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Abstract

The Sentential Decision Diagram (SDD) is a prominent
knowledge representation language that subsumes the
Ordered Binary Decision Diagram (OBDD) as a strict
subset. Like OBDDs, SDDs have canonical forms and
support bottom-up operations for combining SDDs, but
they are more succinct than OBDDs. In this paper we
introduce an SDD variant, called the Zero-suppressed
Sentential Decision Diagram (ZSDD). The key idea of
ZSDD is to employ new trimming rules for obtaining a
canonical form. As a result, ZSDD subsumes the Zero-
suppressed Binary Decision Diagram (ZDD) as a strict
subset. ZDDs are known for their effectiveness on rep-
resenting sparse Boolean functions. Likewise, ZSDDs
can be more succinct than SDDs when representing
sparse Boolean functions. We propose several polytime
bottom-up operations over ZSDDs, and a technique for
reducing ZSDD size, while maintaining applicability
to important queries. We also specify two distinct up-
per bounds on ZSDD sizes; one is derived from the
treewidth of a CNF and the other from the size of a fam-
ily of sets. Experiments show that ZSDDs are smaller
than SDDs or ZDDs for a standard benchmark dataset.

Introduction

Knowledge compilation is the technique of compiling a
Boolean function into a tractable representation. The Or-
dered Binary Decision Diagram (OBDD) (Bryant 1986) is
one of the most popular representations and is used in vari-
ous areas. OBDD is tractable, has canonical forms and sup-
ports polytime Apply operations for combining OBDDs.

Following the success of OBDD, several variants of de-
cision diagrams have been proposed (e.g., (Minato 1993;
Bahar et al. 1997)). The Sentential Decision Diagram
(SDD) (Darwiche 2011) is such a prominent variant of the
OBDD. SDD subsumes the Ordered Binary Decision Dia-
gram (OBDD) (Bryant 1986), and has canonical forms and
supports polytime operations for combining SDDs. More-
over, SDDs have bounds on the size that are tighter than
those of OBDDs. Because of these properties, SDDs are at-
tracting much attention (Kisa et al. 2014; Chakraborty et al.
2014).

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

OBDD has many important variants other than SDD. The
Zero-suppressed Binary Decision Diagram (Minato 1993)
is one such variant. Same as OBDD, ZDD represents a
Boolean function as a directed acyclic graph (DAG), but its
reduction rules are different. As a result, ZDDs generally
tend to be smaller than OBDDs when representing sparse
Boolan functions. We say a Boolean function is sparse if it
has a small number of models and each model has small
number of variables whose value is 1.

In this paper, we introduce a new decision diagram called
the Zero-suppressed Sentential Decision Diagram (ZSDD).
It is a variant of SDD and subsumes ZDD as a strict subset.
This relationship is analogous to the SDD subsuming the
OBDD. Like SDDs, ZSDDs have canonical form and sup-
port several polytime bottom-up operations for combining
them. Just as ZDDs tend to be more succinct than OBDDs
when representing sparse Boolean functions, ZSDDs tend
to be more succinct than SDDs when representing sparse
Boolean functions. Moreover, ZSDDs have tighter upper
bounds on their size when they are used for representing
CNFs compared with ZDDs; the size of a ZSDD represent-
ing a CNF is bounded by the treewidth of the CNF, while the
size of a ZDD is bounded by the pathwidth.

In the following, after reviewing SDDs, we introduce ZS-
DDs and several bottom-up operations. Then we introduce
implicit partitioning, a simple but powerful technique that
makes ZSDDs much more succinct by suppressing unneces-
sary substructures. It reduces ZSDD size while maintaining
applicability to several key types of queries. Since practi-
cally important queries such as model counting run in time
linear to ZSDD size with implicit partitioning, it is attrac-
tive. We also give two upper bounds on ZSDD size with im-
plicit partitioning; one is decided by the size of the family
of sets interpretation of a Boolean function, while the other
is decided by the treewidth of a CNF. We also give analy-
ses on its applicability to several kinds of queries and trans-
formations. Finally we conduct experiments to compare the
size of ZSDD, SDD, and ZDD and show that ZSDD is more
succinct than SDD or ZDDs with standard benchmark in-
stances1.

1Our sample software of ZSDD is available at https://github.
com/nsnmsak/zsdd/.
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Figure 1: A vtree and an SDD representing f = (A ∧ B) ∨
(B ∧ C) ∨ (C ∧D)

Technical Preliminaries

We first briefly show notations and some definitions used in
the later sections. We use an upper case letter (e.g., X) to
represent a variable and a lower case letter to represent its
instantiation (e.g., x). We use a bold upper case letter (e.g.,
X) to represent a set of variables, and use a bold lower case
letter its instantiation (e.g., x). Boolean function f(X) maps
instantiations of X to true or false.

Since ZDDs and ZSDDs can be seen as condensed
representations of families of sets, we introduce a fam-
ily of sets interpretation of Boolean functions. A fam-
ily of sets is a collection of subsets of a given base set
S. For example, given base set S = {A,B,C,D}, then
{{A,B}, {B,C}, {C,D}} is an example of a family of
sets over S. Every family of sets can be represented as a
Boolean function. In particular, it can be straightforwardly
represented in disjunctive normal form (DNF), where each
subset contained in the family of sets corresponds to each
term. The above example corresponds to Boolean function
f(A,B,C,D) = (A∧B∧¬C∧¬D)∨(¬A∧B∧C∧¬D)∨
(¬A∧¬B∧C∧D). Let ∅ be an empty family; it corresponds
to Boolean function f(X) = false. The family of sets {∅}
corresponds to Boolean function f(X) =

∧|X|
i=1 ¬xi. We use

p to represent the family of all subsets of the base set, and
use f̄ to represent the complement family of f , defined as
f̄ = {a | a ∈ p and a �∈ f}. Every model of a Boolean func-
tion representing a family of sets has one-to-one correspon-
dence to a subset in the family, and the number of variables
taking value 1 in a model equals the size of the correspond-
ing subset. Therefore, small families of sets tend to be sparse
Boolean functions.

