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Abstract

Only knowing captures the intuitive notion that the beliefs of
an agent are precisely those that follow from its knowledge
base. It has previously been shown to be useful in charac-
terizing knowledge-based reasoners, especially in a quanti-
fied setting. While this allows us to reason about incomplete
knowledge in the sense of not knowing whether a formula is
true or not, there are many applications where one would like
to reason about the degree of belief in a formula. In this work,
we propose a new general first-order account of probability
and only knowing that admits knowledge bases with incom-
plete and probabilistic specifications. Beliefs and non-beliefs
are then shown to emerge as a direct logical consequence of
the sentences of the knowledge base at a corresponding level
of specificity.

1 Introduction

When considering knowledge-based reasoners, it seems in-
tuitive that the beliefs of the agent are those that follow from
the assumption that its knowledge base is all that is known.1
Levesque (Levesque 1990) was among the first to capture
this idea in the logic of only knowing OL, where a modality
O is introduced in addition to the classical epistemic op-
erator K. For example, from Op it follows that Kp, but
more interestingly, it also follows that ¬Kq. This is differ-
ent from classical epistemic logic where Kp does not pre-
clude K(p∧ q). Similarly, in a quantified setting, we get the
following valid sentence:

O(P(a) ∨ P(b)) ⊃K(∃x[P(x) ∧ ¬KP(x)])

which says that “if all I know is P(a) or P(b) then I know
that there is an instance of P but not what.” In other words,
a precise characterization of the beliefs and the non-beliefs
of a knowledge-based reasoner can be given in a succinct
manner using only knowing. With this meta-knowledge, the
agent is then in a position to do something when its knowl-
edge is incomplete, ask a question for example.
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1In this paper, we do not distinguish between “knowledge” and
“belief” and freely use the terms interchangeably.

Somewhat surprisingly, OL has a particularly simple se-
mantics. A model, or an epistemic state, is simply a set of
worlds e, which satisfies only knowing a sentence α just
in case e is maximal, that is, adding any other world to e
would lead to not believing α any more. Here worlds are
simply truth assignments to atoms of a first-order language
and believing is interpreted in the usual way as truth in all
worlds in e. Over the years, only knowing has been stud-
ied and extended in various ways, such as capturing de-
faults (Lakemeyer and Levesque 2005), modeling dynam-
ical worlds (Lakemeyer and Levesque 2004), and reason-
ing about multiple agents (Halpern and Lakemeyer 2001;
Waaler and Solhaug 2005; Belle and Lakemeyer 2010).

Be that as it may, first-order accounts of only knowing
have limited themselves to categorical knowledge, where a
formula φ is either known or not known. In many real-world
applications, it is not enough to deal with incomplete knowl-
edge in that sense. Here, one must also know which of φ
or ¬φ is the more likely, and by how much. Similarly, in
a robotic setting (Bacchus, Halpern, and Levesque 1999),
some outcomes are more likely than others, perhaps due to
error prone actuators. Reasoning about probabilistic beliefs
is then a critical feature. To that end, it is natural to ask the
following: if all that is known is p, what is the degree of
belief in q? More generally, if a knowledge base includes
partial, incomplete or probabilistic specifications, what can
the agent be expected to believe?

In this work, we attempt a response to these questions by
proposing a first-order account of subjective probability and
only knowing. The reasonableness of our proposal can be
evaluated in different ways. At one extreme, belief is shown
to exhibit the usual properties of subjective probabilities
(Fagin and Halpern 1994). At the other extreme, the logic
is also shown to exhibit the properties of classical only
knowing as desired. Moreover, like OL, our account admits
a substitutional interpretation of quantifiers over an infinite
domain, giving us a simple way to address issues such as
quantifying-in (Kaplan 1968). Perhaps most significantly,
the properties of belief emerge as a logical consequence of
the sentences of the knowledge base at a corresponding level
of specificity. In particular, this will mean that for partial
and incomplete specifications, where a single probability
distribution would often not suffice, suitable beliefs are
nonetheless entailed.
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We structure our work as follows. We begin by intro-
ducing the logic OBL (= OL+ degrees of belief modal-
ity). Then, we turn to properties and example specifications,
OBL’s relation to OL, discuss related work, and conclude.

