
Verifying ConGolog Programs on Bounded Situation Calculus Theories∗

Giuseppe De Giacomo
Sapienza Univ. Roma

Rome, Italy
degiacomo@dis.uniroma1.it

Yves Lespérance
York University

Toronto, ON, Canada
lesperan@cse.yorku.ca

Fabio Patrizi
Free Univ. Bozen/Bolzano

Bolzano, Italy
patrizi@inf.unibz.it

Sebastian Sardina
RMIT University

Melbourne, Australia
sebastian.sardina@rmit.edu.au

Abstract

We address verification of high-level programs over situation
calculus action theories that have an infinite object domain,
but bounded fluent extensions in each situation. We show
that verification of μ-calculus temporal properties against
ConGolog programs over such bounded theories is decidable
in general. To do this, we reformulate the transition seman-
tics of ConGolog to keep the bindings of “pick variables”
into a separate variable environment whose size is naturally
bounded by the number of variables. We also show that for
situation-determined ConGolog programs, we can compile
away the program into the action theory itself without loss of
generality. This can also be done for arbitrary programs, but
only to check certain properties, such as if a situation is the
result of a program execution, not for μ-calculus verification.

Introduction

Most work on verification of agent systems/programs is
restricted to finite state systems (Baier and Katoen 2008;
Lomuscio, Qu, and Raimondi 2009). In AI, starting from
the seminal work in (De Giacomo, Ternovskaia, and Reiter
1997) and (Claßen and Lakemeyer 2008), there has been
growing interest in verifying agent programs with a first-
order state representation as in the situation calculus. Re-
cently, (De Giacomo, Lespérance, and Patrizi 2012) have
shown that verification of μ-calculus temporal properties
over bounded action theories in the situation calculus is de-
cidable. Such theories have an infinite object domain, but the
number of object tuples that belong to fluents in each situa-
tion remains bounded. Nonetheless, they deal with infinitely
many objects over the course of an infinite execution.

On top of action theories, high level programming lan-
guages, such as ConGolog (De Giacomo, Lespérance, and
Levesque 2000), have been introduced to express semanti-
cally rich agent behaviors. ConGolog programs include con-
ditionals, loops, and concurrency as usual programming lan-

∗We acknowledge the support of Sapienza 2015 project “Im-
mersive Cognitive Environments,” the NSERC of Canada, Provin-
cia Autonoma di Bolzano (under project VeriSynCoPateD), and a
Sapienza 2014 Visiting Grant (for the last author).
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

guages, but their atomic actions are specified in terms of
preconditions and effects defined in a situation calculus ac-
tion theory and their tests involve fluents whose changing
value is specified by the theory. Notably, such programs may
be highly nondeterministic and allow many possible execu-
tions. In particular, a program may nondeterministically pick
an object from the infinite domain and execute some actions
on it. The decidability results for verification of bounded ac-
tion theories do not apply to ConGolog programs, since un-
like domain objects, which are infinitely many but unstruc-
tured, programs are unbounded terms defined inductively.
So a natural question is whether such results can be extended
to deal with ConGolog programs as well, to check properties
like termination, safety, total correctness, etc. In this paper,
we show that this is indeed the case: verification of first-
order μ-calculus temporal properties against ConGolog pro-
grams over bounded action theories is decidable.

To obtain this result we develop a new transition seman-
tics for ConGolog programs, which is shown equivalent to
the original one, that keeps bindings of nondeterministically
picked object variables in a separate “program environment”
whose size in terms of number of pick variables is naturally
bounded. Differently from the original semantics, the set of
remaining programs (without assignment to the pick vari-
ables, now separated) that can be produced in any execu-
tion of a given initial program is in fact finite, and can be
viewed as program counter values. Thus there is no need to
define a complex encoding of programs as terms in the situa-
tion calculus as in the original ConGolog semantics (De Gia-
como, Lespérance, and Levesque 2000). Leveraging on this
new semantics, we can adapt the approach of (De Giacomo,
Lespérance, and Patrizi 2012; 2016) to show decidability of
verification of temporal properties. With the new semantics
it becomes clear that if the action theory is bounded, then
every reachable program configuration (formed by the re-
maining program, the variable environment state, and the
situation) is also bounded.

