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Abstract

Introduced by Darwiche (2011), sentential decision diagrams
(SDDs) are essentially as tractable as ordered binary decision
diagrams (OBDDs), but tend to be more succinct in practice.
This makes SDDs a prominent representation language, with
many applications in artificial intelligence and knowledge
compilation.
We prove that SDDs are more succinct than OBDDs also in
theory, by constructing a family of boolean functions where
each member has polynomial SDD size but exponential OBDD
size. This exponential separation improves a quasipolynomial
separation recently established by Razgon (2014a), and settles
an open problem in knowledge compilation (Darwiche 2011).

1 Introduction
The idea of knowledge compilation is to deal with the in-
tractability of certain computational tasks on a knowledge
base by compiling it into a different data structure where
the tasks are feasible. The choice of the target data structure
involves an unavoidable trade-off between succinctness and
tractability.

Darwiche and Marquis (2002) systematically investigated
this trade-off in the fundamental case where the knowledge
bases are boolean functions and the data structures are classes
of boolean circuits (representation languages).

In their setting, decomposable negation normal forms
(DNNFs) and ordered binary decision diagrams (OBDDs)
arise as benchmark languages for succinctness and tractabil-
ity respectively (Darwiche 2001; Darwiche and Marquis
2002). On the one hand, DNNFs are exponentially more
succinct than OBDDs; moreover, in contrast to OBDDs,
they implement efficiently conjunctive normal forms of
small treewidth (Darwiche 2001; Razgon and Petke 2013;
Oztok and Darwiche 2014; Razgon 2014b). On the other
hand, the vast applicability of OBDDs in verification and syn-
thesis relies on the tractability of equivalence testing (speeded
up by canonicity) and boolean combinations, which DNNFs
lack (Darwiche and Marquis 2002).

This gap between DNNFs (succinct but hard) and OBDDs
(verbose but tractable) led to the quest for intermediate lan-
guages exponentially more succinct than, but essentially as
tractable as, OBDDs.
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Introduced by Darwiche (2011), sentential decision dia-
grams (SDDs) are a most prominent candidate to narrow
the gap between DNNFs and OBDDs. They are designed by
strengthening the decomposability property (Pipatsrisawat
and Darwiche 2008) and further imposing a very strong form
of determinism (Pipatsrisawat and Darwiche 2010). The re-
sulting language can implement decisions of the form

m∨

i=1

Pi(X) ∧ Si(Y ), (1)

where X and Y are disjoint sets of variables nicely struc-
tured by an underlying variable tree, and the subcircuits
P1, . . . , Pm, called primes,1 implement an exhaustive case
distinction into exclusive and consistent cases.2 Binary (or
Shannon) decisions in OBDDs boil down to very special
sentential decisions having the form

(¬x ∧ S1(Y )) ∨ (x ∧ S2(Y )),

where the variable x is not in the variable set Y .
Indeed, SDDs properly contain OBDDs, and hence are

at least as succinct as OBDDs, while preserving tractabil-
ity of all key tasks that are tractable on OBDDs. For this
reason, they have been used in a variety of applications
in artificial intelligence and probabilistic reasoning, as re-
ported, for instance, by (Van den Broek and Darwiche 2015;
Oztok and Darwiche 2015).

Not only SDDs are as tractable as OBDDs, but they also
tend to be more succinct than OBDDs in practice; in fact,
knowledge compilers often produce much smaller SDDs than
OBDDs by heuristically leveraging the additional flexibility
of variable trees in SDDs with respect to variable orderings
in OBDDs (Choi and Darwiche 2013; Oztok and Darwiche
2015).

Nonetheless, the basic theoretical question about the rela-
tive succinctness of OBDDs and SDDs has been open since
Darwiche introduced SDDs (Darwiche 2011; Razgon 2014a):

Are SDDs exponentially more succinct than OBDDs?
The results in the literature did not even exclude the pos-
sibility for OBDDs to polynomially simulate SDDs (Xue,

1The Si’s are called subs.
2Formally, the models of P1, . . . , Pm partition the set of assign-

ments of X to {0, 1} into m nonempty blocks; see Section 2.
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Choi, and Darwiche 2012), until recently Razgon proved
a quasipolynomial separation (Razgon 2014a). The above
question stands, though, as for instance OBDDs could still
quasipolynomially simulate SDDs.