2 The Logic OBL
Syntax

The non-modal fragment of OBL consists of standard first-
order logic with = (that is, connectives {∧,∀,¬}, syntactic
abbreviations {∃,≡,⊃}) and a countably infinite set of stan-
dard names N , which includes the set of rationals as a sub-
sort. As we shall see, these standard names will serve as a
fixed domain of discourse, permitting a substitutional inter-
pretation for quantifiers. To keep matters simple, function
symbols are not considered in this language. We call a pred-
icate other than =, applied to first-order variables or stan-
dard names, an atomic formula. We write αx

n to mean that
the variable x is substituted in α by a standard name n. If all
the variables in an atom are substituted by standard names,
then we call it a ground atom. Let P be the set of ground
atoms in OBL.
OBL has two epistemic operators: B(α: r) is to be read

as “α is believed with a probability r,” where r is a rational
number. Next, the modality O(α1: r1, . . . , αk: rk), where αi
does not mention modalities and ri is a rational, is to be read
as “all that is believed is: α1 with probability r1, . . . , and αk
with probability rk.” We also use Kα, to be read as “α is
known,” as an abbreviation for B(α: 1).We write Oα, to be
read as “α is all that is known,” to mean O(α: 1).

A formula not mentioning modalities is called objective,
and a formula where all predicate symbols appear within the
scope of a modal operator is called subjective.

Semantics

The semantics is given in terms of possible worlds. Here, a
world w maps the ground atoms in P to {0, 1}, and letW be
the set of all worlds. By a distribution d we mean a function
fromW to the set of positive reals R≥0. An epistemic state
e is defined as a set of distributions. By a model, we mean a
pair (e,w).

As can be surmised, the definition of a distribution here
does not immediately lead to a probability distribution in the
usual sense. To obtain probability distributions, we appeal to
three simple conditions that will be used in the semantics:

Definition 1: Let d be any distribution, V ⊆ W any set
of worlds, and r any real number. We define conditions
bound, equal and norm as follows:

• norm(d,V, r) iff there is a number b � 0 such that
equal(d,V, b × r) and equal(d,W, b);
• equal(d,V, r) iff bound(d,V, r) and there is no r′ < r

such that bound(d,V, r′);
• bound(d,V, r) iff there is no k,w1, . . . ,wk ∈ V such that

k∑

i=1

d(wi) > r.

Intuitively, given norm(d,V, r), r can be seen as the nor-
malization of the weights of worlds in V in relation to the
set of all worldsW as accorded by d. Here, equal(d,V, b)
expresses that the weight accorded to the worlds in V is b,
and finally bound(d,V, b) ensures the weight of worlds inV
is bounded by b. In essence, althoughW is uncountable, the
conditions bound and equal admit a well-defined summation
of the weights on worlds:
Theorem 2 : Suppose d is a distribution, and let
V = {w ∈ W | d(w) � 0} . For any number b ≥ 0, if
bound(d,W, b) thenV is countable.
Proof: Consider the sequence of sets of worlds Vi =
{w ∈ V | d(w) ≥ 1/i} for positive integers i. It is easy to see
that V = ∪Vi, a property we denote by (∗). Now sup-
pose V is uncountable. Then there is some ε > 0 such
that Ve = {w ∈ V | d(w) ≥ ε} is infinite. (For otherwise we
could enumerate V by enumerating Vi starting at i = 1 us-
ing (∗).) Now, consider any countably infinite sequence of
worlds wj taken from Ve. Since d(wj) ≥ ε for all wj, the
sum
∑∞

j=1 d(wj) is clearly unbounded, contradicting the as-
sumption thatW is bounded by b.

Corollary 3: Suppose d is as above,V ⊆W is infinite, and
bound(d,V, b). Then {w ∈ V | d(w) � 0} is countable.
Theorem 4: SupposeV ⊆W is infinite, d is a distribution, b
a number and equal(d,V, b) holds. Then there is an infinite
sequence w1, . . . , with wi ∈ V such that

∑∞
i=1 d(wi) = b.

Proof: Since equal(d,V, b), by definition, bound(d,V, b).
By Corollary 3,U = {w ∈ V | d(w) � 0} is countable. Con-
sider any sequence consisting of all worlds wi ∈ U. We
recall the property that for any series

∑∞
i=1 ai, where ai is

nonnegative, the series converges iff it is bounded. Then, we
have that

∑∞
i=1 d(wi) is bounded by assumption and so it con-

verges, and suppose
∑∞

i=1 d(wi) = b′. It is easy to see that if
b′ � b, then equal(d,V, b) is a contradiction.