This main result is complemented by a second one:
for programs that are “situation-determined” (De Giacomo,
Lespérance, and Muise 2012), we can compile the program
into the action theory itself without loss of generality, so
that the executable situations become those that can be gen-

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

950

erated by executing the program. In this case, we can ver-
ify temporal properties of the program by using the original
(De Giacomo, Lespérance, and Patrizi 2012; 2016) verifica-
tion method on such a compiled theory. For non-situation-
determined programs, while the compiled theory cannot be
used for μ-calculus verification, it can still be used to check
properties such as existence of a terminating execution of
the program as in (Fritz, Baier, and McIlraith 2008).

Preliminaries

The situation calculus (McCarthy and Hayes 1969; Reiter
2001) is a logical language for representing and reasoning
about dynamic worlds with three sorts: objects, actions, and
situations. All changes to the world are the result of actions,
which are terms in the logic. A situation term denotes a se-
quence of actions: the constant S0 denotes the initial situa-
tion (no action has yet been done), whereas term do(a, s) de-
notes the successor situation resulting from performing ac-
tion a in situation s. Predicates whose extension vary from
situation to situation are called fluents, and are denoted by
symbols taking a situation term as their last argument (e.g.,
Holding(x, s)), while the other arguments are of sort object.
We assume that there are no functions other than constants
and no predicates other then fluents.

Within this language, one can formulate action theories
to describe how the world changes as a result of actions.
A well studied and popular type of such theories are ba-
sic action theories (Reiter 2001). A basic action theory D
is a collection of first-order axioms (plus a domain indepen-
dent second-order characterization of situation terms) con-
veniently specifying (in terms of size and computational
properties): (i) actions’ preconditions, by characterizing spe-
cial predicate Poss(a, s) through precondition axioms, cap-
turing when action a is executable in situation s; (ii) ac-
tions’ effects and non-effects (i.e., frame problem) by the
so-called successor state axioms; and (iii) the world’s initial
state. We assume D to have a finite number of action types,
each of which takes a tuple of objects as arguments, and to
have countably infinitely many object constants, on which
we adopt the unique name assumption.1 Notice that the lat-
ter implies an infinite object domain.

To represent and reason about complex actions or pro-
cesses obtained by executing atomic actions, high-level pro-
gramming languages have been defined. Here we concen-
trate on ConGolog (De Giacomo, Lespérance, and Levesque
2000), which includes the following constructs:

δ ::= α | ϕ? | δ1; δ2 | if ϕ then δ1 else δ2 | while ϕ do δ
δ1|δ2 | πx.δ | δ1‖δ2

In the above, α is an action term, possibly with param-
eters, and ϕ is situation-suppressed formula, that is, one
with all situation arguments in fluents suppressed. As usual,
we denote by ϕ[s] the situation calculus formula obtained
from ϕ by restoring the situation argument s into all flu-
ents in ϕ. Program δ1|δ2 nondeterministically chooses be-

1In (De Giacomo, Lespérance, and Patrizi 2012), standard
names were assumed. This assumption is dropped in (De Giacomo,
Lesperance, and Patrizi 2016).

tween programs δ1 and δ2. Program πz.δ(z) nondeterminis-
tically “picks” an object d to bind to variable z and then ex-
ecutes program δ(z) with z assigned to d;2 e.g., the program
while ∃x.¬OnTable(x) do πz.¬OnTable(z)?; table(z)
repeatedly picks a block that is not on the table and tables
it, until all blocks are on the table. Program δ∗ performs δ
zero or more times. δ1‖δ2 expresses the concurrent execu-
tion (interpreted as interleaving) of programs δ1 and δ2. In
this paper we do not allow for recursive procedures, though
we allow for a form of (tail) recursion through ∗ and while.
We also leave out concurrent iteration δ||. Both of these con-
structs require handling unbounded information (stack for
recursive procedures and iterated duplication of the program
terms for concurrent iteration) even without data.

