the tuple-independent case, annotations con-
sist of as many elementary events as database atoms, and
each database atom is annotated with a different single ele-
mentary event. Below in Example 2, we provide an example
of an annotation encoding of a probabilistic database.
Example 2. In Table 2, an annotation encoding of a prob-
abilistic source database is shown. It has four elementary
events e1, e2, e3, and e4 along with their probabilities
p(e1) = 3/10, p(e2) = 3/7, p(e3) = 1/2, and p(e4) = 1/2,
respectively. The encoding compactly represents the proba-
bilistic source database in Table 1.

If the mapping is probabilistic as well, then we use two
disjoint sets of elementary events, one for encoding the prob-
abilistic source database and the other one for the mapping.
In this way, the probabilistic source database is independent
from the probabilistic mapping. We now define the compact
encoding of probabilistic mappings.
Definition 3 (Compact Encoding of Prob. Mappings). An
annotated TGD (resp., NC) has the form σ : λ, where σ is

Possible source database facts Annotation
ra Researcher(Alice, UniversityOfOxford) true
rp Researcher(Paul, UniversityOfOxford) e1∨ e2∨ e3∨ e4
paml Publication(Alice, ML, JMLR) e1∨ e2
padb Publication(Alice, DB, TODS) ¬ e1 ∧ ¬ e2
ppdb Publication(Paul, DB, TODS) e1∨ (¬ e2 ∧ ¬ e3∧ e4)
ppai Publication(Paul, AI, AIJ) (¬ e1∧ e2) ∨ (¬ e1∧ e3)

Table 2: Annotation encoding of the prob. source DB in Ta-
ble 1.

a TGD (resp., NC), and λ is an annotation. A set Σ of anno-
tated TGDs and NCs σ : λ with σ ∈ Σst along with a proba-
bility μ(w) ∈ [0, 1] for every world w compactly encodes a
probabilistic mapping μst : 2

Σst → [0, 1] whenever:

(1) the probability μ of every annotation λ is the sum of the
probabilities of all worlds in which λ is true, and

(2) the probability μst of every subset-maximal {σ1, . . . ,
σk}⊆Σst such that {σ1 : λ1, . . . , σk : λk}⊆Σ for
some annotations λ1, . . . , λk is the probability μ of λ1 ∧
· · · ∧ λk (and the probability μst of every other subset
of Σst is 0).

We consider the following computational problem.

Existence of a solution (resp., universal solution): Given
an ODE or a PODE problem M and a probabilistic source
database Prs, decide if there exists a probabilistic (resp.,
probabilistic universal) solution for Prs relative to M.

W.l.o.g., we consider ontologies in the same language be-
cause the more expressive one always defines the complexity
class of the exchange problem as a whole.

Computational Complexity

We now analyze the computational complexity of deciding
the existence of a (universal) probabilistic solution for deter-
ministic and probabilistic ontological data exchange prob-
lems. We also delineate some tractable special cases.
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Complexity Classes

We assume some elementary background in complexity
theory; see (Johnson 1990; Papadimitriou 1994). We now
briefly recall the complexity classes that we encounter in
our complexity results below. The complexity class PSPACE
(resp., P, EXP, 2EXP) contains all decision problems that can
be solved in polynomial space (resp., polynomial, exponen-
tial, double exponential time) on a deterministic Turing ma-
chine, while the complexity classes NP and NEXP contain
all decision problems that can be solved in polynomial and
exponential time on a nondeterministic Turing machine, re-
spectively, and coNP and coNEXP are their complementary
classes, where “Yes” and “No” instances are interchanged.
The complexity class AC0 is the class of all languages that
are decidable by uniform families of Boolean circuits of
polynomial size and constant depth. The above complexity
classes and their inclusion relationships (which are all cur-
rently believed to be strict) are shown below:

AC0 ⊆ P ⊆ NP, coNP ⊆ PSPACE ⊆ EXP ⊆ NEXP, coNEXP ⊆ 2EXP.