We are now prepared for a semantics. Given α ∈ OBL
and a model (e,w), the semantic rules are as follows:
• e,w |= p iff w[p] = 1;
• e,w |= n1 = n2 iff n1 and n2 are the same standard names;
• e,w |= ¬α iff e,w �|= α;
• e,w |= α ∧ β iff e,w |= α and e,w |= β;
• e,w |= ∀xα iff e,w |= αx

n for all names n;
• e,w |= B(α: r) iff

for all d ∈ e, norm(d, {w′ | e,w′ |= α} , r);
• e,w |= O(α1: r1, . . . , αk: rk) iff

for all d, d ∈ e iff norm(d, {w′ | e,w′ |= α1} , r1),
. . . , norm(d, {w′ | e,w′ |= αk} , rk).

We often write e |= α when the world is irrelevant (that is,
when α is a subjective formula), and write w |= α when the
epistemic state is irrelevant (that is, when α is an objective
formula). Given any set of sentences Σ, we write Σ |= α
(read: “Σ entails α”) to mean that if e,w |= β for every β ∈ Σ
then e,w |= α. Finally, we write |= α (read: “α is valid”)
to mean {} |= α.We let true denote a tautologous sentence,
such as ∀x(x = x), and let false denote its negation.
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3 Properties of Belief

In this section, we argue for the reasonableness of our se-
mantic rules for the B modality. (A discussion on only
knowing is deferred to Section 5.) To that end, it will be
convenient to identify epistemic states that can interpret ev-
ery atomic event:

Definition 5: We say e is measurable iff for every d ∈ e, for
every atom p, there is a r ≥ 0 such that {d} |= B(p: r).

As we now show, measurability2 is intimately related to
the notion of a “reasonable” epistemic state, in that valid
sentences are always known. In the sequel, given α and e,
we writeWe

α to mean the set {w | e,w |= α}, often dropping
the superscript when the context is clear.

Theorem 6: e is measurable iff e |= B(true: 1).

Proof: Suppose e is measurable. Then for every d ∈ e, for
every p, there is some r, such that {d} |= B(p: r). That is,
norm(d,Wp, r), and so for some b � 0, equal(d,Wp, b × r)
and equal(d,W, b). Thus, for every d ∈ e, norm(d,W, 1)
and so e |= B(true: 1).

Conversely, suppose e |= B(true: 1) and so, for every
d ∈ e, norm(d,W, 1), that is, equal(d,W, b) for some pos-
itive b. Then for any ground atom p, bound(d,Wp, b) since
Wp ⊆ W. By Corollary 3, V = {w ∈ Wp | d(w) � 0}
is countable, and since bounded countable series of nonneg-
ative terms converge (see argument for Theorem 4), let b∗
be such that equal(d,Wp, b∗). So, norm(d,Wp, b∗/b). Since
this applies to all d ∈ e, clearly e is measurable.

Consequently, we obtain the following properties for B
regarding truth:3

• ¬Ktrue is satisfiable
Proof: Suppose d maps every w ∈ W to an integer > 0.
Then there is no b such that bound(d,W, b) holds, and so
also not equal(d,W, b). Thus, for any e such that d ∈ e,
e �|= B(true: 1).

• |= B(true: 1) ⊃ B(false: 0)
Proof: Suppose e |= B(true: 1). Then for every
d ∈ e, norm(d,W, 1) and so norm(d, {} , 0), that is, e |=
B(false: 0).

Additivity and Equivalence

Beyond truth and falsehood, B can be shown to exhibit the
following reasonable properties (as in, for example, (Fagin
and Halpern 1994)):

• |= B(α ∧ β: r) ∧B(α ∧ ¬β: r′) ⊃ B(α: r + r′)
Proof: Suppose e |= B(α∧β: r) and e |= B(α∧¬β: r′).
This means that for all d ∈ e, norm(d,Wα∧β, r) and

2Our terminology is such because this property can be seen to
assign a probability measure toWp = {w | w |= p} for every atom
p. Roughly, this is a definition to realize the measurable case in the
sense of (Fagin and Halpern 1994).

3Of course, if needed, we can simply restrict ourselves to mea-
surable epistemic states by means of which truth is always believed
with probability 1.

norm(d,Wα∧¬β, r′). So for some b � 0,
equal(d,Wα∧β, b × r), equal(d,Wα∧¬β, b × r′) and
equal(d,W, b) hold. SinceWα∧β ∩Wα∧¬β is empty, and
Wα∧β∪Wα∧¬β−Wα is empty, we have equal(d,Wα, b×
r+b× r′). Hence norm(d,Wα, r+ r′) for every d ∈ e, and
so e |= B(α: r + r′).

