
Decidable Verification of Golog Programs
over Non-Local Effect Actions

Benjamin Zarrieß
Theoretical Computer Science

TU Dresden, Germany
benjamin.zarriess@tu-dresden.de

Jens Claßen
Knowledge-Based Systems Group

RWTH Aachen University, Germany
classen@kbsg.rwth-aachen.de

Abstract

The Golog action programming language is a powerful
means to express high-level behaviours in terms of pro-
grams over actions defined in a Situation Calculus the-
ory. In particular for physical systems, verifying that the
program satisfies certain desired temporal properties is
often crucial, but undecidable in general, the latter be-
ing due to the language’s high expressiveness in terms
of first-order quantification, range of action effects, and
program constructs. So far, approaches to achieve de-
cidability involved restrictions where action effects ei-
ther had to be context-free (i.e. not depend on the current
state), local (i.e. only affect objects mentioned in the ac-
tion’s parameters), or at least bounded (i.e. only affect
a finite number of objects). In this paper, we introduce
two new, more general classes of action theories that al-
low for context-sensitive, non-local, unbounded effects,
i.e. actions that may affect an unbounded number of
possibly unnamed objects in a state-dependent fashion.
We contribute to the further exploration of the bound-
ary between decidability and undecidability for Golog,
showing that for our new classes of action theories in the
two-variable fragment of first-order logic, verification
of CTL∗ properties of programs over ground actions is
decidable.

Introduction

When it comes to the design and programming of an au-
tonomous agent, the Golog (Levesque et al. 1997) family of
action languages offers a powerful means to express high-
level behaviours in terms of complex programs whose ba-
sic building blocks are the primitive actions described in
a Situation Calculus (Reiter 2001) action theory. Golog’s
biggest advantage perhaps is the fact that a programmer
can freely combine imperative control structures with non-
deterministic constructs, leaving it to the system to resolve
non-determinism in a suitable manner.

In particular when Golog is used to control physical
robots, it is often crucial to verify a program against some
specification of desired behaviour, for example in order to
ensure liveness and safety properties, typically expressed by
means of temporal formulas. Unfortunately, the general ver-
ification problem for Golog is undecidable due to the lan-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

guage’s high expressivity in terms of first-order quantifica-
tion, range of action effects, and program constructs. For
this reason, there have recently been endeavours to identify
restricted, but non-trivial fragments of Golog where verifi-
cation (and hence other reasoning tasks such as projection)
becomes decidable, while a great deal of expressiveness is
retained.

So far, approaches to decidability (Claßen et al. 2014;
Zarrieß and Claßen 2014; De Giacomo, Lespérance, and Pa-
trizi 2012) required action theories to be restricted such that
action effects are either context-free (not depend on the cur-
rent state), local (only affect objects mentioned in the ac-
tion’s parameters), or at least bounded (only affect a finite
number of objects). Examples that do not fall into either of
these categories are the classical briefcase domain (Pednault
1988) and exploding a bomb (Lin and Reiter 1997): When a
briefcase is moved, (unboundedly many, unmentioned) ob-
jects that are currently in it are being moved along, and if a
bomb explodes, everything in its vicinity is destroyed.

In this paper, we extend the results from (Zarrieß and
Claßen 2014) and present two new, more general classes of
action theories over the decidable FOL fragment C2 that
also allow for context-sensitive, non-local, unbounded ef-
fects, i.e. actions that may affect an unbounded number of
possibly unnamed objects in a state-dependent fashion. In
our classes of action theories we do not impose any bound
on the number of affected objects, but restrict the depen-
dencies between fluents in the successor state axioms. This
allows for a much wider range of application domains, in-
cluding the above mentioned briefcase and bomb examples.

In a transportation domain such as the briefcase example,
the action of moving a briefcase changes the location of ob-
jects represented by the fluent predicate At. To describe the
actual set of objects affected one also has to refer to the flu-
ent predicate In relating the briefcase to its content. Thus,
the effect of the move action on At depends on In. The class
of acyclic theories is obtained by disallowing cyclic depen-
dencies between fluents, and another class we call flat the-
ories is obtained by resorting to quantifier-free formulas for
defining the set of affected objects. Both are syntactic re-
strictions and are decidable to check.

After proving that verification of CTL∗ properties is gen-
erally undecidable for Golog, even when restricted to ground
actions and C2, we then show that for our new classes of

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1109

action theories, decidability can be achieved. The proof in-
troduces a new, compact form of regression of formulas and
establishes an abstraction to propositional model checking.
Due to space constraints all detailed proofs must be omit-
ted. They can be found in the technical report (Zarrieß and
Claßen 2015).

Preliminaries

The Logic ES
We use a fragment of the first-order modal logic ES (Lake-
meyer and Levesque 2010) for reasoning about actions. We
consider Situation Calculus Basic Action Theories (BATs)
(Reiter 2001) formulated in ES where the base logic is re-
stricted to the two-variable fragment of FOL with equality
and counting named C2.

Syntax There are terms of sort object and action. Vari-
ables of sort object are denoted by symbols x, y, . . ., and a
denotes a variable of sort action. NO is a countably infinite
set of object constant symbols and NA a countably infinite
set of action function symbols with arguments of sort object.
We denote the set of all ground terms (also called standard
names) of sort object by NO, and those of sort action by NA.