Sentential Decision Diagrams

The Sentential Decision Diagram (SDD) (Darwiche 2011) is
a data structure that represents a Boolean function as a DAG.
Like BDD, it has canonical form and supports bottom-up
operations. SDD and OBDD mainly differ in how they de-
compose Boolean functions. OBDD decomposes a Boolean
function by using Shannon decomposition, while SDD uses
a new decomposition rule called (X,Y)-decomposition,
which is a generalization of Shannon decomposition. Let f
be a Boolean function, and X, Y be groups of variables that
compose a partition of the variables of f . It follows that the

function can be decomposed as

f = [p1(X) ∧ s1(Y)] ∨ · · · ∨ [pn(X) ∧ sn(Y)] ,

where pi(X), si(Y) are subfunctions whose variables are
X and Y, respectively. We call p1, . . . , pn primes and
s1, . . . , sn subs. If pi ∧ pj = false for all i �= j,∨n

i=1 pi = true , and pi �= ⊥ for all i, then we say
the decomposition is an (X,Y)-partition, and denote it as
{(p1, s1), . . . , (pn, sn)}. Moreover, if si �= sj for all i �= j
is satisfied, then we say the (X,Y)-partition is compressed.

An SDD represents a Boolean function by recursively ap-
plying (X,Y)-partitions, where the order of partitions are
determined by a vtree. A vtree is a binary tree whose leafs
correspond to variables. We show a vtree example in Fig. 1
(a). The vtree root represents the partition of variables into
two groups: variables that appear in the left subtree and those
that appear in the right subtree. In this figure, root node
v = 3 represents (X,Y)-partition where X = {A,B} and
Y = {C,D}. Similarly, node v = 1 represents a partition
where X = {B} and Y = {A}. In this way, every non-leaf
vtree node represents a partitioning. We use vl, vr to repre-
sent the left and the right child vtree node of v, respectively.

An SDD is defined as follows, where we use 〈·〉 to denote
a mapping from SDDs into Boolean functions.

Definition 1. α is an SDD that respects vtree v iff:

• α = 
 or α = ⊥.
Semantics: 〈
〉 = true and 〈⊥〉 = false

• α = X or α = ¬X and v is a leaf with variable X .
Semantics: 〈X〉 = X and 〈¬X〉 = ¬X .

• α = {(p1, s1), . . . , (pn, sn)}, v is internal, p1, . . . , pn are
SDDs that respect subtrees of vl, s1, . . . , sn are SDDs that
respect subtrees of vr, and 〈p1〉, . . . , 〈pn〉 is a partition.
Semantics: 〈α〉 = ∨n

i=1〈pi〉 ∧ 〈si〉 .

The size of SDD α, denoted |α|, is obtained by summing the
sizes of all its decompositions.

A constant or literal SDD is called terminal. Otherwise,
it is called a decomposition. Fig. 1(b) is an example of an
SDD that represents the Boolean function f = (A ∧ B) ∨
(B∧C)∨ (C∧D) given the vtree in Fig. 1(a). We represent
(X,Y)-partition as a circle node, and call it a decision SDD
node. A decision node has child nodes, and a child node
is represented as paired boxes p s . These child nodes are
called elements, and the left box of an element corresponds
to prime p, while the right box corresponds to sub s. Primes
or subs are either a terminal SDD or a pointer to another
decomposition SDD. The top-level decision node has three
elements with primes representing A∧B, ¬A∧B,¬B, and
subs representing true , C, C ∧D.

Two canonical SDDs were introduced in (Darwiche
2011). We use α = β to mean that SDDs α and β are syn-
tactically equal, and α ≡ β to mean that they correspond to
the same Boolean function, i.e., 〈α〉 = 〈β〉. We say a class
of SDDs is canonical when the condition α = β iff α = β is
satisfied for all SDDs α and β in the class. The two canon-
ical forms are the compressed and trimmed SDD, and the
compressed, lightly-trimmed, and normalized SDD. We say
an SDD is trimmed if it does not have decompositions of the
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Figure 2: An SDD and ZSDDs that respect vtree in Fig. 1(a),
representing {{A,B}, {B}, {B,C}, {C,D}}.

form {(
, α)} and {(α,
), (¬α,⊥)}. We say an SDD is
lightly trimmed if it does not contain decompositions of the
form {(
,
)} and {(
,⊥)}. We say an SDD is normalized
if for all decompositions that respect vtree node v, its primes
respect vtree node vl and its subs respect vtree node vr.

Canonical SDDs support bottom-up construction by us-
ing the Apply function, which takes two SDDs α, β and
binary operation ◦, and returns a new SDD that represents a
Boolean function that corresponds to 〈α〉 ◦ 〈β〉. The Apply
function runs in O(|α||β|) time if the resulting SDD is as-
sumed to be uncompressed. As is proved in (Van den Broeck
and Darwiche 2015), performing Apply operations to com-
pressed SDDs results in an exponentially larger compressed
SDD if the vtree is unchanged. However Van den Broeck
and Darwiche (2015) report experimental evaluations show-
ing that compressed SDDs become much smaller than non-
compressed SDDs.