• if r is a negative number then B(α: r) is unsatisfiable
Proof: If e |= B(α:−r) where r is a positive real, then
for every d ∈ e, norm(d,Wα,−r) which is impossible by
the definition of d that maps worlds to positive reals.

• if |= α ≡ β, then |= B(α: r) ≡ B(β: r)
Proof: For any e, and for every d ∈ e, sinceWα =Wβ,
if norm(d,Wα, r) then norm(d,Wβ, r) and vice versa.
Thus, e |= B(α: r) ⊃ B(β: r) and vice versa.

• |= B(α: r)∧B(β: r′)∧B(α∧β: r′′) ⊃ B(α∨β: r+r′ −r′′)
OBL satisfies the addition law of probability.

Knowledge

As in OL (Levesque and Lakemeyer 2001), the following
properties of knowledge hold, which include the universal
and existential versions of the Barcan formula:

• |=Kα ∧K(α ⊃ β) ⊃Kβ

Proof: Suppose e |= Kα and e |= K(α ⊃ β). Then for
all d ∈ e, norm(d,Wα, 1) and norm(d,Wα⊃β, 1). So for
every d ∈ e, there is a b � 0 such that equal(d,Wα, b),
equal(d,Wα⊃β, b) and equal(d,W, b). In particular, be-
cause equal(d,Wα, b) and equal(d,W, b), there is an in-
finite sequence w1, . . .with wi ∈ Wα such that4

∑
d(wi) =

b and for w �Wα, d(w) = 0. (Otherwise, equal(d,W, b)
cannot be true.) Moreover, there is no finite sequence
w1, . . . ,wk with wi ∈ Wα such that d(w1) + . . . +
d(wk) > b. An analogous observation can be made for
equal(d,Wα⊃β, b), and so there is an infinite sequence
w1, . . . with wi ∈ Wα ∩Wα⊃β such that

∑
d(wi) = b, and

for w �Wα∩Wα⊃β, d(w) = 0. SinceWβ ⊇ Wα∩Wα⊃β
and d(w) = 0 for w ∈ Wβ − Wα ∩ Wα⊃β, there is
an infinite sequence w1, . . . with wi ∈ Wβ such that∑

d(wi) = b but no finite sequence w1, . . . ,wk such that
d(w1) + . . . + d(wk) > b. That is, equal(d,Wβ, b) and be-
cause equal(d,W, b), we get norm(d,Wβ, 1) . This holds
for every d ∈ e. So e |=Kβ.

• |= ∀xKα ⊃K∀xα
Proof: Suppose e,w |= ∀xKα. Then, e,w |= Kαx

n for
all names n. Thus, for all d ∈ e, norm(d,Wαx

n , 1) for all
names n, and so norm(d,W∀xα, 1). So e,w |=K∀xα.

• |=K∀xα ⊃ ∀xKα

• |= ∃xKα ⊃K∃xα but �|=K∃xα ⊃ ∃xKα
The converse of the Barcan does not hold for the exis-
tential: knowing that α holds for someone does not imply
knowing that individual.
4We simply write

∑
d(wi) for

∑∞
i=1 d(wi).
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Introspection

For introspection, we prove general versions involving
B(α: r) for arbitrary numbers r, and so the usual K-
properties (Fagin et al. 1995) come out as special cases.

• |= B(α: r) ⊃KB(α: r)
Proof: Suppose e |= B(α: r), and so for all d ∈ e,
norm(d,W, 1). By assumption, also note thatWB(α:r) =
W. (If e �|= B(α: r),WB(α:r) would be empty.) Therefore,
for every d ∈ e, norm(d,WB(α:r), 1). So, by definition,
e |=KB(α: r).

• |=Kα ⊃KKα

• Ktrue |= ¬B(α: r) ⊃K¬B(α: r)
Proof: Suppose e |= B(true: 1). Then, for every d ∈ e,
norm(d,W, 1). Suppose e �|= B(α: r). Then W¬B(α:r) =
W. (That is, only from e �|= B(α: r) it does not follow
that for every d ∈ e, norm(d,W, 1) holds.) So, for all
d ∈ e, norm(d,W¬B(α:r), 1) and thus, by definition, e |=
K¬B(α: r).