Contribution. We prove in this article that SDDs are ex-
ponentially more succinct than OBDDs. Thus, in particular,
OBDDs cannot quasipolynomially simulate SDDs.

More precisely, we construct an infinite family of boolean
functions such that every member of the family has poly-
nomial compressed SDD size but exponential OBDD size
(Theorem 4).

Compressed SDDs contain OBDDs,3 and are regarded as
a natural SDD class because of their canonicity: two com-
pressed SDDs computing the same function are syntactically
equal up to syntactic manipulations preserving polynomial
size (Darwiche 2011). The restriction to compressed SDDs
makes our result stronger, because general SDDs are believed
(despite not known) to be exponentially more succinct than
compressed SDDs (Van den Broek and Darwiche 2015).

We separate compressed SDDs and OBDDs by a function,
which we call the generalized hidden weighted bit function
because, indeed, it contains the hidden weighted bit function
(HWB) as a subfunction. HWB is perhaps the simplest func-
tion known to be hard on OBDDs (Bryant 1986): it computes
the subsets of {1, . . . , n} having size i and containing the
number i, for i = 1, . . . , n.

It turns out that HWB itself has small (uncompressed)
SDDs (Theorem 3), which immediately separates SDDs and
OBDDs. The construction, a slight variation of which gives
the compressed case (Lemma 1 and Lemma 2), is based on
the following two observations.

The first observation is that HWB can be expressed as
a sentential decision of the form (1) by distinguishing the
following primes:

• for i = 1, . . . , n, the subsets of size i containing the num-
ber i (each of these n primes is taken by HWB, so their
subs will be equivalent to �);

• the empty subset, and the subsets of size i not containing
the number i for i = 1, . . . , n− 1 (none of these n primes
is taken by HWB, so their subs will be equivalent to ⊥).

The second observation is that each of the above primes has
small OBDD size under any variable ordering (Proposition 2).
With these two observations it is fairly straightforward to
implement the hidden weighted bit function by a small (un-
compressed) SDD (Theorem 3).

A direct inspection of our construction allows to straight-
forwardly derive some facts about compression previously ob-
served in the literature (Van den Broek and Darwiche 2015),
namely that the SDD size may increase exponentially either
by compressing SDDs over fixed variable trees, or by con-
ditioning (unboundedly many variables) over fixed variable
trees (see Section 4).

3More precisely, compressed SDDs contain reduced OBDDs;
see (Wegener 2000, Definition 1.3.2).

Organization. The article is organized as follows. In Sec-
tion 2 we present the technical background, culminating in
the quasipolynomial separation of SDDs and OBDDs proved
by Razgon (Theorem 1). In Section 3, we separate (uncom-
pressed) SDDs and OBDDs by the hidden weighted bit func-
tion (Theorem 3) and then modify the construction to separate
compressed SDDs and OBDDs (Theorem 4). We discuss our
results in Section 4.

2 Background

We collect background notions and facts from the literature
(Darwiche and Marquis 2002; Pipatsrisawat and Darwiche
2008; Darwiche 2011; Razgon 2014a).

Structured Deterministic NNFs. Let X be a finite set of
variables. Let C be a boolean circuit on input variables X ,
built using fanin 0 constant gates (labelled by ⊥ or �), fanin 1
negation gates (labelled by ¬), and unbounded fanin disjunc-
tion and conjunction gates (labelled by ∨ and ∧). The unique
sink node (outdegree 0) in the underlying directed acyclic
graph (DAG) of C is called the output gate of C; source
nodes (indegree 0) are called input gates, and are labelled by
constants or variables in X; in particular, C is allowed to not
read some of the variables in X , see Figure 1 (left).