Zero-suppressed Sentential Decision Diagrams

We introduce a variant of SDD, which we name the
Zero-suppressed SDD (ZSDD) since it subsumes the Zero-
suppressed Binary Decision Diagram (ZDD) (Minato 1993)
as a strict subset, the same as SDDs subsuming OBDDs
as a strict subset. ZDD is an OBDD variant that also rep-
resents a Boolean function as a DAG, but it tends to be
more succinct in representing sparse Boolean functions. Due
to this feature, ZDDs are used in various fields such as
frequent pattern mining (Minato, Uno, and Arimura 2008;
Loekito and Bailey 2006), and are implemented in sev-
eral standard OBDD manipulation software packages like
CuDD (Somenzi 2012).

ZSDD shares a lot with SDD; it is based on the (X,Y)-
partition of a Boolean function, and partitions of variables
are determined by a vtree. However, ZSDDs differ in the
kind of terminal ZSDDs and their interpretation of trimmed

subgraphs. In the following, we regard ZSDD as a represen-
tation of a family of sets, since this interpretation simplifies
its explanation.

Definition 2. α is a ZSDD that respects vtree v iff:

• α = ε or α = ⊥.
Semantics: 〈ε〉 = {∅} and 〈⊥〉 = ∅

• α = X or α = ±X and v is a leaf with variable X .
Semantics: 〈X〉 = {{X}} and 〈±X〉 = {{X}, ∅}.

• α = {(p1, s1), . . . , (pn, sn)}, v is internal, p1, . . . , pn are
ZSDDs that respect subtrees of vl, s1, . . . , sn are ZSDDs
that respect subtrees of vr, and 〈p1〉, . . . , 〈pn〉 is a parti-
tion.
Semantics: 〈α〉 = ⋃n

i=1〈pi〉  〈si〉 .

We use terminal constant symbols ε and ⊥. ε is the con-
stant ZSDD that corresponds to the family of sets {∅}, it cor-
responds to a Boolean function that returns 1 if all variables
are 0. ⊥ is the same as in SDD, and 〈⊥〉 = ∅ = false. Oper-
ation ∪ is the union operation. Operation  is the join opera-
tion. The join fg of two families of sets, f and g, is defined
as f  g = {a ∪ b | a ∈ f and b ∈ g}. Fig. 2(a), (b) shows
examples of SDD and ZSDD, both represent sets of family
{{A,B}, {B}, {B,C}, {C,D}}, while respecting the same
vtree shown in Fig. 1(a). We can see that SDD size is 16 and
ZSDD size is 8.

Next we will introduce two canonical ZSDDs, namely
compressed and trimmed ZSDDs, and compressed, lightly-
trimmed and normalized ZSDDs. We then prove their canon-
icity.

Definition 3. We say a ZSDD is trimmed if it does
not have decompositions of the form {(ε, α), (ε̄,⊥)},
{(α, ε), (ᾱ,⊥)}, and {(p,⊥)}. We say a ZSDD is lightly-
trimmed if it does not have decompositions of the form
{(ε, ε), (ε̄,⊥)} and {(p,⊥)}.

Definition 4. We say a ZSDD α is normalized if for all de-
compositions in α respecting vtree node v, its primes respect
vtree node vl and subs respect vtree node vr

Fig. 2 (b) is a compressed and trimmed ZSDD, and
Fig.3 is a compressed, lightly-trimmed, and normalized
ZDDD representing the same family of sets. These defi-
nitions of canonical forms mirror that of SDD. The main
difference is the trimming rule: ZSDDs remove a deci-
sion node if the corresponding Boolean function returns
true only when all the variables in either subtrees vl or
vr are assigned 0, while SDDs remove a decision node
if the corresponding Boolean function does not depend on
the variables in either of subtree vl or vr. This difference
makes ZSDDs a more effective representation for sparse
Boolean functions, since sparse Boolean functions have
models that assign zero to many variables. The families of
sets {{A,B}, {B}, {B,C}, {C,D}} is a sparse Boolean
function since it has four models while there are 24 = 16
possible assignments, and each model has at most two vari-
ables that take value 1. This is why the ZSDD in Fig. 2(b) is
smaller than the SDD in Fig. 2(a).

We should note that compressed and trimmed ZSDDs are
not always smaller than compressed and trimmed SDDs. For
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Table 1: Operations supported with ZSDDs.

Operation Description Definition

f ∩ g intersection {a | a ∈ f and a ∈ g}
f ∪ g union {a | a ∈ f or a ∈ g}
f − g difference {a | a ∈ f and a �∈ g}

Change(f,X) change {Change(a,X) | a ∈ f}
f � g orthogonal join {a ∪ b | a ∈ f and b ∈ g}

example, m-ary Boolean function f = {{X1}} is repre-
sented by size 1 ZSDDs respecting any vtree, while the sizes
of compressed and trimmed SDDs representing the same
function are O(m). On the other hand, m-ary Boolean for-
mula g = x1 can be represented by size 1 SDDs, while the
sizes of ZSDDs representing g are O(m).

Proposition 5. If α and β are compressed and trimmed ZS-
DDs, then α ≡ β iff α = β.

The proof is presented in the appendix, and it is similar
to that advanced for SDDs (Darwiche 2011), but different in
how to guarantee the uniqueness of the vtree node a com-
pressed and trimmed ZSDD respects.