The semantics of ConGolog is specified in terms of single-
step transitions, using two predicates: (i) Trans(δ, s, δ′, s′),
which holds if one step of program δ in situation s may
lead to situation s′ with δ′ remaining to be executed; and (ii)
Final(δ, s), which holds if program δ may legally terminate
in situation s. Both are defined inductively by axioms, e.g.,
Trans(πz.δ(z), s, δ′, s′) ≡ ∃z.Trans(δ(z), s, δ′, s′). Here,
we follow (Claßen and Lakemeyer 2008; De Giacomo,
Lespérance, and Pearce 2010), in which the test construct
ϕ? yields no transition and is final when satisfied. This re-
sults in a synchronous test construct which does not allow
interleaving (every transition involves the execution of an
action). Given this, if and while can be treated as abbre-
viations (if φ then δ1 else δ2)

.
= (φ?; δ1 | ¬φ?; δ2) and

(while φ do δ)
.
= ((φ?; δ)∗;¬φ?). Below, we denote by C

the axioms defining the ConGolog programming language.

Trans and Final with Variable Environments

Since we have infinitely many objects to bind pick variables
with, the number of remaining programs for πx.δ(x) is typ-
ically infinite. We can better understand the nature of such
remaining programs by separating the program terms them-
selves from the assignments to pick variables. Let δ0 be the
initial program and assume wlog that all pick variables are
renamed apart. The number n of such variables is indeed fi-
nite. For convenience let’s assume a predefined ordering on
such variables. We can then introduce an environment term
�x = 〈x1, . . . , xn〉, consisting of a tuple of object terms in
which each component i stores the current value xi of the i-
th pick variable of δ0. The tuple will change over time as the
program executes, and its initial content is arbitrary given
that δ0 is always closed wrt pick variables. Importantly, the
environment �x can denote infinitely many tuples of values
along a computation; however, at each moment of the com-
putation, the environment term, consisting of a single tuple
of arity n, maintains only a bounded number (smaller that
the size of δ0) of values.

By keeping the values assigned to pick variables in the
environment, we can avoid substituting them in the pro-
gram itself. As a result, the set of all possible remaining
programs is finite. Specifically, it is possible to define in-
ductively the syntactic closure Γδ0 of the program δ0, as fol-

2Given that we have finitely many action types, wlog, we disal-
low pick variables to range over actions directly.

951

lows: (1) δ0, nil ∈ Γδ0 ; (2) if δ1; δ2 ∈ Γδ0 and δ′1 ∈ Γδ1 ,
then δ′1; δ2 ∈ Γδ0 and Γδ2 ⊆ Γδ0 ; (3) if δ1|δ2 ∈ Γδ0 , then
Γδ1 ,Γδ2 ⊆ Γδ0 ; (4) if πz.δ ∈ Γδ0 , then Γδ ⊆ Γδ0 ; (5) if
δ∗ ∈ Γδ0 , then δ; δ∗ ∈ Γδ0 ; (6) if δ1‖δ2 ∈ Γδ0 and δ′1 ∈ Γδ1
and δ′2 ∈ Γδ2 , then δ′1‖δ′2 ∈ Γδ0 .
Theorem 1 The syntactic closure Γδ0 of a ConGolog pro-
gram δ0 is linear in the size of δ0 if the concurrency operator
does not occur, and exponential otherwise.
Note that the finite set of “program strings” in Γδ0 can be
viewed as values of a program counter over program δ0.

Given an initial program δ0, a complete configuration is
now formed by a triple (δ, �x, s), where δ ∈ Γδ0 , �x is an
environment for δ0, and s is the current situation. We can
inductively define Trans and Final over such configurations:

Trans(α, �x, s, δ′, �x′, s′) ≡
s′ = do(α[�x], s) ∧ Poss(α[�x], s) ∧ δ′ = nil ∧ �x′ = �x

Trans(ϕ?, �x, s, δ′, �x′, s′) ≡ False

Trans(δ1; δ2, �x, s, δ′, �x′, s′) ≡
Trans(δ1, �x, s, δ′1, �x

′, s′) ∧ δ′ = δ′1; δ2 ∨
Final(δ1, �x, s) ∧ Trans(δ2, �x, s, δ′, �x′, s′)

Trans(δ1|δ2, �x, s, δ′, �x′, s′) ≡
Trans(δ1, �x, s, δ′, �x′, s′) ∨ Trans(δ2, �x, s, δ′, �x′, s′)