Formulas are built using fluent predicate symbols (pred-
icates that may vary as the result of actions) with at most
two arguments of sort object, and equality, using the usual
logical connectives, quantifiers, and counting quantifiers. In
addition we have two modalities for referring to future sit-
uations, where �φ says that φ holds after any sequence of
actions, and [t]φ means that φ holds after executing action t.

A formula is called fluent formula if it contains no � and
no [·]. A fluent sentence is a fluent formula without free vari-
ables. A C2-fluent formula is a fluent formula that contains
no terms of sort action and at most two variables.

Semantics In the Situation Calculus a situation is charac-
terized by a finite sequence of actions as the history of ac-
tions that have been executed so far. Let Z := N ∗

A be the set
of all finite action sequences (including the empty sequence
〈〉) and PF the set of all primitive formulas F (n1, ..., nk),
where F is a k-ary fluent with 0 ≤ k ≤ 2 and the ni are ob-
ject standard names. A world w is a mapping from primitive
formulas and situations to truth values:

w : PF ×Z → {0, 1}.
The set of all worlds is denoted by W .
Definition 1 (truth of formulas). Given a world w ∈ W and
a closed formula ψ, we define w |= ψ as w, 〈〉 |= ψ, where
for any z ∈ Z:
1. w, z |= F (n1, . . . , nk) iff w[F (n1, . . . , nk), z] = 1;
2. w, z |= (n1 = n2) iff n1 and n2 are identical;
3. w, z |= ψ1 ∧ ψ2 iff w, z |= ψ1 and w, z |= ψ2;
4. w, z |= ¬ψ iff w, z �|= ψ;
5. w, z |= ∀x.φ iff w, z |= φx

n for all n ∈ Nx;
6. w, z |= ∃≤mx.φ iff |{n ∈ Nx | w, z |= φx

n}| ≤ m;
7. w, z |= ∃≥mx.φ iff |{n ∈ Nx | w, z |= φx

n}| ≥ m;

8. w, z |= �ψ iff w, z · z′ |= ψ for all z′ ∈ Z;
9. w, z |= [t]ψ iff w, z · t |= ψ. �

Above, Nx refers to the set of all standard names of the
same sort as x. We moreover use φx

n to denote the result of
simultaneously replacing all free occurrences of x in φ by
n. Note that by rule 2 above, the unique names assumption
for actions and object constants is part of our semantics. In
the following we use the notation �x and �y for sequences of
object variables and �v for a sequence of object terms. We un-
derstand ∨, ∃, ⊃, ≡ and � and ⊥ as the usual abbreviations.
Definition 2. A C2-basic action theory (C2-BAT) D =
D0 ∪ Dpost is a set of axioms that describes the dynamics
of a specific application domain, where

1. D0, the initial theory, is a finite set of C2-fluent sentences
describing the initial state of the world;

2. Dpost is a finite set of successor state axioms (SSAs), one
for each fluent relevant to the application domain, incor-
porating Reiter’s (2001) solution to the frame problem,
and encoding the effects the actions have on the different
fluents. The SSA for a fluent predicate has the form

∀a.∀�x.�((
[a]F (�x)

) ≡ γ+
F ∨ (

F (�x) ∧ ¬γ−
F

))

where the positive effect condition γ+
F and negative effect

condition γ−
F are fluent formulas. We additionally require

that γ+
F and γ−

F are (possibly empty) disjunctions of for-
mulas of the form ∃�y.(a = A(�v) ∧ φ ∧ φ′) such that

(a) ∃�y.(a = A(�v) ∧ φ ∧ φ′) contains the free variables �x
and a and no other free variables;

(b) A(�v) is an action term and �v contains �y;
(c) φ is a fluent formula with no terms of sort action and

the number of variable symbols in φ that do not occur
in �v or occur bound in φ is less or equal two;

(d) φ′ is a fluent formula with free variables among �v, no
terms of sort action, and at most two bound variables.

φ is called effect descriptor and φ′ context condition. �
The restrictions 2a and 2b on SSAs are w.l.o.g. and de-

scribe the usual syntactic form of SSAs. Intuitively, the ef-
fect descriptor φ possibly defines a complex set of objects
(or a set of pairs of objects in case F is a binary fluent) that
are added to or deleted from the relational fuent F , respec-
tively, if A(�v) is executed. Provided that free occurrences of
variables in φ that occur as arguments of A(�v) are instan-
tiated, the condition 2c ensures definability of the (instanti-
ated) effect descriptor in our base logic C2. In contrast to
the effect descriptor the context condition φ′ only tells us
whether A(�v) has an effect on F but not which objects are
actually affected. As for the effect descriptor, condition 2d
ensures that after instantiation of the action, the context con-
dition is a sentence in C2. Therefore the variables �x men-
tioned in 2a may have free occurrences in φ but not in φ′.
Example 3. We consider a domain with servers hosting
virtual machines and processes that might be classified as
malware. There is a fluent Avail(x) denoting processes x
that are currently available, and Ovl(x) for a server x that
is overloaded. Hosts(x, y) furthermore says that a server x

1110

hosts a virtual machine or a process y, and Runs(x, y) is
true for a virtual machine x running a process y.