Apply operations with ZSDDs

Like SDDs, ZSDDs support Apply operations, and can be
constructed in a bottom-up manner. We introduce the opera-
tions in Tab. 1. By combining these five operations, we can
construct ZSDDs that represent arbitrary families of sets.
The first three operations in the table corresponds to binary
operations over two Boolean functions. For example, the in-
tersection f ∩ g of two families of sets can be obtained by
applying Boolean operation ∧ to the pair of Boolean formu-
las f , g. Therefore, these operations can be performed as the
Apply operation that is almost equal to that for SDDs. We
show the procedure in Algorithm 1. Here we assume α and
β are compressed, lightly-trimmed and normalized ZSDDs.
Operations for compressed and trimmed ZSDDs are almost
the same, but functions Expand(γ) and UniqueD(γ) work
differently.

The running time of Apply for compressed, lightly-
trimmed, and normalized ZSDDs is O(|α||β|), which is
the same with canonical SDDs. However, the running time
with compressed and trimmed ZSDDs may be larger than
O(|α||β|). This is because we need to compute ε̄ on
Expand(γ). In the case of SDDs, the size of the canon-
ical SDD representing the negation is the same as that of

Algorithm 1 Apply(α, β, ◦). α, β are compressed, lightly-
trimmed, and normalized ZSDDs, and ◦ is a binary operation
for families of sets.
Expand(γ) returns {(ε, ε), (ε̄,⊥)} if γ = ε; {(p,⊥)} if γ =
⊥; else γ. UniqueD(γ) returns ε if γ = {(ε, ε), (ε̄,⊥)};
⊥ if γ = {(p,⊥)}; else the unique ZSDD with elements
γ.
1: if α and β are constants or literals then
2: return α ◦ β
3: else if Cache(α, β, ◦) �= nil then
4: return Cache(α, β, ◦)
5: else
6: γ ← {}
7: for all elements (pi, si) in Expand(α) do
8: for all elements (qj , rj) in Expand(β) do
9: p ← Apply(pi, qj ,∩)

10: if p is consistent then
11: s ← Apply(si, rj , ◦)
12: add element (p, s) to γ
13: return Cache(α, β, ◦) ← UniqueD(γ)

Algorithm 2 Change(α,X)

1: if α is constants or literals then
2: return ε if α = X; X if α = ε; else α
3: else if Cache(α,X,Change) �= nil then
4: return Cache(α,X,Change)
5: else
6: γ ← {}
7: for all elements (pi, si) in Expand(α) do

8: if X is contained in the left vtree vl then
9: p ← Change(pi, X), s ← si

10: else
11: p ← pi, s ← Change(si, X)
12: add element (p, s) to γ
13: return Cache(α,X,Change) ← UniqueD(γ)

the original SDD. On the other hand, the ZSDD represent-
ing the negation of a Boolean function may be O(m) times
larger than the original ZSDD in the worst case, where m
is the number of variables. However, it still remains poly-
time algorithm. Moreover, we can avoid the need to explic-
itly handle negation by using the technique called implicit
partition. We show details in the next section. When we con-
sider compressing SDDs after Apply operation, the size of
the resulting ZSDD may increase exponentially. This is the
same result as for the case of SDDs (Van den Broeck and
Darwiche 2015).

The next operation is Change(α,X), which is intro-
duced in (Minato 1993) as a basic operation required for
constructing ZDDs that represents arbitrary families of sets.
It takes a ZSDD and variable X , and returns a family of
sets whose item a that satisfies X ∈ a is replaced by
a − {X} and whose item b that satisfies X �∈ b is re-
placed by b ∪ {X}. For example, Change(α,C) where
〈α〉 = {{A,B,C}, {A}, ∅} returns the family of sets
{{A,B}, {A,C}, {C}}. Algorithm 2 shows the procedure
of Change as applied to a compressed and normalized
ZSDD. The process is similar to Apply, but some opera-
tions are different. A useful fact is that Change operation
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runs in O(|α|) time even for canonical ZSDDs since we do
not need to perform the compress operation. We can con-
struct any ZSDD by combining Change and the above three
set operations.

Another useful operation is orthogonal join. Join f  g of
two families, f and g, is defined as f  g = {a ∪ b | a ∈ f
and b ∈ g}. Though it is not a simple binary operation,
ZDD supports the polytime join operation (Knuth 2011;
Minato 1994). Currently, we cannot find a polytime join
operation for ZSDDs, however, we can perform polytime
join f  g on canonical ZSDDs if we can assume that f
and g are orthogonal, i.e., a ∩ b = ∅ for all a ∈ f ,
b ∈ g. For example, given f = {{A,B}, {B}} and g =
{{C}, ∅}, f and g are orthogonal and their orthogonal join
f  g = {{A,B}, {A,B,C}, {B}, {B,C}}. The orthog-
onal join algorithm is similar to Apply in Alg. 1, and is
implemented by substituting p ← Apply(pi, qj ,∩) (line 9)
with Apply(pi, qj ,). Orthogonal join has the following
property. The proof is given in the appendix.
Proposition 6. Orthogonal join runs in O(|α||β|) with any
canonical ZSDDs α and β.

Implicit Partition

Here we introduce a technique called implicit partition de-
fined as follows.
Definition 7. We say canonical ZSDD α employs implicit
partitioning if none of the partitions contained in α have an
element of the form (β,⊥).

Implicit partition implicitly represents an element whose
sub is ⊥. Consider the compressed (X,Y)-partition
{(p1, s1), . . . , (pn−1, sn−1), (pn,⊥)}. Since it satisfies
∪n
i=1〈pi〉 = p, we can recover pn from other elements using

〈pn〉 = p − ⋃n−1
i=1 〈pi〉2. Hence, removing elements whose

sub is ⊥ does not drop any information about the Boolean
function. Figure 2(c) shows a ZSDD that employs implicit
partitioning. Compared with the ZSDD in Fig. 2(b), we can
see that elements with ⊥ are removed, which yields a more
succinct representation.