A boolean circuit C on variables X is in negation normal
form, in short an NNF, if the gates labelled by ¬ have wires
only from input gates. Without loss of generality we assume
that NNFs have input gates labelled by constants or literals
on variables in X (and no internal gates labelled by ¬).

As usual, an NNF C on input variables X computes a
boolean function f : {0, 1}X → {0, 1}; in this case we also
write C ≡ f . Two NNFs C and C ′ on the same input vari-
ables are equivalent if they compute the same boolean func-
tion; again we write C ≡ C ′.

The size of an NNF C, in symbols size(C), is the number
of arcs in its underlying DAG. Let f be a boolean function
and let L be a class of NNFs. The size of f relative to L (or,
in short, the L size of f ), denoted by L(f), is equal to the
minimum over the sizes of all circuits in L computing f :

L(f) = min{size(C) : C ∈ L, C ≡ f}.

Let C be an NNF on input variables X , and let g be a gate
of C. We denote by Cg the subcircuit of C having g as its
output gate, that is, the circuit whose underlying DAG is the
subgraph of the underlying DAG of C induced by the nodes
having a directed path to g (labelled as in C).

An NNF C on input variables X is deterministic if, for
every ∨-gate g in C, say of the form

∨m
i=1 gi, it holds that

Cgi ∧ Cgj ≡ ⊥
for all 1 ≤ i < j ≤ m, where we formally regard Cgi , Cgj ,
and ⊥ as NNFs on input variables X . We denote by NNFd

the class of all deterministic NNFs.
Let Y be a finite nonempty set of variables. A variable

tree (in short, a vtree) for the variable set Y is a rooted, full,
ordered, binary tree T whose leaves correspond bijectively
to Y ; indeed, we identify each leaf in T with the variable in
Y it corresponds to.
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Figure 1: A circuit on input variables {x2, x4} on the left
(in the underlying DAG, the edges are oriented upwards),
respecting the vtree for the variable set {x1, x2, x3, x4, y}
on the right. The left subtree is a vtree for the variable set
{x1, x2, x3, x4}, and the right subtree is a vtree for the vari-
able set {y}. The ∧-gate in the circuit respects the root of the
vtree.

Let v be an internal node of the vtree T . We let vl and vr
denote respectively the left and right child of v, and Tv denote
the subtree of T rooted at v. We also let Yv ⊆ Y denote (the
variables corresponding to) the leaves of Tv; clearly Tv is a
vtree for the variable set Yv .

Let C be an NNF on input variables X , and let T be a
vtree for the variable set Y .

We say that C respects T if the following holds. First,
every ∧-gate g in C has fanin exactly 2. Second, let g be an
∧-gate in C having wires from gates h1 and h2. Then there
exists an internal node v in T such that the input gates of the
subcircuit Ch1

mention only variables in Tvl and the input
gates of the subcircuit Ch2

mention only variables in Tvr . In
this case, we also say that g respects v.

Note that, in particular, the sets of variables mentioned by
Ch1 and Ch2 are disjoint; it follows that C is decomposable
(Darwiche 2001). Also note that, by definition, if an NNF
reading all the variables in a set X is structured by a vtree
for the variable set Y , then X ⊆ Y and the inclusion can be
strict; see Figure 1. This feature is crucial in our construction
(see, for instance, the proof of Theorem 3).

A structured NNF is an NNF respecting some vtree. See
Figure 1. We denote by NNFs the class of all structured
NNFs.

SDDs and OBDDs. A sentential decision diagram (SDD)
C respecting a vtree T is defined inductively as follows.
• C is a single gate labelled by a literal on a variable x, and

x is in the variable set of T .
• C is a single gate labelled by a constant, and T is any

vtree.
• C is formed by an output gate g labelled by ∨, with m ≥ 2

wires from gates g1, . . . , gm labelled by ∧, where each gi
has wires from two gates pi and si, that is,

C =
m∨

i=1

Cpi ∧ Csi , (2)

such that for some internal node v of T the following holds
(i = 1, . . . ,m):

x3

x1

x2

x4

Figure 2: A right-linear vtree; its left first traversal induces
the variable ordering x1 < x2 < x3 < x4.