Trans(πz.δ, �x, s, δ′, �x′, s′) ≡ ∃d.Trans(δ, �xz
d, s, δ

′, �x′, s′)
Trans(δ∗, �x, s, δ′, �x′, s′) ≡ Trans(δ, �x, s, δ′′, �x′, s′) ∧ δ′ = δ′′; δ∗

Trans(δ1‖δ2, �x, s, δ′, �x′, s′) ≡
Trans(δ1, �x, s, δ′1, �x

′, s′) ∧ δ′ = δ′1‖δ2 ∨
Trans(δ2, �x, s, δ′2, �x

′, s′) ∧ δ′ = δ1‖δ′2
Trans(nil, �x, s, δ′, �x′, s′) ≡ False

Final(α, �x, s) ≡ False

Final(ϕ?, �x, s) ≡ ϕ[�x][s]

Final(δ1; δ2, �x, s) ≡ Final(δ1, �x, s) ∧ Final(δ2, �x, s)
Final(δ1|δ2, �x, s) ≡ Final(δ1, �x, s) ∨ Final(δ2, �x, s)
Final(πz.δ, �x, s) ≡ ∃d.Final(δ, �xz

d, s)

Final(δ∗, �x, s) ≡ True

Final(δ1‖δ2, �x, s) ≡ Final(δ1, �x, s) ∧ Final(δ2, �x, s)
Final(nil, �x, s) ≡ True

Above, we use the notation α[�x], ϕ[�x], and δ[�x] to de-
note the action term, formula, and program, resp., ob-
tained from the “strings” α, ϕ, and δ, resp., by re-
placing all free pick variables with the object terms to
which they are bound in environment �x. We use �xz

d
to denote the environment term obtained from �x by re-
placing the element corresponding to pick variable z
with d. Note how the new axiomatization does not sub-
stitute values of the pick variables into the remaining
program but keeps them in the environment, e.g., we
might have Trans(πx.πy.A(x, y);B(x, y), 〈O25, O13〉, S0,
nil;B(x, y), 〈O2, O5〉, do(A(O2, O5), S0)).

Let Cnew be the new axioms above for ConGolog.
Theorem 2 Let D be a situation calculus action theory, δ0
a ConGolog program, and Γδ0 its syntactic closure. Then,
for every model M of D ∪ Cnew and program δ ∈ Γδ0 :

{δ′ | M |= ∃�x, �x′, s, s′.Trans(δ, �x, s, δ′, �x′, s′)} ⊆ Γδ0 .

This theorem guarantees that all programs that δ0 can evolve
into, according to the new environment-based definition of
Trans and Final, must be in its syntactic closure Γδ0 . It fol-
lows then that we only need a fixed number of program sym-
bols (depending only on the original program δ0) to denote

all programs in a computation. This is very different from
the standard definition of Trans and Final discussed in the
preliminaries, which relies on a complex second-order en-
coding of programs as terms (De Giacomo, Lespérance, and
Levesque 2000). Nonetheless, the new semantics is equiva-
lent to it:

Theorem 3 Let D be a situation calculus action theory and
δ0 a ConGolog program. Then, for every δ, δ′ ∈ Γδ0 , theory
D ∪ C ∪ Cnew entails the following equivalences:

Trans(δ, �x, s, δ′, �x′, s′) ≡ Trans(δ[�x], s, δ′[�x′]s′),

Final(δ, �x, s) ≡ Final(δ[�x], s).

To fully appreciate this theorem one should recall Theorem 2
of (De Giacomo, Lespérance, and Levesque 2000) that says
that every model M of D can be univocally extended to a
model of D ∪ C. The same is true for Cnew . Hence the se-
quences of transitions that δ0 can perform from S0 are fully
determined and coincide in the two semantics.

We finally observe that by unfolding recursively the new
Trans and Final we get pure first-order situation calculus
formulas in which program terms and enviroment terms dis-
appear. Notably, this means that the new Trans and Final
could be treated as abbreviations and the introduction of
program and enviroment terms could be avoided altogether,
analogously to what we have for Do in Golog (Levesque
et al. 1997; Fritz, Baier, and McIlraith 2008). Moreover
Final(δ, �x, s) results into a formula that is uniform in situa-
tion s. This is also the case for Trans(δ, �x, s, δ′, �x′, s′) when
s′ is instantiated to a situation term of the form do(a, s); in-
deed s′ only occurs in equalities of the form s′ = do(α, s),
whose instantiation becomes equivalent to a = α. We ex-
ploit this observation in the last part of the paper.