• Ktrue |= ¬Kα ⊃K¬Kα
More generally, we have the following regarding weak S5:

Theorem 7: Suppose α ∈ OBL is propositional and only
mentions the modality K. Then α is valid in weak S5 iff
Ktrue ⊃ α is valid in OBL.

4 Extensions

The formula B(α: r) expresses that the probability of α is
precisely r. It may be desirable to also allow arbitrary in-
equalities, which we introduce here by building on our pre-
vious discussions. Let OBL be extended with the following
modalities: Bα ◦ r, where ◦ ∈ {≤, <,≥, >}, to be read as
“α is believed with a probability ◦ r.” (Analogous O-based
modalities are also possible along the same lines, which we
omit here.)

In the semantic rules, we add the following definition:

• e,w |= Bα ◦ r iff e,w |= B(α: r′) for some r′ ◦ r.

Obvious properties then follow from this inequality opera-
tors, e.g., regarding equality and inequalities, we have:

• |= B(α: r) ≡ Bα ≤ r ∧Bα ≥ r
Proof: Here, e |= Bα ≤ r ∧Bα ≥ r iff (by definition)
e |= B(α: r′) for some r′ ≤ r and e |= B(α: r′′) for some
r′′ ≥ r iff (by definition) for all d ∈ e, norm(d,Wα, r′)
and norm(d,Wα, r′′), that is, r′ = r′′ (because for any
V ⊆ W, norm(d,V, r∗) can only be true for a unique
r∗) and by the linear constraints r′ = r iff for all d ∈ e,
norm(d,Wα, r) iff (by definition) e |= B(α: r).

• |= B(p: r) ∨B(p: r′) ⊃ Bp ≥ min(r, r′)
which says that if the agent believes p with a probability
of r or r′, without being able to say which, it can be said
to believe p with a probability of at least min(r, r′).
• |= Bp ≥ r ⊃ Bp ≥ r′ for every 0 ≤ r′ ≤ r

where r is the upper bound for the ≥ relation.

• |=Kp ∧B(q: r) ⊃ B(p ∧ q) ≥ r
That is, beliefs and knowledge can be combined freely.

A less obvious property in the context of a universally
quantified formula is the following:

Proposition 8: Suppose n is any name, and r � {0, 1}.
Then �|= B(∀xP(x): r) ⊃ B(P(n): r) but |= B(∀xP(x): r) ⊃
BP(n) ≥ r.

Proof: Suppose e |= B(∀xP(x): r). Suppose w is a world
such that w |= P(n′) for every name n′, and w′ is a world
such that w′ |= P(n) ∧ ¬P(n′) for every name n′ � n. Let d
map w to r and w′ to 1− r, and 0 to all other worlds. Clearly
d ∈ e, but norm(d,WP(n), r) is false, proving the falsifiability
of B(∀xP(x): r) ⊃ B(P(n): r). In contrast, it is easy to see
that B(∀xP(x): r) ⊃ BP(n) ≥ r is not falsifiable.

5 Only Knowing and Probabilities

We take a closer look at the specification of knowledge bases
and what they entail, that is, we inspect the O modality. In
particular, given a knowledge base Σ that is possibly incom-
plete or partial, we provide examples as to what the agent
can be expected to believe. In what follows, α is an arbitrary
formula, φ, ψ are objective, and p, q are distinct atoms.

For starters, as in OL (Levesque and Lakemeyer 2001),
only knowing implies knowing, but also not believing what
does not logically follow from the knowledge base:
• |= Oα ⊃Kα

• |= Oφ ⊃Kψ iff |= φ ⊃ ψ
• |= O(∀xP(x)) ⊃KP(n) for any name n
• |= Op ⊃ ¬Kq

Proof: Suppose e |= Op but e |= Kq. Then for every
d ∈ e, norm(d,Wq, 1). Consider d′ that assigns w ∈ Wp
a value 1, where w |= p ∧ ¬q. By definition d′ ∈ e, but
norm(d′,Wq, 1) cannot be true. This is a contradiction.

Clearly, the last property is not true in classical epistemic
logic if we were to replace O by K; in general:
• |= Oφ ⊃ ¬Kψ iff �|= φ ⊃ ψ

Similarly, the example involving quantifying-in from OL
turns out to be valid also in OBL:
• |= O(P(a) ∨ P(b)) ⊃K(∃x[P(x) ∧ ¬KP(x)])
More generally, as far as disjunctions are concerned, we get:
• |= O(p ∨ q) ⊃ ¬K¬p
This validity also does not hold in classical epistemic logic
if we were to replace O by K.