Implicit partition makes ZSDDs more succinct repre-
sentation for sparse Boolean functions. If we represent
Boolean function f as a compressed (X,Y)-partition
{(p1, s1), . . . , (pn−1, sn−1), (pn,⊥)}, then pn in element
(pn,⊥) tends to be not sparse, i.e., it has relatively many
models and each model has many variables whose value is
1. This is because pn represents a Boolean function over X
that returns true for x that makes f = false for any assign-
ment on Y. If f is a sparse Boolean function, there tend to
be many such assignments, and every assignment tends to
have many variables whose value is 1. Thus implicitly rep-
resenting pn can reduce ZSDD size.

Implicit partition can reduce ZSDD size, and achieve
O(|α||β|) Apply operations with some operators including
∩ and . Furthermore, it supports all the polytime queries
that the original ZSDD supports. We see the supported
queries in the next section. In the following, we show some
important properties of implicit partitioning. First we show

2This corresponds to Boolean formula 〈pn〉 = ¬ (∨n−1
i=1 〈pi〉

)
.

that the canonicity is preserved when we employ implicit
partitioning.

Proposition 8. Let α, β be compressed and trimmed ZSDDs
with implicit partitioning. Then α = β iff α ≡ β

Clearly, the size of a canonical ZSDD with implicit parti-
tioning is always smaller than the same one without implicit
partitioning. Furthermore, we can give an upper bound on
the size of a ZSDD with implicit partitioning that is derived
from the size of the family of sets.

Proposition 9. If f is a family of sets, then the size of a com-
pressed and trimmed ZSDD that exploits implicit partition-
ing and respects any vtree is always smaller than

∑
s∈f |s|,

Proof is given in the appendix. This upper bound is com-
mon with ZDD, and it also motivates us to use ZSDDs to
represent sparse Boolean functions.

Implicit partitioning requires additional computations on
Apply operations since it uses (pn,⊥) at Alg. 1 line 7 and
8. Since (pn,⊥) does not appear in a ZSDD with implicit
partitioning, we have to compute (pn,⊥) from other ele-
ments (p1, s1), . . . , (pn−1, sn−1) before executing the pro-
cedures in line 9 to 12. However, for operations that satisfy
Apply(⊥, α, ◦) = ⊥ for any α, we can skip this computa-
tion since s = ⊥ at line 11 if si = ⊥ or ri = ⊥, and the re-
sulting element (p, s = ⊥) is removed from the ZSDD with
implicit partition. Operations ∩ and  satisfy this condition.
Since Change(⊥, X) = ⊥ for any variable X , Change
also can be applied in polytime with ZSDDs that use im-
plicit partitioning.

Properties of ZSDDs

We first show the relationships between a trimmed ZSDD
and a trimmed ZSDD with implicit partitioning.

Proposition 10. There exists a class of Boolean functions
fm and corresponding vtrees Tm, over m variables, such
that fm has a trimmed ZSDD with implicit partitioning of
size O(m2) with regard to vtree Tm, yet the trimmed ZSDD
of function fm with regard to vtree Tm has size Ω(2m).

The proof is given in the appendix. We show that there
exists partition {(p1, s1), . . . , (pn−1, sn−1), (pn,⊥)} where
the size of pi is O(m) and the size of pn is Ω(2m). This
result suggests that ZSDDs with implicit partitioning can be
much smaller than vanilla ZSDDs.

Next, we show the queries and transformations supported
by canonical ZSDDs and ZSDDs with implicit partitioning.
Details of the queries are found in (Darwiche and Marquis
2002).

Proposition 11. The results in Table 2 hold.

The proof is given in the appendix. Since ZSDDs are sim-
ilar to SDDs, they can handle the same kinds of queries in
polytime. An important fact is that employing implicit par-
titioning does not change the kinds of queries supported.
Model counting is one of the most important queries since
it is used in various applications such as probabilistic infer-
ence (Chavira and Darwiche 2008) and statistical relational
learning (Fierens et al. 2015). Since we can count models in
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Table 2: Analysis of supported queries for SDD, ZSDD and
ZSDD with implicit partition (Z+I). Definitions of queries
are in (Darwiche and Marquis 2002). We use

√
if it can

answer the query in polytime.

Notation Query SDD ZSDD Z+I

CO consistency
√ √ √

VA validity
√ √ √

CE clausal entailment
√ √ √

IM implicant check
√ √ √

EQ equivalence check
√ √ √

CT model counting
√ √ √

SE sentential entailment
√ √ √

ME model enumeration
√ √ √

Table 3: Analysis of supported transformations for SDD,
ZSDD and ZSDD with implicit partitioning. Six columns
indicates the form of output SDDs and ZSDDs: first three
colums are uncompressed SDDs(S), ZSDDS (Z), ZSDDs
with implicit partition (Z+I), and remainig columns are com-
pressed and trimmed SDDs, (S(C)), ZSDDs (Z(C)), and ZS-
DDs with implicit partition (Z+I(C)).

√
indicates that there

exists a polytime algorithm, • indicates that such algorithm
is proven to be impossible, and ? indicates our ignorence
about the property. The results for S and S(C) are shown
in (Van den Broeck and Darwiche 2015).