Program Verification for Bounded Theories

The verification logic. For expressing temporal proper-
ties, we adopt a variant of the μ-calculus, one of the most
powerful temporal logics, subsuming both linear time log-
ics, such as LTL, and branching time logics such as CTL
and CTL* (Emerson 1996). In particular we use a first-order
variant of it, called μL, analogous to that in (De Giacomo,
Lespérance, and Patrizi 2012) with the difference of having
an explicit predicate for Final:

Φ ::= Final | ϕ | ¬Φ | Φ1 ∧ Φ2 | 〈−〉Φ | Z | μZ.Φ
where ϕ is an arbitrary closed uniform situation-suppressed
(i.e., with all situation arguments in fluents suppressed) sit-
uation calculus FO formula, and Z is a second-order (0-ary)
predicate variable.3 We shall use the standard abbreviations,
namely, Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2), [−]Φ = ¬〈−〉¬Φ, and
νZ.Φ = ¬μZ.¬Φ[Z/¬Z]. Formula 〈−〉Φ states that there

3We assume, wlog, that ϕ does not mention action terms. In uni-
form formulas, actions can only appear in equality atoms, which,
assuming finite action types, can be replaced with equalities over
the action arguments, see (De Giacomo, Lespérance, and Patrizi
2012). As usual in the μ-calculus, formulas of the form μZ.Φ must
satisfy syntactic monotonicity, i.e., every occurrence of Z in Φ
must be within the scope of an even number of negation symbols.

952

is a successor state where Φ holds and, hence, [−]Φ that
Φ holds in all successor states. The fixpoint formulas μZ.Φ
and νZ.Φ denote respectively the least and the greatest fix-
point of the formula Φ, seen as a predicate transformer λZ.Φ
(their existence is guaranteed by the syntactic monotonicity
of Φ), and are used to express typical program properties;
e.g., μZ.Final ∨ [−]Z expresses termination of the program
on all possible runs, while μZ.Final ∨ 〈−〉Z expresses pos-
sible termination of the program by suitably making nonde-
terministic choices. Instead νZ.ϕ ∧ [−]Z expresses safety,
i.e., that ϕ always holds along the execution of the program,
and νZ.(Final ⊃ ϕ) ∧ [−]Z expresses a form of partial cor-
rectness: when the program terminates, ϕ holds; by further
requiring termination, we get total correctness.

Formulas of μL are interpreted on transition systems (TS),
over the situation-suppressed fluents of a basic action theory
D, of the form T = 〈Δ, Q, q0,→, L,QF 〉, where: (1) Δ
is the object domain; (2) Q is the set of states; (3) q0 ∈ Q
is the initial state; (4) →⊆ Q×Q is the transition relation;
(5) L is a labeling function mapping states in Q into a FO in-
terpretation of the situation-suppressed fluents of D over Δ,
i.e., for q ∈ Q, L(q) = 〈Δ, ·L(q)〉, with Δ being the inter-
pretation domain and ·L(q) a function assigning an extension
FL(q) over Δ to every fluent F of D; and (6) QF ⊆ Q is
the set of final states. To evaluate formulas with predicate
free variables, we introduce a predicate variable valuation v,
mapping a predicate variable Z into subsets of Q. The exten-
sion function (·)Tv , defined inductively, maps μL formulas
into subsets of Q (those where the formula is true):

(Final)Tv = QF ;
(ϕ)Tv = {q ∈ Q | L(q) |= ϕ};
(¬Φ)Tv = Q− (Φ)Tv ;
(Φ1 ∧ Φ2)

T
v = (Φ1)

T
v ∩ (Φ2)

T
v

(〈−〉Φ)Tv = {q ∈ Q | q′ ∈ Q, q → q′, q′ ∈ (Φ)Tv };
(Z)Tv = v(Z);
(μZ.Φ)Tv =

⋂{E ⊆ Q | (Φ)Tv[Z/E] ⊆ E}.

Here, v[Z/E] denotes the valuation obtained from v by as-
signing the set E to Z. Note that the extension of closed
(wrt predicate variables) μL formulas does not depend on
v. A TS T satisfies a closed μL-formula Φ, i.e., T |= Φ, if
q0 ∈ (Φ)Tv , for any v. From now on we will consider only
closed μL formulas, the ones of interest in verification.