The agent can migrate a virtual machine (v) hosted on
server (s) to a server (s′) if s′ is not overloaded using the ac-
tion Migr(v, s, s′). We also have exogenous actions, i.e. ac-
tions not under the control of the agent, of the form Att(s),
saying that a server is subject of an attack causing it to be
overloaded, and Repair(s), which returns the server s to its
original state. Figure 2 exemplarily shows the effect condi-
tions for the fluents Avail(x),Ovl(x) and Hosts(x, y). The
effect descriptors are underlined with a solid line and the
context conditions with a dashed line. Consider the execu-
tion of Migr(vm, s1, s2) in an initial situation incompletely
described by the axioms in Figure 1. The action has an ef-
fect on the fluent Avail(x) because the context condition
is satisfied, i.e. the target server s2 is not overloaded. The
instantiated effect descriptor yields that for all objects d,
Avail(d) is true after doing the action if Runs(vm, d) is
true before doing the action. Thus, all processes running on
vm become available. Furthermore, the fluent Hosts(x, y)
is also affected: all processes running on vm are now hosted
by s2 and no longer by s1. A BAT based on these axioms for
example entails
[Migr(vm, s1, s2)]

(∀x.Runs(vm, x) ⊃ Avail(x)
)
. �

Hosts(s1, vm),Hosts(s1, p),Runs(vm, p),¬Avail(p)
Server(s2),¬Ovl(s2), ∀y.∃≤1x.Hosts(x, y),

∀x, y.Hosts(x, y) ⊃ Server(x) ∧ (
Proc(y) ∨VM (y)

)

Figure 1: Example initial theory

γ+
Avail := ∃v, s, s′.(a = Migr(v, s, s′)∧

Runs(v, x) ∧ ¬Ovl(s′)
)∨

∃s.(a = Repair(s) ∧Hosts(s, x) ∧ Proc(x)
)
;

γ−
Avail := ∃s.(a = Att(s) ∧Hosts(s, x) ∧ Proc(x)∧

∃y.Hosts(s, y) ∧Malware(y)
)
;

γ+
Ovl := ∃s.(a = Att(s) ∧ x = s∧

∃y.Hosts(s, y) ∧Malware(y)
)
;

γ−
Ovl := ∃s.(a = Repair(s) ∧ x = s

)
;

γ+
Hosts := ∃v, s, s′.(a = Migr(v, s, s′) ∧ x = s′ ∧

(
Runs(v, y) ∨ y = v

) ∧ ¬Ovl(s′)
)
;

γ−
Hosts := ∃v, s, s′.(a = Migr(v, s, s′) ∧ x = s ∧

(
Runs(v, y) ∨ y = v

) ∧ ¬Ovl(s′)
)

Figure 2: Example effect conditions

Golog programs and the verification problem

In a Golog program over ground actions we combine ac-
tions, whose effects are defined in a C2-BAT, and tests, using

a set of programming constructs to define a complex action.
Definition 4 (Golog program). A program expression δ is
built according to the following grammar

δ ::= 〈〉 | t | ψ? | δ;δ | δ|δ | δ∗ | δ‖δ.
A program expression can thus be the empty program 〈〉,
a ground action term t, a test ψ?, where ψ is a C2-fluent
sentence, or constructed from subprograms be means of se-
quence δ;δ, non-deterministic choice δ|δ, non-deterministic
iteration δ∗, and interleaving δ‖δ.

A Golog program G = (D, δ) consists of a C2-BAT
D = D0∪Dpost and a program expression δ where all fluents
occurring in D and δ have an SSA in Dpost.

To handle termination and failure of a program we use two
0-ary fluents Final and Fail and two 0-ary action functions
ε and f and include the SSAs �[a]Final ≡ a = ε ∨ Final
and �[a]Fail ≡ a = f ∨ Fail in Dpost. Furthermore, we
require that ¬Final ∈ D0 and ¬Fail ∈ D0, and that the
fluents Final, Fail and actions ε and f do not occur in δ. �
Following (Claßen and Lakemeyer 2008) we define the tran-
sition semantics of programs meta-theoretically. A configu-
ration 〈z, ρ〉 consists of an action sequence z ∈ Z and a
program expression ρ, where intuitively z is the history of
actions that have already been performed, while ρ is the pro-
gram that remains to be executed. Execution of a program
in a world w ∈ W yields a transition relation w−→ among
configurations that is defined inductively over program ex-
pressions. For example, for primitive actions and nondeter-
ministic choice we have

1. 〈z, t〉 w−→ 〈z · t, 〈〉〉;
4. 〈z, δ1|δ2〉 w−→ 〈z · t, δ′〉,

if 〈z, δ1〉 w−→ 〈z · t, δ′〉 or 〈z, δ2〉 w−→ 〈z · t, δ′〉.
For the set of final configurations Fin(w) w.r.t. a world w,
we similarly have for tests and nondeterministic choice

2. 〈z, ψ?〉 ∈ Fin(w) if w, z |= ψ;
3. 〈z, δ1|δ2〉 ∈ Fin(w)

if 〈z, δ1〉 ∈ Fin(w) or 〈z, δ2〉 ∈ Fin(w).
We omit the remaining rules due to space restrictions and
refer the interested reader to (Claßen and Lakemeyer 2008).
Let G = (D, δ) be a Golog program and w ∈ W a world
with w |= D. Execution of δ in w yields the transition
system of G w.r.t. w given by Tw

δ =
(
Reach(w, δ),

w−→)
,

where Reach(w, δ) denotes the set of reachable configura-
tions from 〈〈〉, δ〉 using w−→. In addition, final and failing con-
figurations are extended to infinite paths by executing ε and
f, respectively, indefinitely.