(S1) Cpi
is an SDD respecting a subtree of Tvl .

(S2) Csi is an SDD respecting a subtree of Tvr .
(S3) Cpi

�≡ ⊥.
(S4) Cpi

∧ Cpj
≡ ⊥ (1 ≤ i < j ≤ m).

(S5)
∨m

i=1 Cpi ≡ �.
In the equivalences in (S3)-(S5), we formally regard the Cpi

’s,
⊥ and � as NNFs on variables Yvl . In words, conditions (S3)-
(S5) say that the Cpi’s define a partition of {0, 1}Yvl into m
nonempty blocks, where the ith block contains exactly the
models of Cpi

(i = 1, . . . ,m).
An SDD is an SDD respecting some vtree. We let SDD

denote the class of all SDDs.
An SDD C is called compressed if the following holds. Let

h be an ∨-gate of C, so that h =
∨m′

i=1 Cp′
i
∧ Cs′i specified

as in (2) relative to some node v′ in T . Then
(C) Cs′i �≡ Cs′j (1 ≤ i < j ≤ m′),

where we formally regard Cs′i as an NNF on variables Yv′
r

for i = 1, . . . ,m′. We let SDDc denote the class of all
compressed SDDs.

An ordered binary decision diagram (OBDD) is a com-
pressed SDD respecting a right-linear vtree T (that is, where
each left child is a leaf); see Figure 2. We let OBDD denote
the class of all OBDDs.4

Let C be an OBDD respecting a vtree T , and let σ =
x1 < · · · < xn be the variable ordering induced by a left first
traversal of T ; in this case, we also say that C respects σ. For
an ordering σ of a set of variables, we let OBDDσ denote
the class of all OBDDs respecting σ.

Quasipolynomial Separation. It follows from the defini-
tions that

OBDD ⊆ SDDc ⊆ SDD ⊆ NNFs ∩NNFd (3)

which raises the natural question how OBDDs and SDDs
are related in succinctness; indeed, the quest for the relative
succinctness of OBDDs and SDDs has been an open problem
in knowledge compilation since Darwiche introduced SDDs
(Darwiche 2011).

Recently, Razgon (2014a, Corollary 3) has established a
quasipolynomial separation of OBDDs from compressed
SDDs.

4Reduced OBDDs as usually defined in the literature (Wegener
2000, Definition 1.3.2) are indeed compressed SDD respecting right-
linear vtrees (Darwiche 2011, Section 6).
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Theorem 1 (Razgon). There exists an unbounded arity class
of boolean functions F such that every arity n function f ∈
F has SDDc size in O(n3) and OBDD size in nΩ(logn).

We remark that the restriction to compressed SDDs in the
above statement is nontrivial; to the best of our knowledge,
compressed SDDs might be exponentially more succinct than
uncompressed SDDs (Van den Broek and Darwiche 2015);
see also the discussion in Section 4.

3 Exponential Separation

The quasipolynomial separation stated in Theorem 1 implies
that OBDDs do not simulate SDDs in polynomial size, but
leaves open the possibility for OBDDs to simulate SDDs in
quasipolynomial size. In this section we exclude this possi-
bility by establishing an exponential separation of OBDDs
from compressed SDDs.

Hidden Weighted Bit. The separation is obtained by (a
variant of) the hidden weighted bit function

HWBn(x1, . . . , xn),

that is the boolean function on n inputs x1, . . . , xn such that,
for all assignments f : {x1, . . . , xn} → {0, 1}, it holds that
f is a model of HWBn if and only if f(x1)+· · ·+f(xn) = i
and f(xi) = 1 (i ≥ 1).

It is well known that the hidden weighted bit function has
exponential OBDD size (Bryant 1986).