Nonetheless, O(p ∨ q) does not mean that p is believed
with a strictly positive probability:
• �|= O(p ∨ q) ⊃ Bp > 0

Proof: Let d assign 1 to some w ∈ Wq, where w |=
q ∧ ¬p, and 0 to all other worlds. Suppose e |= O(p ∨ q).
Clearly d ∈ e, and so e �|= Bp > 0.

In a similar vein, consider the case of existentially quan-
tified knowledge bases. It follows that for any name n:
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• �|= O(∃xP(x)) ⊃ B(P(n): 0)
• �|= O(∃xP(x)) ⊃ B(P(n)) > 0

Proof: If e |= O(∃xP(x)), there is a d ∈ e that assigns a
strictly positive probability to a world w where w |= P(n),
and so O(∃xP(x)) ⊃ B(P(n): 0) cannot be valid. But there
is also a d ∈ e that assigns 0 to any world where P(n)
holds, and so O(∃xP(x)) ⊃ B(P(n)) > 0 is not valid.

The examples above demonstrate incomplete specifica-
tions, in that the probabilities of atoms are left open. The be-
havior of only knowing is analogous when we turn to prob-
abilistic knowledge base specifications, in the sense that we
obtain appropriate generalizations of the properties identi-
fied earlier. For example, only knowing implies believing:
• |= O(α1: r1, . . . , αk: rk) ⊃ ∧B(αi: ri)

In the probabilistic context, we can also speak of the nega-
tions of sentences in the knowledge base; for example:
• |= O(p: r) ⊃ B(p: r) ∧B(¬p: 1 − r)

Proof: Suppose e |= O(p: r). Then for all d, d ∈ e
iff norm(d,Wp, r), and so norm(d,W, 1), leading to e |=
B(p: r). But norm(d,W¬p, 1 − r); so e |= B(¬p: 1 − r).

In general, if φ is objective, then:
• |= O(φ: r) ⊃ B(φ: r) ∧B(¬φ: 1 − r)
In case only p ∨ q is believed for ground atoms p and q, we
obtain, for example:
• |= O(p ∨ q: r) ⊃ B(¬p ∧ ¬q: 1 − r)

Of course, partial and probabilistic specifications can be
paired, as in the following example:
• |= O(p ∨ q: 1, p: r) ⊃ B(q ∧ ¬p: 1 − r)

Proof: Suppose e |= O(p∨q: 1, p: r). Then by definition
for all d ∈ e, norm(d,Wp∨q, 1) and norm(d,Wp, r). Since
Wq∧¬p = Wp∨q −Wp, we have norm(d,Wq∧¬p, 1 − r)
for all d ∈ e. Thus, we obtain e |= B(q ∧ ¬p: 1 − r).

Let us also reiterate that even in the presence of proba-
bilistic specifications about an atom p, as far as atoms other
than p are concerned, these comes out as not being believed:
• |= O(p: r) ⊃ ¬Kq
This need not be the case if O is replaced by B:
• �|= B(p: r) ⊃ ¬Kq

6 OL is part of OBL
In this section, we show that OBL is downward compatible
with OL. As noted, an epistemic state in OL is simply a set
of worlds. Using |=′ to denote the satisfaction relation inOL,
and using e′ to denote epistemic states in OL, the semantic
rules differ only in how the modalities are interpreted:
• e′,w |=′ Kα iff for all w′ ∈ e′, e′,w′ |=′ α;
• e′,w |=′ Oα iff for all w′, w′ ∈ e′ iff e′,w′ |=′ α.
Satisfaction and validity are defined as usual.

On the relationship between OL and OBL, we obtain:5

5We need to consider measurable epistemic states because |=′
Ktrue but as observed earlier Ktrue is falsifiable in OBL.

Theorem 9: For any α ∈ OL∩OBL, |=′ α iff |=Ktrue ⊃ α.
Its proof rests on two intermediate lemmas:

Lemma 10 : Let e′ be any set of worlds and e =
{d | norm(d, e′, 1)}. Then (a) e |= K(true) and (b) for all
w and α ∈ OL ∩ OBL, e′,w |=′ α iff e,w |= α.
Lemma 11: Let e be any measurable epistemic state, and
e′ = {w′ | there is a d ∈ e such that d(w′) > 0} . Then for all
w and α ∈ OL ∩ OBL, e,w |= α iff e′,w |=′ α.