A fundamental property of the μ-calculus is bisim-
ulation invariance, saying that bisimilar TSs are in-
distinguishable through μ-formulas (Stirling 2001). In
our case bisimulation can be defined as follows. Given
two TSs T1 = 〈Δ1, Q1, q01,→1, L1, QF1〉 and T2 =
〈Δ2, Q2, q02,→2, L2, QF2〉 over the fluents and the con-
stants of a basic action theory D, we say that a relation
B ⊆ Q1 × Q2 is a bisimulation between T1 and T2, if
〈q1, q2〉 ∈ B implies that: (1) q1 ∈ QF1 iff q2 ∈ QF2;
(2) L1(q1) and L2(q2) are isomorphic wrt the interpretation
of fluents and constants (written L1(q1) ∼ L2(q2)); (3) for
every transition q1 →1 q′1 of T1, there exists a transition
q2 →2 q′2 of T2 s.t. 〈q′1, q′2〉 ∈ B; and (4) for every transition
q2 →2 q′2 of T2, there exists a transition q1 →1 q′1 of T1

s.t. 〈q′1, q′2〉 ∈ B. We say that a state q1 ∈ Q1 bisimulates a
state q2 ∈ Q2, written q1 ≈ q2, if there is a bisimulation B

s.t. 〈q1, q2〉 ∈ B. Relation ≈ itself is a bisimulation, in fact,
the largest one wrt set inclusion, and is also an equivalence
relation. We say that T1 is bisimilar to T2, written T1 ≈ T2,
if q01 ≈ q02. Bisimulation invariance can be shown as in (De
Giacomo, Lespérance, and Patrizi 2012; 2016):
Theorem 4 Let T1 and T2 be two TS such that T1 ≈ T2.
Then T1 |= Φ iff T2 |= Φ, for every μL formula Φ.
Bisimulation invariance opens for the possibility for check-
ing an infinite TS T against a μL formula Φ, using a finite
TS T ′. Indeed, if T ′ ≈ T , then one can check T ′ |= Φ in-
stead of T |= Φ. The fact is that, by finiteness of T ′, the
former check can be easily performed by recursive applica-
tion of the extension function (·)Tv . Thus, if one can come up
with a finite T ′ bisimilar to the (infinite) TS “generated” by
a program, then the verification of the program is decidable.

Transition systems generated by ConGolog programs.
Let D be a basic action theory, C the ConGolog axioms, and
M a model of D. Exploiting the fact that M can univocally
be extended to interpret both C and Cnew , we slightly abuse
notation and consider M as interpreting them too. Let S be
the set of situations in M and Π be the set of programs in
M . Let us define the TS T o

δ0,M
that captures exactly the con-

figurations, formed by a program and a situation, that are
“reachable” from the initial one (δ0, S0) as per Trans’s and
Final’s extensions in M . Formally, the TS generated by a
program δ0 (starting in S0) over M according to C is a tuple
T o
δ0,M

= 〈Δ, Qo, qo0,→o, Lo, Qo
F 〉, where: (1) Δ is M ’s

object sort; (2) Qo ⊆ Π × S; (3) qo0 = 〈δ0, S0〉; (4) Qo

and →o are defined by mutual induction: qo0 ∈ Qo and if
〈δ, s〉 ∈ Qo, then 〈δ′, s′〉 ∈ Qo and 〈δ, s〉 →o 〈δ′, s′〉, for all
〈δ′, s′〉 s.t. M |= Trans(δ, s, δ′, s′); (5) for every fluent F of
D, state 〈δ, s〉 ∈ Qo, and objects �o ∈ �Δ: Lo(〈δ, s〉) |= F (�o)
iff M |= F (�o, s); and (6) 〈δ, s〉 ∈ Qo