For an infinite path π in Tw
δ starting in 〈z0, ρ0〉 we denote

for any j ≥ 0 the suffix 〈zj , ρj〉 w−→ 〈zj+1, ρj+1〉 w−→ · · ·
by π[j..]. The set of all paths starting in 〈z, ρ〉 is denoted by
Paths(〈z, ρ〉,Tw

δ).
Definition 5 (temporal properties of programs). We define
temporal formulas, whose syntax is the same as for propo-
sitional CTL∗, but in place of propositions we allow for C2-
fluent sentences:

Φ ::= ψ | ¬Φ | Φ ∧ Φ | EΨ (1)
Ψ ::= Φ | ¬Ψ | Ψ ∧Ψ | XΨ | Ψ U Ψ (2)

1111

Above, ψ can be any C2-fluent sentence. We call formulas
according to (1) temporal state formulas, and formulas ac-
cording to (2) temporal path formulas. We use the usual ab-
breviations AΨ (Ψ holds on all paths) for ¬E¬Ψ, FΨ (even-
tually Ψ) for � U Ψ and GΨ (globally Ψ) for ¬F¬Ψ.

Let Φ be a temporal state formula, Tw
δ the transition sys-

tem of a program G = (D, δ) w.r.t. a world w with w |= D,
and 〈z, ρ〉 ∈ Reach(w, δ). Truth of Φ in Tw

δ , 〈z, ρ〉, denoted
by Tw

δ , 〈z, ρ〉 |= Φ, is defined as follows:

• Tw
δ , 〈z, ρ〉 |= ψ iff w, z |= ψ;

• Tw
δ , 〈z, ρ〉 |= EΨ
iff there is π ∈ Paths(〈z, ρ〉,Tw

δ) such that Tw
δ , π |= Ψ.

Let Ψ be a temporal path formula, Tw
δ and 〈z, ρ〉 as above,

and π ∈ Paths(〈z, ρ〉,Tw
δ). Truth of Ψ in Tw

δ , π, denoted by
Tw
δ , π |= Ψ, is defined as follows:

• Tw
δ , π |= Φ iff Tw

δ , 〈z, ρ〉 |= Φ;
• Tw

δ , π |= XΨ iff Tw
δ , π[1..] |= Ψ;

• Tw
δ , π |= Ψ1 U Ψ2 iff ∃k ≥ 0 : Tw

δ , π[k..] |= Ψ2

and ∀j, 0 ≤ j < k : Tw
δ , π[j..] |= Ψ1.

In both cases, Boolean connectors are defined as usual. �
Note that we disallow temporal modalities within the

scope of object quantifiers which is a quite common restric-
tion.

Definition 6 (verification problem). A temporal state for-
mula Φ is valid in a program G = (D, δ) iff for all worlds
w ∈ W with w |= D it holds that Tw

δ , 〈〈〉, δ〉 |= Φ. �
Example 7. Consider the program expressions in Figure 3.
In δavail the virtual machine vm is migrated from server s1
to server s2 if s1 hosts vm and is overloaded and vice versa
if s2 is overloaded. δexo consists of the exogenous attack and
repair actions. To describe the actions that occur in the do-
main, both parts δavail and δexo are concurrently executed in
infinite loops. A temporal property one might want to verify
for the Golog program consisting of the C2-BAT described
in Example 3 and the program expression δdomain could be:

A
(
GF

(
Ovl(s1) ∧Ovl(s2)

)) ⊃
E
(
GF ∀x.Runs(vm, x) ⊃ Avail(x)

)
.

Validity of this property ensures that it is always possi-
ble that all processes running on vm are infinitely often
available even if both servers are both infinitely often over-
loaded. �

δavail := ∃x.(Hosts(x, vm) ∧Ovl(x))?;
(
Hosts(s1, vm)?;Migr(vm, s1, s2) |
Hosts(s2, vm)?;Migr(vm, s2, s1)

)

δexo :=
(
Att(s1) | Att(s2) | Repair(s1) | Repair(s2)

)

δdomain :=
[(
δavail

)∗
;⊥?

] ‖ [(
δexo

)∗
;⊥?

]

Figure 3: Example program

(Un-)decidability of Verification
As shown in (Gu and Soutchanski 2007), the projection
problem that asks for a sequence of ground actions over
some C2-BAT whether a given C2-fluent sentence holds af-
ter executing that sequence, is decidable. Unfortunately, ver-
ification for programs over ground actions is not:
Theorem 8. The verification problem is undecidable.