Notation Transformation S Z Z+I S(C) Z(C) Z+I(C)

CH change ?
√ √

?
√ √

∩C intersection • • • • • •
∩BC bounded intersection

√ √ √ • • •
∪C union • • • • • •
∪BC bounded union

√ √ • • • •
�OC orthogonal join ?

√ √
?

√ √
C̄ complement

√ √ • √ √ •
CO conditioning

√ √ √ • • •
FO forgetting • • • • • •
SFO singleton forgetting

√ √ • • • •

time linear with ZSDD size if we employ implicit partition-
ing, implicit partitioning is useful.

Next we see the transformations supported in ZSDDs with
implicit partitioning. Since typical transformations used in
families of set interpretation are different from the stan-
dard transformations, we consider following transforma-
tions: change (CH), intersection (∩C), bounded intersection
(∩BC), union (∪C), bounded union (∪BC), orthogonal
join (OC), and complement (C̄). Intersection (union) is
the intersection between multiple ZSDDs, and bounded in-
tersection is the intersection of two ZSDDs. We also assume
orthogonal join is performed between two ZSDDs. We also
consider the transformations for Boolean function shown in
(Darwiche and Marquis 2002): conditioning (CD), forget-
ting (FO), and singleton forgetting (SFO)3.

Proposition 12. The results in Table 3 hold.

As for transformations, ZSDDs and implicitly partitioned
ZSDDs show different results. This is due to the exponen-

3We omit results for ∧C, ∧BC, ∨C, ∨BC, and ¬C, since they
are equivalent to families of sets transformations ∩C, ∩BC, ∪C,
∪BC, and C̄, respectively.
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Figure 4: Example of (a) right-linear vtree, (b) ZSDD with
implicit partition, and (c) ZDD. The ZSDD and the ZDD
represent the family of sets {{A,B}, {C,D}}. The ZSDD
respects the vtree in (a), and the ZDD employs the variable
order A,B,C,D.

tially large difference in their sizes. Employing implicit par-
titioning may result in exponentially large representations
after transformations ∪BC and C̄, however, the resulting
ZSDD with implicit partitioning is still smaller than the
equivalent vanilla ZSDD.

The next important property of ZSDD is its relationship
with ZDD.
Property 13. A compressed and trimmed ZSDD respecting
a right-linear vtree corresponds to a ZDD that is based on
the total variable order induced from the vtree. Every de-
composition in the ZSDD corresponds to a decision node in
the ZDD, and every decision node in the ZDD corresponds
to a decomposition or literal in the ZSDD.

We say a vtree is right-linear if each left-child of an in-
ternal node is a leaf. This property is analogous to the cor-
respondence of SDDs to OBDDs when they respect right-
linear vtrees. We show examples of a ZDD and a ZSDD that
respect a right-linear vtree in Fig. 4.

Finally, we give a theoretical upper bound on ZSDD size
when representing CNFs. Darwiche (2011) showed that the
size of an SDD representing a CNF with m variables is
bounded by O(m2w), where w is the treewidth of the CNF.
Compressed, lightly trimmed and normalized ZSDDs have
the same upper bound on size. Darwiche (2011) proved the
bound by showing that the number of decision nodes re-
specting a vtree node is bounded by 2w, and we can con-
struct a SDD wherein every decision node has at most two
elements. In the case of ZSDDs, we can use the same bound
on the number of decision nodes, and we can construct a
ZSDD for which every decision node has at most two ele-
ments. Hence it has the same bounds.

Evaluation

We compared the sizes of ZSDDs, SDDs, and ZSDDs that
used right-linear vtrees. ZSDDs employing right-linear vtree
corresponds to ZDDs. We used compressed and trimmed
ZSDDs and those with implicit partitioning. We used the
SDD package4 to construct compressed and trimmed SDDs.
The vtrees for ZSDDs and SDDs were determined by the dy-
namic reordering algorithm (Choi and Darwiche 2013) im-

4http://reasoning.cs.ucla.edu/sdd/
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plemented in the SDD package. We used a balanced vtree
as the initial vtree for reordering. Right-linear vtrees of ZS-
DDs are induced from the results of the reordering algo-
rithm. Here we say an order is induced from a vtree if the
left-right traversal of the vtree gives the visit order of vari-
ables (Xue, Choi, and Darwiche 2012). As the dataset, we
used LGSynth89 benchmark dataset. We omitted datasets
for which the reordering algorithm did not finish within 24
hours.

We show the results from the LGSynth89 benchmark
dataset in Tab. 4. Here ZSDD, Z+I(C), SDD corresponds to
compressed and trimmed ZSDDs, compressed and trimmed
ZSDDs with implicit partitioning, and compressed and
trimmed SDDs, respectively. Although the vtrees are opti-
mized for SDDs, ZSDD and Z+I(C) are always smaller than
both SDD and ZSDD with right linear vtrees. This would
be because the CNFs in the dataset have smaller number
of models, thus they are relatively sparse Boolean function.
Since ZSDDs also support query functions such as model
counting in polytime, ZSDDs can be used as small alterna-
tives of SDDs. Z+I(C) always has smaller size than right-
linear Z+I(C). Employing a linear order sometimes increases
ZSDD size by more than ten times.

Conclusion

We proposed ZSDD, a variant of SDD. ZSDDs subsume
ZDDs as a strict subset, and also support useful bottom-
up operations that can construct any family of sets by com-
bining operations. ZSDDs are generally more succinct than
SDDs if representing sparse Boolean functions. The im-
plicit partitioning technique is simple, but practical as it
contributes much to reducing the size of ZSDDs. We also
showed supported queries and transformations, and the re-
sults of experiments suggest that ZSDDs can be used as a
more compact alternatives to SDDs and ZDDs.
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Appendix

Proof of Proposition 5 We first introduce key concepts for
proving the canonicity of ZSDDs.