Theorem 2 (Bryant). The OBDD size of HWBn is 2Ω(n).
Intuitively, a model of HWBn is a subsets of {1, . . . , n} of

size i containing the number i, for i = 1, . . . , n. For instance,
HWB2(1, 0) = 1, because the set {1} has size 1 and contains
the number 1, and HWB2(0, 1) = 0, because the set {2} has
size 1 but does not contain the number 1.

The simple but crucial observation underlying our con-
struction is that the models of HWBn can be decided argu-
ing by cases, as follows: If S is a subset of {1, . . . , n} of
size i, then S is a model of HWBn if and only if i ∈ S
(i = 1, . . . , n). With this insight it is not hard to setup an ex-
haustive and exclusive case distinction equivalent to HWBn;
the key observation is that each individual case in the dis-
tinction is computable by a small OBDD with respect to any
variable ordering.

We formalize the above intuition. For i ∈ {0, 1, . . . , n},
let

Ei
n(x1, . . . , xn)

be the boolean function on n inputs x1, . . . , xn such that, for
all assignments f : {x1, . . . , xn} → {0, 1}, it holds that f is
a model of Ei

n if and only if f(x1)+ · · ·+f(xn) = i. Hence
Ei

n computes the subsets of {1, . . . , n} of size i (i ≥ 0). Let
now

Pn = {P0, Pn} ∪ {Pi,0, Pi,1 : i = 1, . . . , n− 1} (4)

be the family of 2n boolean functions, each over the variables
{x1, . . . , xn}, defined as follows:
• P0 ≡ E0

n

• Pn ≡ En
n

x1

x2 x2

x3x3 x3

x4x4

⊥ ⊥ ⊥

x4 x4

⊥ �

v

Figure 3: An OBDD for the boolean function E2
4 respecting

the variable ordering x1 < x2 < x3 < x4, drawn (in an
unreduced form) using the graphical conventions for decision
diagrams (Wegener 2000). Each decision node generates 6
wires in the circuit; for instance, the decision node v generates
a 6-wire subcircuit isomorphic to (¬x4 ∧ ⊥) ∨ (x4 ∧ �).

and for i = 1, . . . , n− 1 let
• Pi,0 ≡ Ei

n ∧ ¬xi

• Pi,1 ≡ Ei
n ∧ xi

See Figure 4 for an illustration.
Each function in Pn computes a family of subsets of

{1, . . . , n}. Namely, P0 computes the empty subset, Pn com-
putes {1, . . . , n}, Pi,0 computes the subsets of {1, . . . , n}
of size i not containing the number i, and Pi,1 computes
the subsets of {1, . . . , n} of size i containing the number i
(i = 1, . . . , n− 1).

It is readily observed that the members of Pn partition the
powerset of {1, . . . , n} in nonempty blocks. Formally,
Fact 1. Let Pn be as in (4), and let P, P ′ ∈ Pn with P �= P ′.
• P �≡ ⊥.
• P ∧ P ′ ≡ ⊥.
• ∨

P∈Pn
P ≡ �.

We now establish the key property, that each member of
Pn is computable by a small OBDD with respect to any
variable ordering.

First consider the functions Ei
n. An OBDD computing Ei

n
with respect to the variable ordering σ = x1 < · · · < xn

is displayed in Figure 3 for the case n = 4 and i = 2.
Generalizing the construction, we have that an OBDD C
computing Ei

n and respecting σ has at most 1+2+ · · ·+n =
n(n+ 1)/2 decision nodes, each contributing 6 wires in the
circuit; hence C has size O(n2).

Since Ei
n is symmetric (Wegener 2000, Definition 2.3.2

and Lemma 4.7.1), the following holds.
Proposition 1. Let σ be an ordering of x1, . . . , xn. The
OBDDσ size of Ei

n is O(n2).
It follows that every P ∈ Pn has a small OBDD with

respect to every variable ordering.
Proposition 2. Let σ be an ordering of x1, . . . , xn and let
P ∈ Pn, where Pn is as in (4). The OBDDσ size of P is
O(n2).