Proof sketch. We show undecidability by a reduction of the
undecidable halting problem of two-counter machines (Min-
sky 1967). A two-counter machine M manipulates the non-
negative integer values of two counters, in the following de-
noted by c0 and c1. A machine M is given by a finite list
of instructions. There are instructions for incrementing and
decrementing a counter by one, for conditional jumps to
the next instruction where the condition is a zero test of a
counter, and for halting the machine.

A configuration of M is of the form (i, v0, v1), where
i is the index of the instruction to be executed next, and
v0, v1 ∈ N are the values of the two counters. M induces
a transition relation on configurations, denoted by �M. We
say that M halts iff there exists a computation such that
(0, 0, 0) �M

∗ (j, v0, v1) where 0 is the index of the first in-
struction, v0, v1 ∈ N and the j-th instruction is a halting
instruction. To encode the values of counters we axioma-
tize an infinite chain of objects starting in an object constant
0 ∈ NO using the binary predicate Adj. For the counters
we use two unary fluents C0 and C1. We ensure that in each
situation C�(n) is true for exactly one object n in this chain.
Intuitively, the distance of n from 0 in the Adj-chain repre-
sents the value of the counter c�. The initial theory for a pro-
gram simulating M consists of the following axioms where
Halt is a 0-ary fluent saying whether M is in a halting con-
figuration and the other 0-ary fluents Ji serve as labels point-
ing to the instruction to be executed next:

∀x.(x = 0 ≡ C0(x)
)
, ∀x.(x = 0 ≡ C1(x)

)
,

¬Halt, J0,¬J1, . . . ,¬Jm, ∀x.∃=1y.Adj(x, y),

∀x.(x �= 0 ⊃ ∃=1y.Adj(y, x)
)
, ∀x.¬Adj(x,0).

We use ground actions Inc0, Inc1, Dec0, Dec1 for incre-
menting and decrementing a counter. The effect conditions
for the fluents C�(x) with
 = 0, 1 are given as follows:

γ+
C�

:= a = Inc� ∧ ∃y.(C�(y) ∧Adj(y, x)
) ∨

a = Dec� ∧ ∃y.(C�(y) ∧Adj(x, y)
)

γ−
C�

:= a = Inc� ∧ C�(x) ∨ a = Dec� ∧ C�(x).

Adj is rigid: its SSA is �[a]Adj(x, y) ≡ Adj(x, y). The
jumps to the next instruction can be implemented in the ob-
vious way by actions setting the corresponding fluent Jj to
true and all other labels to false. Similarly for Halt. It is
now straightforward to assemble a program simulating M. It
can then be shown that the temporal state formula EFHalt
is valid in the constructed program iff M halts.

Fluent dependencies and acyclic theories

To analyze the source of undecidability, we investigate de-
pendencies between fluents occurring in the effect descrip-
tors of the SSAs in the action theory.

1112

Definition 9. Let D be a C2-BAT. The fluent dependency
graph for D, denoted by GD, consists of a set of nodes,
one for each fluent in D. There is a directed edge (F, F ′)
from fluent F to fluent F ′ iff there exists a disjunct ∃�y.(a =

A(�v)∧φ∧φ′) in γ+
F or γ−

F such that F ′ occurs in the effect
descriptor φ. We call D acyclic iff GD is acyclic. The fluent
depth of an acyclic action theory D, denoted by fd(D), is
given by the length of the longest path in GD. For a fluent F
in an acyclic BAT D the fluent depth of F w.r.t. D, denoted
by fdD(F), is given by the length of the longest path in GD
starting in F . �
Example 10. First, consider the BAT in the undecidability
proof. Obviously, the dependency graph is cyclic as there are
edges (C0, C0) and (C1, C1).

On the other hand, the BAT from Example 3 has an
acyclic dependency graph (with fluent depth 2) as shown in
Figure 4. Fluents Ovl ,Server and VM were omitted as they
are not incident to any edges. Ovl for instance only occurs
in the context conditions of γ+

Avail , γ
+
Hosts and γ−

Hosts, and
Hosts in the context condition of γ+

Ovl . For the dependency
graph however, only effect descriptors are relevant. For in-
stance, there is an edge from Avail to Runs because Runs
occurs in the effect descriptor in conjunction with the migra-
tion action in γ+

Avail , i.e. the migration of a virtual machine
may affect the availability of all processes running on this
machine. In an analogous way Avail and Hosts , Proc are
related due to the effect descriptor of the repair action in
γ+
Avail . The other edges can be explained similarly. �

Avail

RunsHosts Proc

Figure 4: Example fluent dependencies

Note that if actions have only local-effects (Vassos, Lake-
meyer, and Levesque 2008), then D is acyclic. In case of
local-effect actions the effect descriptors do not contain any
fluents. Consequently, the corresponding BAT has fluent
depth 0. Another well-known special case are context-free
actions (Lin and Reiter 1997) where the positive and neg-
ative effect conditions are restricted to contain only rigid
predicate symbols. Clearly, BATs restricted in this way have
at most fluent depth 1. The so called solitary stratified the-
ories considered in (McIlraith 2000) are based on a similar
acyclicity condition, but without distinguishing between ef-
fect descriptors and context conditions. The action theory in
our example is therefore not a solitary stratified theory.