Decidability Paradigms

The main (syntactic) conditions on TGDs that guarantee the
decidability of CQ answering are guardedness (Calı̀, Got-
tlob, and Kifer 2013), stickiness (Calı̀, Gottlob, and Pieris
2012), and acyclicity. Each one of these conditions has
its “weak” counterpart: weak guardedness (Calı̀, Gottlob,
and Kifer 2013), weak stickiness (Calı̀, Gottlob, and Pieris
2012), and weak acyclicity (Fagin et al. 2005), respectively.

A TGD σ is guarded if there exists an atom in its body
that contains (or “guards”) all the body variables of σ. The
class of guarded TGDs, denoted G, is defined as the fam-
ily of all possible sets of guarded TGDs. A key subclass of
guarded TGDs are the so-called linear TGDs with just one
body atom (which is automatically a guard), and the corre-
sponding class is denoted L. Weakly guarded TGDs extend
guarded TGDs by requiring only “harmful” body variables
to appear in the guard, and the associated class is denoted
WG. It is easy to verify that L ⊂ G ⊂ WG.

Stickiness is inherently different from guardedness, and
its central property can be described as follows: variables
that appear more than once in a body (i.e., join variables)
are always propagated (or “stick”) to the inferred atoms. A
set of TGDs that enjoys the above property is called sticky,
and the corresponding class is denoted S. Weak stickiness is
a relaxation of stickiness where only “harmful” variables are
taken into account. A set of TGDs which enjoys weak stick-
iness is weakly sticky, and the associated class is denoted
WS. Observe that S ⊂ WS.

A set Σ of TGDs is acyclic if its predicate graph is acyclic,
and the underlying class is denoted A. In fact, an acyclic set
of TGDs can be seen as a nonrecursive set of TGDs. We say
Σ is weakly acyclic if its dependency graph enjoys a certain
acyclicity condition, which actually guarantees the existence
of a finite canonical model; the associated class is denoted
WA. Clearly, A ⊂ WA.

Another key fragment of TGDs, which deserves our at-
tention, are the so-called full TGDs, i.e., TGDs without ex-
istentially quantified variables, and the corresponding class

Data Comb. ba-comb. fp-comb.

L, LF, AF in AC0 PSPACE NP NP
G P 2EXP EXP NP
WG EXP 2EXP EXP EXP
S, SF in AC0 EXP NP NP
F, GF P EXP NP NP
A in AC0 NEXP NEXP NP

WS, WA P 2EXP 2EXP NP

Table 3: Complexity of BCQ answering (Lukasiewicz et al.
2015a). All entries except for “in AC0” are completeness;
hardness holds in all cases even for ground atomic BCQs.

Data Comb. ba-comb. fp-comb.

L, LF, AF in AC0 PSPACE coNP in AC0

G P 2EXP EXP P
WG EXP 2EXP EXP EXP
S, SF in AC0 EXP coNP in AC0

F, GF P EXP coNP P
A in AC0 coNEXP coNEXP in AC0

WS, WA P 2EXP 2EXP P

Table 4: Complexity of existence of a (universal) probabilis-
tic solution in the tuple-independent case and for posBool
annotations (for both ODE and PODE problems). All entries
except for “in AC0” are completeness results.

is denoted F. If we further assume that full TGDs enjoy lin-
earity, guardedness, stickiness, or acyclicity, then we obtain
the classes LF, GF, SF, and AF, respectively.

Overview of Complexity Results

Our complexity results for deciding the existence of a (uni-
versal) probabilistic solution in the tuple-independent and
the elementary-event-independent case for both ODE and
PODE problems are summarized in Tables 4 and 5, respec-
tively, which show the data complexity as well as the com-
bined, the ba-combined, and the fp-combined complexity
for different classes of existential rules, ranging from the
classes LF, AF, and SF to the more general classes WG, WA,
and WS. Note that the last column of Tables 4 and 5 is the
same as the first column because data and fp-combined com-
plexity differ only in the query being not fixed in the later
case. As we only consider the existence of solutions and,
hence, consistency here, we do not have any query as input.