Proof. For P0 and Pn the statement follows directly from
Proposition 1. For i = 1, . . . , n − 1 we have that Pi,0 ≡
Ei

n ∧ ¬xi and Pi,1 ≡ Ei
n ∧ xi.
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x1

x2 x2

x3x3

x4

⊥ ⊥

⊥

x4 x4

⊥ �

Figure 4: An OBDD for the boolean function E2
4 ∧ ¬x2

respecting the variable ordering x1 < x2 < x3 < x4.

Recall that if f and f ′ are boolean functions on X , and ρ
is any ordering of X , then (Wegener 2000, Theorem 3.3.6):

OBDDρ(f ∧ f ′) ≤ OBDDρ(f) · OBDDρ(f
′). (5)

Regarding the literals ¬xi and xi as boolean functions on
{x1, . . . , xn} whose OBDDσ size is constant (6 wires), the
statement follows from (5) and Proposition 1.

SDDs vs OBDDs. We now prove that the hidden weighted
bit function has small (uncompressed) SDD size; a slight
modification of the construction, described later, gives the
compressed case.

The key observation is that, by the definition of Pn, the
hidden weighted bit function HWBn is equivalent to

(P0 ∧ ⊥) ∨ (Pn ∧ �) ∨
n−1∨

i=1

((Pi,0 ∧ ⊥) ∨ (Pi,1 ∧ �)) (6)

because the latter is equivalent to

(E1
n ∧ x1) ∨ · · · ∨ (En

n ∧ xn)

which is in turn equivalent to HWBn. Using the form (6), it
is easy to build an SDD computing HWBn and respecting
a vtree for {x1, . . . , xn, y} like the one on the right in Fig-
ure 1; upon implementing the Pi’s and Pi,j’s by OBDDs, the
construction has polynomial size by Proposition 2. Note that
the SDD is not compressed because ⊥ and � are reused n
times. The details follow.

Theorem 3. The SDD size of HWBn is O(n3).

Proof. We first define an NNF C on input variables X =
{x1, . . . , xn} computing (6) as follows. The output gate of
C is a fanin 2n ∨-gate, with wires from 2n fanin 2 ∧-gates
g0, gn, and gi,j for i = 1, . . . , n− 1 and j = 0, 1.

Let p0 and s0 be the two gates wiring g0, let pn and sn
be the two gates wiring gn, and for i = 1, . . . , n − 1 and
j = 0, 1 let pi,j and si,j be the two gates wiring gi,j .

Let σ be any ordering of x1, . . . , xn. All the subcircuits of
C rooted at p0, s0, pn, sn, pi,j , and si,j (i = 1, . . . , n − 1,
j = 0, 1) are OBDDs respecting the ordering σ. Moreover:

• Cpi
computes Pi for i ∈ {1, n};

• Cpi,j
computes Pi,j for i = 1, . . . , n− 1, j = 0, 1;

• Cs0 and Csi,0 compute ⊥ for i = 1, . . . , n− 1;

• Csn and Csi,1 compute � for i = 1, . . . , n− 1.

We prove that C is an SDD respecting a suitable vtree T
for the variable set X ∪ {y}. Roughly, T is a right-linear
vtree with the exception of the variable y; see the diagram on
the right in Figure 1 for the case n = 4 and σ = x1 < x2 <
x3 < x4. Formally, T is defined as follows. Let v be the root
of T . The left subtree Tl = Tvl of T is a right-linear vtree for
{x1, . . . , xn} such that the variable ordering induced by its
left first traversal is σ. Similarly, the right subtree Tr = Tvr
of T is a vtree for {y}.

We check that C is an SDD respecting T .

• The subcircuits Cp0 , Cpn , and Cpi,j are OBDDs respecting
σ, and hence SDDs respecting Tl (i = 1, . . . , n− 1, j =
0, 1). This settles (S1).

• The subcircuits Cs0 , Csn , and Csi,j are input gates la-
belled by a constant, and hence SDDs respecting Tr

(i = 1, . . . , n− 1, j = 0, 1). This settles (S2).