The argument for Theorem 9 is then as follows:
Proof: Suppose |=Ktrue ⊃ α. Let e′ be any set of worlds,
w ∈ W, and e = {d | norm(d, e′, 1)}. By Lemma 10 (a), e |=
Ktrue and hence e,w |= α. By Lemma 10 (b), e′,w |=′ α.

Suppose |=′ α and let w be a world and e be any set of
distributions such that e |= Ktrue, that is, e is measurable
by Theorem 6. Let e′ be as in Lemma 11. Then e′,w |=′ α
by assumption and hence, by Lemma 11, e,w |= α.

7 A Specification in Action

To see the logic in action in a dynamic world, we treat a
quantitative variant of the well-known litmus test example
(Moore 1985a). In the original version, an agent identifies
the acidity of a solution by dipping litmus paper in the solu-
tion; the paper turning red implies acidity. In our version, we
assume the sensor is noisy, as is usual in robotic applications
(Thrun, Burgard, and Fox 2005).

To reason about dynamics, let OBL+ be OBL augmented
with an observation modality [α1: r1, . . . , αk: rk], where αi is
objective and ri is a rational, to be read as saying “the agent
observes that α1 has a likelihood r1, . . . , αk has likelihood
rk.” (The modality can been as a simple kind of action likeli-
hood axioms with no preconditions (Bacchus, Halpern, and
Levesque 1999); we implicitly assume |= αi ⊃ ¬α j for every
i � j.) For example, after dipping the paper, suppose a indi-
cates that the solution is acidic, then [a: 2,¬a: 1] is a noisy
observation where seeing a is twice as likely.

We define the meaning of α ∈ OBL+ inductively as be-
fore, with the following new rule:

• e,w |= [α1: r1, . . . , αk: rk]φ iff e′,w |= φ
where e′ = {prog(d) | d ∈ e}, and prog(d) is a distribution d′
such that for all w ∈ W:

• if w |= αi then d′(w) = d(w) × ri;

• otherwise, d′(w) = d(w).

We can model the litmus in the presence of probabilistic
and incomplete knowledge bases as follows:

• |= O(a: .6) ⊃ [a: 2,¬a: 1]B(a: .75)
The prior is updated after the (noisy) observation to yield
a posterior belief of .75 for the solution being acidic.

• |= O(true) ⊃ [a: 2,¬a: 1]∀x(B(¬a: x) ⊃ B(a: 2 · (1− x)))
If all that the agent knows are tautologies and it senses,
then for any (posterior) probability x accorded to ¬a, a
probability of 2 · (1 − x) is accorded to a.
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8 Related Work

There is a fairly extensive literature on reasoning about prob-
abilities (see, for example, (Gaifman 1964; Nilsson 1986;
Halpern 2003)), and we briefly survey the major camps be-
low. At the outset, we remark that the focus of our work is
only knowing,6 which has not been considered for proba-
bilistic specifications (save for one exception; see below).

The inspiration for our work, and perhaps the one clos-
est in spirit, is the work of Bacchus, Halpern and Levesque
(BHL) (1999) on degrees of belief in the situation calculus.
Although an axiomatic proposal (whose semantic formula-
tions are much in need (Lakemeyer and Levesque 2004)),
BHL propose a conceptually attractive definition of belief
in a first-order setting. Roughly speaking, the belief in φ
for BHL is simply the normalized sum of the weights of
worlds where φ holds. But because this sum is not always
well-defined in a first-order setting, they require an axiom
stipulating that the belief in true (that is, sum of weights of
all worlds) is some number. Our conditions on measurable
epistemic states are essentially a modal reworking of this
intuition. BHL do not consider only knowing, and we only
considered a simple sort of actions.

Also inspired by BHL, Gabaldon and Lakemeyer (Gabal-
don and Lakemeyer 2007) consider a logic of only know-
ing and probability. However, to ensure well-defined sums
in the definition of belief, they need to make artificial meta-
linguistic assumptions. For example, among other things,
they need to assume that the agent only ever encounters a fi-
nite number of standard names by means of which they can
construct probability distributions on finitely many (equiv-
alence classes of) worlds. Consequently, quantification also
ranges over this finite set. Our approach overcomes these
problematic limitations in a general manner, especially in
handling quantification precisely as in OL. Outside of this,
in a game theory context, Halpern and Pass (Halpern and
Pass 2009) have considered a (propositional) version of only
knowing in probability structures. It would be interesting to
see how this latter notion relates to (propositional) OBL.