Deterministic Ontological Data Exchange

We first focus on the tuple-independent case. The fol-
lowing result shows that deciding whether there exists
a probabilistic (or probabilistic universal) solution for a
tuple-independent probabilistic source database relative to a
source ontology and a deterministic mapping is C-complete
for a complexity class C ⊇ P (resp., in AC0), if BCQ an-
swering for the involved sets of TGDs and NCs has this
complexity and is hard even for ground atomic BCQs. As a
corollary, by the complexity of BCQ answering with TGDs
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Data Comb. ba-comb. fp-comb.

L, LF, AF in P PSPACE coNP in P
G coNP 2EXP EXP coNP
WG EXP 2EXP EXP EXP
S, SF in P EXP coNP in P
F, GF coNP EXP coNP coNP
A in P coNEXP coNEXP in P

WS, WA coNP 2EXP 2EXP coNP

Table 5: Complexity of existence of a (universal) probabilis-
tic solution in the elementary-event-independent case (for
both ODE and PODE problems). All entries except “in P”
are completeness results.

and NCs in Table 3 (Lukasiewicz et al. 2015a), we obtain the
complexity results shown in Table 4 for deciding the exis-
tence of a (universal) probabilistic solution (in deterministic
ontological data exchange) in the tuple-independent case.

Theorem 4. Given a probabilistic source database Prs
relative to a source ontology Σs and an ODE problem
M=(S,T,Σs,Σt,Σst) such that Σs ∪Σst ∪Σt belongs to
a class of TGDs and NCs for which BCQ answering is com-
plete for a complexity class C ⊇ P (resp., in AC0), and hard-
ness holds even for ground atomic BCQs, deciding whether
there exists a probabilistic (or probabilistic universal) solu-
tion for Prs relative to Σs and M is coC-complete (resp., in
AC0) in the tuple-independent case.

The next theorem considers PosBool (Green, Kar-
vounarakis, and Tannen 2007) annotations allowing only
Boolean connectives ∧ and ∨. Note that the tuple-
independent case is a special case of PosBool (only ∧) and
both are special cases of general Boolean formulas (allowing
negation as well) as annotations.

Theorem 5. Given a probabilistic source database Prs
relative to a source ontology Σs and an ODE problem
M=(S,T,Σs,Σt,Σst) such that Σs ∪Σst ∪Σt belongs to
a class of TGDs and NCs for which BCQ answering is com-
plete for a complexity class C ⊇ P (resp., in AC0), and hard-
ness holds even for ground atomic BCQs, deciding whether
there exists a probabilistic (or probabilistic universal) solu-
tion for Prs relative to Σs and M is coC-complete (resp., in
AC0) with annotations in PosBool.

The next theorem shows that deciding whether there ex-
ists a probabilistic (or probabilistic universal) solution for an
elementary-event-independent probabilistic source database
relative to a source ontology and a deterministic mapping is
complete for C (resp., co-C), if BCQ answering for the in-
volved sets of TGDs and NCs is complete for a determinis-
tic (resp., nondeterministic) complexity class C ⊇ PSPACE
(resp., C ⊇ NP), and hardness holds even for ground atomic
BCQs. As a corollary, by the complexity of BCQ answering
with TGDs and NCs in Table 3 (Lukasiewicz et al. 2015a),
we obtain the complexity results shown in Table 4 for de-
ciding the existence of a (universal) probabilistic solution
(in deterministic ontological data exchange) in the com-
bined, ba-combined, and fp-combined complexity, and for

the class WG of TGDs and NCs in the data complexity, in
the elementary-event-independent case.

Theorem 6. Given a probabilistic source database Prs
relative to a source ontology Σs and an ODE problem
M=(S,T,Σs,Σt,Σst) such that Σs ∪Σst ∪Σt belongs to
a class of TGDs and NCs for which BCQ answering is com-
plete for a deterministic (resp., nondeterministic) complex-
ity class C ⊇ PSPACE (resp., C ⊇ NP), and hardness holds
even for ground atomic BCQs, deciding whether there exists
a probabilistic (or probabilistic universal) solution for Prs
relative to Σs and M is complete for C (resp., coC) in the
elementary-event-independent case.