Definition 14. Let variable X supports Boolean function
f(X) if there is an assignment x where x = 1 and f(x) = 1.

Definition 15. We say function f(X) inherently supports
vtree node v if f is not trivial and if v is the deepest vtree
node that includes all variables that support f .

To prove the canonicity, we state the following lemmas.

Lemma 16. A non-trivial function essentially supports ex-
actly one vtree node.

Proof. If there are two different vtree nodes, u and v, that
include all variables that Boolean function f supports, then
either u or v must be the ancestor of the other. Thus we can
select exactly one deepest vtree node. �

The following lemma assumes ZSDDs to be compressed
and trimmed, but it can also be applied to normalized ZS-
DDs.

Lemma 17. Let α be a compressed and trimmed ZSDD. If
α ≡ {∅}, then α = ε. If α ≡ ∅, then α = ⊥. Otherwise,
there is a unique vtree node, v, that function 〈α〉 inherently
supports.

Proof. Suppose that α ≡ {∅} and that α respects vtree node
v. If v is a leaf node, then the only ZSDD that can repre-
sent {∅} is ε. If v is an internal node, then the only partition
that corresponds to {∅} is {({∅}, {∅}), ( ¯{∅}, ∅)}. By apply-
ing trimming rules, this partition is replaced by a ZSDD
that respects a left or right descendant vtree node and rep-
resents {∅}. Hence {∅} is represented as terminal ZSDD ε.
Similarly, the only ZSDD that can represent ∅ is ⊥. From
lemma 16, if a Boolean function is not trivial, there is only
one vtree node that the function inherently supports. �

The Proposition 5 can be proved by using the above lem-
mas.

Proof. If α = β, then α ≡ β by definition. Suppose α ≡ β
and let f = 〈α〉 = 〈β〉. If f = {∅}, then α = β = ε. If f =
∅, then α = β = ⊥. If f is not trivial, then it must inherently
support unique vtree node v. Suppose node v is a leaf, then
only terminal ZSDDs respect leaf nodes, and α and β must
be X or ±X unless f is trivial. This means that α = β if
α = β. Suppose that vtree node v is an internal node, and the
proposition holds for subtrees vl and vr. Since a function has

exactly one compressed (X,Y)-partition (Darwiche 2011),
α ≡ β means partitions α = {(p1, s1), . . . , (pn, sn)} and
β = {(q1, r1), . . . , (pk, rk)} are identical. From the assump-
tion, pi = qi and si = ri for all i, and thus α = β. �

Proof of Proposition 6 We assume that α and β are both
decomposition ZSDDs and represented as partitions α =
{(p1, s1), . . . , (pn, sn)} and β = {(q1, r1), . . . , (qk, rk)}.
Then the set of new primes consists of pi  qj , where
i = 1, . . . , n and j = 1, . . . , k. This set of primes forms a
partition. Similarly, subs si  rj are compressed. Hence the
algorithm for taking orthogonal join does not require com-
pression, and it runs in time O(|α||β|). �

Proof of Proposition 8 Even if we employ implicit parti-
tioning, trivial ZSDDs ε, ⊥ are the only ones that represent
trivial functions. Moreover, a ZSDD inherently supports a
unique vtree node, and partitions are unique. Hence α ≡ β
means α = β. �

Proof of Proposition 9

Lemma 18. If a family of sets f is not an empty family
∅, then compressed and trimmed ZSDDs employing implicit
partitioning do not contain ⊥.

This lemma is obvious from the definition of implicit par-
titioning. A set contained in a family of sets corresponds to
a tree structure contained in the ZSDD. The tree is made
by first selecting the root decision node, then recursively se-
lecting one child element for each decision node and select-
ing both prime and sub at each element. For example, in the
ZSDD of Fig. 2(c), set {A,B} corresponds to the leftmost
path from the top decision node. Such subtrees representing
sets satisfy the following condition.

Lemma 19. If a ZSDD is compressed, trimmed, and em-
ploys implicit partitioning, then set s contained in the ZSDD
corresponds to a tree, and the tree has at most |s| − 1 deci-
sion nodes whose size is 1.

Proof. A decision node that has one element means both
the prime and the sub of the element must contain at least
one variable, otherwise prime or sub equal constants and the
decision node is deleted from the ZSDD. If the tree has more
than |s| − 1 such nodes, it means the set must contain more
than |s| items. Thus the tree contains at most |s| − 1 size 1
decision nodes. �

Lemma 20. Given a compressed and trimmed ZSDD with
implicit partitioning that represents family of sets f , then
the difference between the sum of the sizes of decomposi-
tions, E, and the number of decision nodes in the ZSDD, D,
satisfies E −D + 1 ≤ |f |.
Proof. Since there is no ⊥ in the ZSDD with implicit par-
titioning, every sub-function f ′ that corresponds to a de-
cision node must have at least one assignment that makes
f ′ = true . If a decision node has n elements, it means that
there are at least n such assignments, i.e., there are at least n
sets contained in f . If a decision node has n elements and an-
other node has m elements, it means that at least n+m− 1
sets are contained in f . In this way, if the total number of
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Figure 5: vtrees used in proofs

decision nodes is D and the sum of decompositions is E, it
means that f contains at least E −D + 1 sets. �

We can prove the proposition using these lemmas.