Reasoning about knowledge and probability has appeared
in a number of works prior to BHL, of course, in computer
science (Nilsson 1986; Fagin and Halpern 1994), game the-
ory (Monderer and Samet 1989; Heifetz and Mongin 2001),
among others (Halpern 2003). Properties discussed in this
paper, such as introspection and additivity, are also well
studied (Aumann 1999). Notably, the work of Fagin and
Halpern (Fagin and Halpern 1994) can be seen to be at the
heart of BHL (and our work). The Fagin-Halpern scheme
is a general one formulated for Kripke frames (Fagin et
al. 1995) where in addition to the worlds an agent con-
siders possible, the agent may consider some worlds more
likely than others. In terms of expressivity of the logical

6Only knowing is related to analogous notions such as minimal
knowledge (Halpern and Moses 1984) and total knowledge (Pratt-
Hartmann 2000). There are significant differences, however. For
example, in the proposal of minimal knowledge, the notion of “all
I know” is a meta-linguistic notion (and, surprisingly, harder to rea-
son with (Rosati 2000)), and total knowledge requires knowledge
to be true. See (Levesque and Lakemeyer 2001) for discussions.

language, they allow sums of linear inequalities, but are
propositional. It would not be hard to extend our language
to also allow such sums. However, theirs is a multiagent
framework, and ours is not (yet). We also consider the sim-
ple case where a set of global distributions apply to W as
seen at every world; in theirs, the probability spaces can dif-
fer arbitrarily across the worlds. The Fagin-Halpern scheme
shares some similarity with probabilistic logics for programs
(Kozen 1981) and variants thereof (Halpern and Tuttle 1993;
Van Benthem, Gerbrandy, and Kooi 2009); see (Fagin and
Halpern 1994) for discussions.

There are many previous first-order accounts of probabil-
ities, such as Bacchus (1990) and Halpern (1990); see (Ogn-
janovic and Raškovic 2000) for a recent list. As discussed
by Halpern, probabilities could be accorded to the domain of
discourse or on possible worlds (or both), leading to different
sorts of properties. Not surprisingly, our B modality shares
properties with the possible-worlds version (e.g., additivity).
See also (Abadi and Halpern 1994) who show that the set of
valid formulas of the logic with probabilities on worlds is
not recursively enumerable. (Incidentally, the same goes for
OL (Halpern and Lakemeyer 1995).) Recently in AI, limited
versions of probabilistic logics have been discussed (Poole
2003; Domingos and Webb 2012), with things like a finite
domain assumption built-in.

Finally, as far as the O modality is concerned, we con-
sidered a set of probability distributions, which was argued
to have properties identical to OL, which is what we de-
sired. There are other ways to interpret O(p ∨ q) in a proba-
bilistic context, say using the principle of maximum entropy
(Halpern 2003), but this, we feel, differs from the intuitive
reading of the logical consequences of O(p ∨ q) in OL.
There are possibly other ways to realize the sets of proba-
bility distributions admitted by O(p ∨ q), perhaps by means
of Dempster-Shafer belief functions (Shafer 1990) or others
(Grove and Halpern 1998). We leave this for the future.

9 Conclusions
In a categorical setting, only knowing admits a perspicu-
ous account of the beliefs and non-beliefs of an incomplete
knowledge base. To date, however, how this natural notion
can be extended for partial or incomplete probabilistic spec-
ifications was left unaddressed. This paper investigates that
concern, treating quantification in a general manner, and not
only do we show that our proposal OBL is downward com-
patible with OL in terms of what follows from only know-
ing, we also show that beliefs emerge as a logical conse-
quence at a corresponding level of specificity.

There are two main directions for the future. As we re-
marked, our inspiration is the BHL framework, and we
would like to investigate a full dynamic version of OBL,
as a semantic basis to the axiomatic work of BHL. Sec-
ond, Levesque showed that OL captures autoepistemic de-
faults (Moore 1985b) when the knowledge base includes
beliefs about itself. What these defaults would be like in
a probabilistic context, and how they would relate to the
family of statistical defaults considered in (Bacchus 1990;
Halpern 1990) would bring only knowing and the latter ideas
closer together.
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