The following result shows that deciding whether there
exists a probabilistic (or probabilistic universal) solution
for an elementary-event-independent probabilistic source
database relative to a source ontology and a deterministic
mapping is complete for coNP, if the involved sets of TGDs
and NCs belong to a class among G, F, GF, WS, and WA.

Theorem 7. Given a probabilistic source database Prs
relative to a source ontology Σs and an ODE problem
M=(S,T,Σs,Σt,Σst) such that Σs ∪Σst ∪Σt belongs to
a class among G, F, GF, WS, and WA, deciding whether
there exists a probabilistic (or probabilistic universal) solu-
tion for Prs relative to Σs and M is coNP-complete in the
elementary-event-independent case in the data complexity.

The following result shows that deciding whether there
exists a probabilistic (or probabilistic universal) solution
for an elementary-event-independent probabilistic source
database relative to a source ontology and a deterministic
mapping is in P, if BCQ answering for the involved sets of
TGDs and NCs is first-order rewritable as a Boolean UCQ.
As a corollary, by the complexity of BCQ answering with
TGDs and NCs, we obtain the complexity results in Table 5
for the classes L, LF, AF, S, SF, and A in the data complex-
ity for deciding the existence of a (universal) probabilistic
solution (in deterministic ontological data exchange) in the
elementary-event-independent case.

Theorem 8. Given a probabilistic source database Prs
relative to a source ontology Σs and an ODE problem
M=(S,T,Σs,Σt,Σst) such that Σs ∪Σst ∪Σt belongs to
a class of TGDs and NCs for which BCQ answering is first-
order rewritable as a Boolean UCQ, deciding whether there
exists a probabilistic (or probabilistic universal) solution
for Prs relative to Σs and M is in P in the elementary-
event-independent case in the data complexity.

Probabilistic Data Exchange

All the results in Theorems 4, 5, 6, 7, and 8 carry over to
PODE problems. Clearly, the hardness results carry over im-
mediately, as deterministic ontological data exchange is a
special case of probabilistic ontological data exchange. As
for the membership results, in the tuple-independent case,
rather than looking only at the maximal database, we also
include the maximal set of TGDs and NCs from the proba-
bilistic mapping, while in the elementary-event-independent
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case, we also consider the worlds for the probabilistic map-
ping, which are iterated through in the data complexity and
guessed in the combined and ba/fp-combined complexity.

Summary and Outlook

We have studied the impact of a more basic probabilistic
model to the problem of solution existence in ontological
data exchange as defined in (Lukasiewicz et al. 2015b). We
have also considered three different kinds of compact en-
codings for probabilistic atoms, TGDs, and NCs. In par-
ticular, we have given a precise analysis of the computa-
tional complexity of deciding the existence of a (universal)
probabilistic solution for different classes of existential rules
in both deterministic and probabilistic ontological data ex-
change and under elementary-event-independent, posBool,
and tuple-independent annotations. The data complexity has
turned out to be tractable in all cases but one: we have shown
tractability via many FO-rewritable and polynomial cases,
both in the data and the fixed-program combined complex-
ity, thus yielding a more application-oriented framework—
note that the work in (Lukasiewicz et al. 2015b) did not iden-
tify any FO-rewritable or polynomial cases.

Interesting topics for future research are further explo-
rations of the tractable cases of probabilistic solution exis-
tence as well as extensions, e.g., by generalizing the type
of the mapping rules. Another issue for future work is to
analyze the complexity of answering UCQs and to also con-
sider languages combining (chase-style) forward and back-
ward chaining (Baget et al. 2009), as well as additional
frameworks, such as (weakly) frontier-guarded sets of rules
(Baget, Leclère, and Mugnier 2010) and approaches consid-
ering acyclicity notions, as, e.g., proposed in (Krötzsch and
Rudolph 2011; Grau et al. 2013; Baget et al. 2014).
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