Note how the construction crucially exploits the special po-
sition of y in the vtree T , while the circuit C does not even
read y.

The partitioning properties (S3)-(S5) follow by construc-
tion and Fact 1. Therefore, C is an SDD respecting T . It
remains to check that C has size cubic in n.

By construction, C contains the 2n subcircuits Cp0 , Cpn ,
and Cpi,j

for i = 1, . . . , n − 1 and j = 0, 1; each has size
O(n2) by Proposition 2 hence, altogether, they contribute
O(n3) wires in C. There remain O(n) wires entering the
output gate and the gates g0, g1, . . . , gm.

Combining Theorem 2 and Theorem 3, we conclude that
OBDDs and SDDs are exponentially separated by the hidden
weighted bit function.

Compressed SDDs vs OBDDs. A slight variant of the pre-
vious construction gives an exponential separation of OBDDs
and compressed SDDs.

Let y0, y1, . . . , yn be fresh variables. The boolean function
Fn of the variables x1, . . . , xn, y0, y1, . . . , yn, called gener-
alized hidden weighted bit function, is defined by

(P0∧¬y0)∨(Pn∧yn)∨
n−1∨

i=1

((Pi,0∧¬yi)∨(Pi,1∧yi)). (7)

Notice that the form (7) is exactly as the form (6), except
that the n copies of ⊥ and the n copies of � are replaced by
the 2n pairwise nonequivalent formulas ¬y0, yn, yi, and ¬yi
(i = 1, . . . , n− 1), so that (7) has indeed a compressed SDD
implementation. The details follow.

Lemma 1. The SDDc size of Fn is O(n3).

Proof. We construct an NNF C on input variables X =
{x1, . . . , xn, y0, y1, . . . , yn} computing (7) along the lines
of Theorem 3. The only modification is that Cs0 is an input
gate labelled ¬y0, Csn is an input gate labelled yn, Csi,0 is
an input gate labelled ¬yi, and Csi,1 is an input gate labelled
yi (i = 1, . . . , n− 1).
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y1

y2

y3 y4

y0

Figure 5: The vtree for F4 in the proof of Lemma 1.

We claim that C is a compressed SDD respecting a vtree
T for the variable set X built exactly as in Theorem 3 except
that the right subtree Tr = Tvr of T is a right-linear vtree for
{y0, y1, . . . , yn} such that the variable ordering induced by
its left first traversal is ρ. See Figure 5 for the case n = 4,
σ = x1 < · · · < x4, and ρ = y0 < y1 < · · · < y4.

To check that C is a compressed SDD respecting T , notice
that the subcircuits Cp0

and Cpi,j
are OBDDs respecting σ,

and hence compressed SDDs respecting Tl (i = 1, . . . , n,
j = 0, 1), and the subcircuits Cs0 and Csi,j are OBDDs
respecting ρ, and hence compressed SDDs respecting Tr

(i = 1, . . . , n, j = 0, 1). Moreover, it is easily verified that
the output gate of C is compressed as by condition (C). Hence
C is compressed. The rest of the proof is identical to that of
Theorem 3.

We now prove that the generalized hidden weighted bit
function Fn needs large OBDDs.

Lemma 2. The OBDD size of Fn is 2Ω(n).

Proof. Let N be the size of a smallest OBDD on variables
X = {x1, . . . , xn, y0, y1, . . . , yn} computing Fn, and let ρ
be any ordering of X such that OBDDρ(Fn) = N .

Let Gn(x1, . . . , xn) be the subfunction of Fn where
y0, y1, . . . , yn are replaced by 1, in symbols:

Gn ≡ Fn(x1, . . . , xn, 1, 1, . . . , 1). (8)

Since conditioning (unboundedly many variables of) an
OBDD does not increase its size (Wegener 2000, Theo-
rem 2.4.1), we have that

OBDDρ(Gn) ≤ OBDDρ(Fn). (9)

We now claim that Gn is the hidden weighted bit function
on n variables. Indeed, by construction,

Gn ≡ Fn(x1, . . . , xn, 1, 1, . . . , 1)

≡ Pn ∨
n−1∨

i=1

Pi,1

which we already observed being equivalent to HWBn.
Therefore OBDD(Gn) = 2Ω(n) by Theorem 2, and in par-
ticular OBDDρ(Gn) ≥ 2Ω(n). By (9), we are done.