Decidability of verification with acyclic theories

In this section we restrict our attention to programs over
ground actions with an acyclic C2-BAT D. Note that
we only consider programs over ground actions and have
dropped the pick constructor for non-deterministic choice
of action arguments. The full pick construct introduces an-
other source of infiniteness: an infinite branching degree in

the transition system. The other non-deterministic constructs
only lead to a finite branching degree (there are only finitely
many ground actions), but of course the transition system
still has infinitely many states due to non-local action ef-
fects, the infinite domain and the open-world assumption.

The finite set of ground actions (including ε and f) oc-
curring in the program will be denoted by A. We construct
finite propositional abstractions of the transition systems Tw

δ
with w |= D. The essential part for this abstraction is a com-
pact representation of the effects generated by executing a
sequence of ground actions in a given world satisfying D.

The case of local-effect actions was considered in (Zarrieß
and Claßen 2014), where the idea was that the execution of
a local-effect ground action A(�c) changes only the truth val-
ues of primitive formulas F (�n) for �n that are arguments of
the action. Thus, effects of an action could be captured by
considering sets of literals built from fluent predicates and
objects mentioned in the program. As ground actions from
acyclic BATs may influence infinitely many fluent values,
we have to extend this representation accordingly.

First we simplify SSAs w.r.t. the finitely many ground ac-
tions mentioned in G. If F (�x) is a fluent and t ∈ A, the
grounding of the SSA of F w.r.t. t is of the form

�[t]F (�x) ≡ (
γ+
F

)a
t
∨ F (�x) ∧ ¬(γ−

F

)a
t
.

The instantiated positive and negative effect conditions(
γ+
F

)a
t

and
(
γ−
F

)a
t

then are each equivalent to a disjunction

φeff
1 ∧ φcon

1 ∨ · · · ∨ φeff
n ∧ φcon

n

for some n ≥ 0, where the φeff
i (effect descriptors) are C2-

fluent formulas with �x as their only free variables, and the
φcon
i (context conditions) are C2-fluent sentences. In the fol-

lowing we often view
(
γ+
F

)a
t

and
(
γ−
F

)a
t

as sets and for ex-
ample write (φeff

i , φcon
i) ∈ (

γ+
F

)a
t

to express that the corre-
sponding disjunct is present.

With the above, we can now define a generalized effect
function to represent the effects of a ground action:
Definition 11. Let F (�x) be a fluent and φ a C2-fluent for-
mula with free variables �x, where �x is empty or �x = x or
�x = (x, y). We call the expression 〈F+, φ〉 a positive effect
on F , and the expression 〈F−, φ〉 a negative effect on F . We
use the notation 〈F±, φ〉 for an effect if we do not explicitly
distinguish between a positive or a negative effect on F . Let
D be a C2-BAT, w a world with w |= D, z ∈ Z and t ∈ A.
The effects of executing t in (w, z) are defined as follows:
ED(w, z, t) :=
{〈F+, φeff〉 | ∃(φeff , φcon) ∈ (

γ+
F

)a
t

s. t. w, z |= φcon} ∪
{〈F−, φeff〉 | ∃(φeff , φcon) ∈ (

γ−
F

)a
t

s. t. w, z |= φcon}. �
Intuitively, if 〈F+, φ〉 ∈ ED(w, z, t) and �c is an instance of
φ before executing t in w, z, then F (�c) will be true after the
execution. Likewise, if 〈F−, φ〉 ∈ ED(w, z, t) and �c is an
instance of φ before executing t in w, z, then F (�c) will be
false after the execution. To accumulate the effects of con-
secutively executed actions we define a regression operator
applied to a C2-fluent formula given a set of effects. Wlog
we assume that only the object variable symbols x and y are
used in C2-fluent formulas.

1113

Definition 12. Let E be a set of effects and ϕ a C2-fluent
formula. The regression of ϕ through E, denoted by R[E, ϕ],
is a C2-fluent formula obtained from ϕ by replacing each
occurrence of a fluent F (�v) in ϕ by the formula

F (�v) ∧
∧

〈F−,φ〉∈E

¬φ�x
�v ∨

∨

〈F+,φ〉∈E

φ�x
�v .

By appropriately renaming variables in the effect descrip-
tors φ it can be ensured that R[E, ϕ] is again a C2-fluent
sentence. �
Next, if we first execute the set of effects E0, and afterwards
E1, the result is a combined set of effects E0 � E1 given by:

{〈F±,R[E0, ϕ]〉 | 〈F±, ϕ〉 ∈ E1} ∪
{〈F+,

(
ϕ ∧

∧

〈F−,ϕ′〉∈E1

¬R[E0, ϕ
′]
)〉 | 〈F+, ϕ〉 ∈ E0} ∪

{〈F−, ϕ〉 ∈ E0}.
It can be shown that for any C2-fluent sentence φ,

R[E0,R[E1, φ]] ≡ R[E0 � E1, φ].

We can therefore accumulate the effects of a sequence of
actions into a single set as follows. Let w be a world with
w |= D, and z = t1t2 · · · tn ∈ A∗ a sequence of ground
actions of length n ∈ N. If for i ≤ n, z[i] denotes the subse-
quence of z consisting of the first i elements of z, we set

E1 := ED(w, 〈〉, t1)
Ei := Ei−1 � ED(w, z[i− 1], ti) for i = 2, . . . , n.

and say that En is generated by executing t1t2 · · · tn in w.
Then, for the effects Ez generated by z in w and a C2-fluent
sentence ψ, it holds that

w, z |= ψ iff w, 〈〉 |= R[Ez, ψ].