Proof. We consider the largest ZSDD that represents a fam-
ily of sets f . Its size corresponds to solving the following
optimization problem of maximizing E under constraints
E −D + 1 ≤ |f | and D ≤ ∑

s∈f (|s| − 1). The solution of
this optimization problem is E =

∑
s∈f |s|. �

Proof of Proposition 10 We prove this proposition by
showing an example function. Function fa(X,Y,Z) =[∨m

i=1(
∧i−1

j=1 ¬Yj) ∧ Yi ∧ ¬Xi ∧ Zi

]
∨ [

∧m
i=1 ¬Yi] has 3m

variables. Consider the vtree in the Fig. 5(a), where the vari-
able orders over X, Y, and Z are arbitrary. The compressed
(XY,Z)-partition of the function that respects the root vtree
node is

m⋃
i=1

{(
i−1∨
j=1

¬Yj ∧ Yi ∧ ¬Xi, Zi

)}

∪
{(

m∧
i=1

¬Yi,
)}

∪
{(

m∨
i=1

(
i−1∧
j=1

¬Yj

)
∧ Yi ∧Xi,⊥

)}
.

Following the result of (Van den Broeck and Darwiche
2015), each prime and sub in the first and second group
can be represented by ZSDDs with O(m) nodes. On the
other hand, the prime of the last group results in a ZSDD
with Ω(2m) nodes. Since implicit partitioning ignores the
last element, the size of a ZSDD with implicit partitioning is
O(m2), otherwise Ω(2m). �

Proof of Proposition 11 CT can be performed on ZS-
DDs with an algorithm that is very close to that for d-
DNNFs (Darwiche 2001). Since the model count for any el-
ement of the form (α,⊥) is always zero, we can also count
the number of models in linear time with the size of ZSDDs
with implicit partitioning. Polytime ME can be performed
by a bottom-up process similar to CT.

SE can be performed in the procedure shown in (Pipat-
srisawat and Darwiche 2008), i.e., taking the intersection
between two ZSDDs and then counting models. Since in-
tersection can be performed in polytime even when exploit-
ing implicit partitioning, both ZSDD and Z+I support SE
in polytime, which means that ZSDD and Z+I support EQ,
CO, VA, IM, and CE, since these queries can be answered
by using SE. �

Proof of Proposition 12 We first consider uncompressed
cases. Alg. 1 can perform ∩BC and ∪BC in polytime
for vanilla ZSDDs. When we employ implicit partitioning,
∩BC can be computed in polytime, but ∪BC can result in
exponentially large uncompressed ZSDDs. Consider func-
tion fa used above and g(X,Y,Z,W ) = W , both of which
respect the vtree in Fig. 5 (b). Since the union operation ∪
for families of sets corresponds to the Boolean operation ∨,
we compute the union by fa ∨ g. The (XY,ZW )-partition
of fa ∨ g is
m⋃
i=1

{(
i−1∨
j=1

¬Yj ∧ Yi ∧ ¬Xi, Zi ∨W

)}

∪
{(

m∧
i=1

¬Yi,
)}

∪
{(

m∨
i=1

(
i−1∧
j=1

¬Yj

)
∧ Yi ∧Xi,W

)}
.

Since the prime in the third group is a ZSDD whose size is
Ω(2m), ∪BC is not polytime for Z+I and Z+I(C).

Complement C̄ of a compressed and trimmed ZSDD is at
most km times larger than the original ZSDD, where m is
the number of vtree nodes, and k is a constant. This bound
derives from the fact that the size of a compressed, lightly
trimmed, and normalized ZSDD is at most km times larger
than that of a compressed and trimmed ZSDD, and the size
of the complement of a normalized ZSDD is almost equal
to that of the original ZSDD. Thus it is polytime for uncom-
pressed ZSDDs. Furthermore, as shown in (Darwiche 2011),
C̄ of compressed partition {(p1, s1), . . . , (pn, sn)} is com-
pressed partition {(p1,¬s1), . . . , (pn,¬sn)}. Therefore, C̄
is also polytime for compressed ZSDDs. On the other hand,
if a Z+I represents fa in the proof of Prop.10, then its com-
plement is exponentially large. Therefore C̄ is not polytime
for Z+I and Z+I(C).

The proof for OC follows from Proposition 6. The re-
sult is also true for Z+I and Z+I(C). CH can be performed
using Alg. 2, and the obtained result is also syntactically
a ZSDD since the primes in the partitions of the obtained
ZSDD consistent, exhaustive and mutally exclusive. Fur-
thermore, since the subs are compressed after Change, CH
is polytime for compressed ZSDD.
CD can be performed with a recursive procedure similar

to Change, which differs from Change in the procedure
for terminal ZSDDs (Alg. 2 line 1, 2). It is a polytime oper-
ation for uncompressed ZSDD, and also for Z+I since con-
ditioning ⊥ | � = ⊥ for any literal � and it does not change
the size of Z+I.

Since support for SFO follows from the support for CD
and ∪BC, ZSDD supports SFO. Given any two Z+I β and
γ that respect the same vtree T . We add a new varaible L
to vtree T to make a vtree shown in Fig. 5 (c). Given Z+I
alpha = (L∧ β)∨ (¬L∧ γ) that respects the vtree, and we
forget L from α results in β ∨ γ, and it becomes exponen-
tially larger than α when β ≡ fa and γ ≡ g, thus Z+I does
not support SFO.

The negative results for FO, ∪C and ∩C follows from
the results for ZDDs. The proofs for negative results for
∪BC, ∪BC, CD and SFO whose outputs are compressed
are identical to that shown in (Van den Broeck and Darwiche
2015). �
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