An exponential separation of OBDDs and compressed
SDDs follows.

Theorem 4. There exists an unbounded arity class of
boolean functions F such that every arity n function f ∈ F
has SDDc size in O(n3) and OBDD size in 2Ω(n).

Proof. Take F = {Fm : m ∈ N}, where Fm is as in (7).
Then Fm has compressed SDD size O(m3) by Lemma 1 and
OBDD size 2Ω(m) by Lemma 2. Since Fm has n = 2m+ 1
variables, it follows that Fm has SDDc size in O(n3) and
OBDD size in 2Ω(n).

Notably, the function class giving the exponential sepa-
ration is as hard on compressed SDDs as the function class
giving the quasipolynomial separation (cubic in both cases,
see Theorem 1).

4 Discussion

We have shown that OBDDs and SDDs are exponentially
separated by the hidden weighted bit function, while OBDDs
and compressed SDDs are exponentially separated by the
generalized hidden weighted bit function, Fn in (7), that
contains the hidden weighted bit function as a subfunction:

Fn(x1, . . . , xn, 1, 1, . . . , 1) = HWBn(x1, . . . , xn). (10)

Separating OBDDs and SDDs by the hidden weighted bit
function, instead of by a function designed adhoc, further
corroborates the theoretical quality of SDDs. As articulated
by Bollig et al. (1999), any useful extension of OBDDs is
expected to implement the hidden weighted bit function effi-
ciently.

The SDD C described in the proof of Theorem 3 is not
compressed, because ⊥ and � are reused n times. In view of
the canonical construction of an SDD over a vtree (Darwiche
2011, Theorem 3), it is readily observed that compressing
C with respect to the vtree T in the proof of Theorem 3
implies finding a small SDD for HWBn with respect to the
left subtree of T , that is, a small OBDD for HWBn; but this
is impossible by Theorem 2. The fact that compressing an
SDD over its vtree may increase the size exponentially has
been observed already (Van den Broek and Darwiche 2015,
Theorem 1). We reiterate the observation here only because
our argument is significantly shorter.

We conclude mentioning a nonobvious, and perhaps even
unexpected, aspect of our separation result. An inspection of
our construction shows that SDDs are already exponentially
more succinct than general OBDDs even allowing only one
sentential decision (and possibly many Shannon decisions);
recall (6) and (7). The construction by Xue et al. (2012)
already uses nested sentential decisions even to separate
OBDDs over a fixed variable ordering from SDDs!

Questions. We do not know whether the hidden weighted
bit function has superpolynomial compressed SDD size for
all vtrees; a positive answer would separate compressed and
uncompressed SDDs in succinctness and, in view of Lemma 1
and (10), would prove that compressed SDDs do not support
conditioning (of unboundedly many variables) in polynomial
size.

In view of Theorem 1, it is natural to ask which SDDs
are quasipolynomially simulated by OBDDs. Our separating
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family shows that SDDs with unbounded fanin disjunctions
cannot be quasipolynomially simulated by OBDDs. On the
other hand, recent work by Darwiche and Oztok essentially
shows that SDDs over binary disjunctions (fanin 2) admit a
quasipolynomial simulation by OBDDs (Oztok and Darwiche
2015, Theorem 1). In this light, it is tempting to conjecture
that the above criterion is exact, that is, every SDD class over
bounded fanin disjunctions does indeed admit a quasipolyno-
mial simulation by OBDDs.

Finally, a natural question arising in the context of the
present work is about the relative succinctness of SDDs and
structured deterministic NNFs (see (3)); to the best of our
knowledge, the question is open. By Theorem 3, at least
we now know that the hidden weighted bit function is not a
candidate to separate the two classes.
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