For a given Golog program G = (D, δ) with an acyclic
BAT D and finitely many ground actions A occurring in
δ we show that there are only finitely many possible ef-
fects that can be generated by action sequences from A. We
observe that for an effect 〈F±, ϕ〉 on fluent F with depth
fdD(F) = i all fluents occurring in ϕ have a depth that is
strictly smaller than i. Thus, for regressing the effect de-
scriptor ϕ only effects on fluents with depth strictly smaller
than i are relevant. Using this argument we can define the
set of all relevant effects as follows: For a fluent F the set of
all positive effect descriptors for F are given by

eff+
A(F) := {φeff | (φeff , φcon) ∈ (

γ+
F

)a
t

for some t ∈ A},
and analogous for the negative effect descriptors eff−

A(F).
For an acyclic BAT D and finite set of ground actions A
the set of all relevant effects on all fluents with depth ≤ j

with j = 0, . . . , fd(D) is denoted by ED,A
j and is given in

Figure 5. We define ED,A := ED,A
n with fd(D) = n. For

a given fluent F with fdD(F) = 0 it holds that either F is
rigid, i.e. there are no effects on F , or there are only local
effects on F . Consequently, all effects on F generated by a
ground action sequence from A must be contained in ED,A

0 .

ED,A
0 :={〈F±, ϕ〉 | fdD(F) = 0, ϕ ∈ eff−

A(F) ∪ eff+
A(F)};

ED,A
i :=ED,A

i−1 ∪ {〈F−,R[E, ϕ]〉 | fdD(F) = i, ϕ ∈ eff−
A(F),

E ∈ 2E
D,A
i−1 } ∪

{〈F+,Ξ〉 | fdD(F) = i, φ ∈ eff+
A(F),E ∈ 2E

D,A
i−1 ,

X ⊆ eff−
A(F)× 2E

D,A
i−1 }

with Ξ :=
(R[E, φ] ∧

∧

(ϕ,E′)∈X

¬R[E′, ϕ]
)

Figure 5: Sets of all relevant effects with 1 ≤ i ≤ fd(D)

For fluents F with fdD(F) = i and i > 0 the fluents in the
effect descriptors may also be subject to changes but have a
depth strictly smaller than i. To obtain all relevant effects on
F it is therefore sufficient to consider the effects in ED,A

i−1 .

Lemma 13. Let D and A be as above, z ∈ A∗, w |= D
and Ez the effects generated by executing z in w. For each
〈F±, ϕ〉 ∈ Ez there exists 〈F±, ϕ′〉 ∈ ED,A with ϕ ≡ ϕ′.

Using the finite representation of action effects we con-
struct finite abstractions of the transition systems generated
by executing the program in worlds satisfying an acyclic C2-
BAT. First, we identify a finite set of relevant C2-fluent sen-
tences called context of a program, denoted by C(G). It con-
sists of all C2-fluent sentences occurring in the initial the-
ory, in context conditions in the instantiated SSAs, in tests
in the program, and in the temporal property. Furthermore,
the context is closed under negation.

Central for the abstraction is the notion of a type of a
world, representing an equivalence class over W . Intuitively,
a type says which of the context axioms are satisfied initially
and in all relevant future situations of that world.
Definition 14 (type of a world). Let G = (D, δ) be a Golog
program with an acyclic BAT D = D0 ∪ Dpost w.r.t. finite
set of ground actions A (including ε and f). Furthermore, let
C(G) be the context of G and ED,A the set of all relevant
effects. The set of all type elements is given by

TE(G) := {(ψ,E) | ψ ∈ C(G),E ⊆ ED,A}.
A type w.r.t. G is a set τ ⊆ TE(G) that satisfies:

1. For all ψ ∈ C(G) and all E ⊆ ED,A it holds that either
(ψ,E) ∈ τ or (¬ψ,E) ∈ τ .

2. There exists a world w ∈ W such that

w |= D0 ∪ {R[E, ψ] | (ψ,E) ∈ τ}.
The set of all types w.r.t. G is denoted by Types(G). The type
of a world w ∈ W w.r.t. G is given by

type(w) := {(ψ,E) ∈ TE(G) | w |= R[E, ψ]}. �
The abstraction of a world state consisting of a world w ∈
W with w |= D and an action sequence z ∈ A∗ is then
given by type(w) and the set of effects Ez ⊆ ED,A gener-
ated by executing z in w. Furthermore, there are only finitely
many control states in the transition system of a program. To

1114

capture the set of reachable subprograms we use a represen-
tation similar to the characteristic program graphs defined
in (Claßen and Lakemeyer 2008). A lifting of the transition
relation to the level of types then yields a finite abstraction
of Tw

δ based on the abstraction type(w). Now the strong de-
coupling of the temporal part and the C2 part in the tempo-
ral property comes in to play: To verify the abstraction of
Tw
δ against a temporal state formula Φ over C2-fluent sen-

tences, we replace the axioms in Φ contained in the con-
text C(G) by atomic proposition and then use propositional
model checking. Since there are only finitely many world
types that can be computed using a decidable consistency
check in C2, this approach yields a decision procedure for
the verification problem.
Theorem 15. Let G = (D, δ) be a program with an acyclic
C2-BAT and Φ a temporal state formula. It is decidable to
verify whether Φ is valid in G.

The techniques introduced for acyclic theories can also
be applied to programs with a C2-BAT D where all the ef-
fect descriptors in the SSAs in D are quantifier-free but may
contain cycles. (The domain in Example 3 satisfies also this
restriction). We call this class flat action theory. It is straight-
forward to show that in this case only finitely many effects
can be generated. We use the same arguments as for the
acyclic case to show that a finite abstraction of the transition
system can be constructed such that satisfaction of temporal
properties is preserved.
Theorem 16. Let G = (D, δ) be a program with a flat C2-
BAT and Φ a temporal state formula over axioms in C(G). It
is decidable to verify whether Φ is valid in G.

Obviously, there is no trivial extension of the two (incom-
parable) decidable classes. As we have seen in the proof
of Theorem 8, already a simple cycle within the scope of
a quantifier causes undecidability again. See the technical
report (Zarrieß and Claßen 2015) for detailed proofs.

Related Work

De Giacomo, Lespérance and Patrizi (2012) show decidabil-
ity for first-order μ-calculus properties for a class of BATs
where fluent extensions are bounded by some fixed thresh-
old. Moreover, their notion of boundedness is a semantical
condition that is in general undecidable to check, whereas
our approach relies on purely syntactical restrictions. (Hariri
et al. 2014) investigate acyclicity conditions that ensure
state-boundedness in data-aware dynamic systems. State-
boundedness then in turn allows for decidable verification
by constructing finite abstraction of infinite transition sys-
tems. However, the setting is quite different: The transition
systems in (Hariri et al. 2014) have a fixed database instance
as initial state, actions do not respect the frame assumption
but for example may cause an infinite branching degree.

Conclusion

In this paper we broadened the class of Golog programs
and action theories for which decidability of verification can
be achieved. The new class of acyclic theories subsumes
many of the ones that were previously studied, including

the context-free and local-effect ones and also the class con-
sidered in Theorem 16 subsumes local-effect theories. We
observe that the decidability does not merely depend on
whether actions may affect an unbounded number of objects,
i.e. have non-local effects, but also on the dependencies be-
tween fluents in the action theory. Interestingly, it turns out
that in domains as the one described in Example 3, in the
briefcase domain (Pednault 1988), or in the logistics domain
(Bacchus 2001), actions have non-local effects but depen-
dencies are acyclic. Note that we refer to non-propositional
models of the domains in the Situation Calculus, i.e. ones
that admit a (possibly) infinite number of objects.

Acknowledgments This work was supported by the Ger-
man Research Foundation (DFG) research unit FOR 1513
on Hybrid Reasoning for Intelligent Systems, project A1.

References
Bacchus, F. 2001. The AIPS ’00 planning competition. AI Maga-
zine 22(3):47–56.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-terminating
Golog programs. In Proc. of KR, 2008
Claßen, J.; Liebenberg, M.; Lakemeyer, G.; and Zarrieß, B.
2014. Exploring the boundaries of decidable verification of non-
terminating Golog programs. In Proc. of AAAI, 2014.
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2012. Bounded sit-
uation calculus action theories and decidable verification. In Proc.
of KR, 2012.
Gu, Y., and Soutchanski, M. 2007. Decidable reasoning in a mod-
ified situation calculus. In Proc. of IJCAI, 2007.
Hariri, B. B.; Calvanese, D.; Montali, M.; and Deutsch, A. 2014.
State-boundedness in data-aware dynamic systems. In Proc. of KR,
2014.
Lakemeyer, G., and Levesque, H. J. 2010. A semantic characteriza-
tion of a useful fragment of the situation calculus with knowledge.
Artificial Intelligence 175(1):142–164.
Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl,
R. B. 1997. GOLOG: A logic programming language for dynamic
domains. Journal of Logic Programming 31(1–3):59–83.
Lin, F., and Reiter, R. 1997. How to progress a database. Artificial
Intelligence 92(1–2):131–167.
McIlraith, S. A. 2000. Integrating actions and state constraints:
A closed-form solution to the ramification problem (sometimes).
Artificial Intelligence 116(1-2):87–121.
Minsky, M. L. 1967. Computation: Finite and Infinite Machines.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc.
Pednault, E. P. D. 1988. Synthesizing plans that contain actions
with context-dependent effects. Computational Intelligence 4:356–
372.
Reiter, R. 2001. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Vassos, S.; Lakemeyer, G.; and Levesque, H. J. 2008. First-order
strong progression for local-effect basic action theories. In Proc. of
KR, 2008.
Zarrieß, B., and Claßen, J. 2014. Verifying CTL∗ properties of
Golog programs over local-effect actions. In Proc. of ECAI, 2014.
Zarrieß, B., and Claßen, J. 2015. Decidable verification of golog
programs over non-local effect actions. LTCS-Report 15–19, TU
Dresden. See http://lat.inf.tu-dresden.de/research/reports.html.

1115