F iff M |= Final(δ, s).
Next, using the ConGolog environment-based semantic

characterization above, we define the TS generated by a pro-
gram δ0 (starting in S0) over M according to Cnew as the
TS Tδ0,M = 〈Δ, Q, q0,→, L,QF 〉 s.t.: (1) Δ is M ’s ob-
ject sort; (2) Q ⊆ Γδ0 × Δn × S , where n is the num-
ber of pick variables in δ0; (3) q0 = 〈δ0, �x0, S0〉, where
�x0 is arbitrary; (4) Q and → are defined by mutual in-
duction: q0 ∈ Q; if 〈δ, �x, s〉 ∈ Q, then 〈δ′, �x′, s′〉 ∈ Q
and 〈δ, �x, s〉 → 〈δ′, �x′, s′〉, for all 〈δ′, �x′, s′〉 s.t. M |=
Trans(δ, �x, s, δ′, �x′, s′); (5) for every fluent F of D, state q =

〈δ, �x, s〉 ∈ Q, and objects �o ∈ �Δ, L(q) |= F (�o) iff M |=
F (�o, s); and (6) 〈δ, �x, s〉 ∈ QF iff M |= Final(δ, �x, s).
Note that we are not using the infinite program sort Π of
M , but only the finitely many program symbols/counters in
Γδ0 (which is independent from M). The following result
relates the two TSs:
Theorem 5 Let M be a model of D. Then, for every
ConGolog program δ0, we have that T o

δ0,M
≈ Tδ0,M .

PROOF (SKETCH). By exploiting Theorem 3, it can be
shown that the following relation B is a bisimulation: B =
{〈〈δ, �x, s〉, 〈δ[�x], s〉〉 | 〈δ, �x, s〉 ∈ Q, 〈δ[�x], s〉 ∈ Qo}
Checking programs over bounded action theories. A pro-
gram ConGolog δ0 over D satisfies a μL formula Φ, writ-

953

ten (δ0,D ∪ C) |= Φ, if for all models M of D (which
univocally extend to models of D ∪ C), it is the case that
T o
δ0,M

|= Φ. In general, verifying (δ0,D ∪ C) |= Φ is unde-
cidable (even under complete information), as it can be eas-
ily shown by reduction from the halting problem. However,
we show next that the problem is decidable for ConGolog
programs running over bounded action theories (De Gia-
como, Lespérance, and Patrizi 2012). An action theory D is
bounded by a natural number b if, at every executable situa-
tion (i.e., reachable through a finite sequence of executable
actions), the number of distinct object tuples occurring in
the extension of each fluent of D is bounded by b. Thus,
the interpretation of a fluent at every situation does not use
more than b distinct object tuples, though these change from
situation to situation and are collectively infinitely many.

The crux of the decidability result consists in the
possibility of abstracting the infinite TS Tδ0,M =
〈Δ, Q, q0,→, L,QF 〉 into a TS with a finite number of
states Fδ0,M = 〈Δ, Qf , qf0 ,→f , Lf , Qf

F 〉 that is bisimilar
to Tδ0,M , by using Procedure 1.

Procedure 1 Construction of Fδ0,M .

Qf := {q0}; qf0 := q0; →f := ∅; Lf (q0) := L(q0); Qf
F := ∅;

if (q0 ∈ QF) then Qf
F := {q0};

repeat
pick q = (δ, �x, s) ∈ Qf ;
for all (q′ = (δ′, �x′, s′) | q → q′ in Tδ0,M)

if (∃q′′ = (δ′, �x′′, s′′) ∈ Qf | L(q′) ∼ Lf (q′′)) then

→f :=→f ∪{〈q, q′′〉};
else {Qf := Qf � {q′}; Lf (q′) := L(q′);

→f :=→f ∪{〈q, q′〉} }
if (q′ ∈ QF) then Qf

F := Qf
F � {q′}

until (transition relation →f does not change any more)

Intuitively, Fδ0,M is obtained through a visit of Tδ0,M , from
q0, by redirecting current transition q → q′ to q → q′′,
whenever q′′ has already been visited and its label is isomor-
phic (wrt fluent and constant interpretations) to that of q′.

Note that, as a result of the construction above, Fδ0,M

cannot contain distinct states with isomorphic labels. Thus,
since with a bounded number of distinct objects there exists
only finitely many equivalence classes of isomorphic inter-
pretations (called isomorphism types), it follows that Fδ0,M

contains only finitely many states. The boundedness of D
also implies that checking whether two interpretations are
isomorphic is decidable. Moreover, when checking whether
q → q′ or q ∈ QF , we do not need to construct Tδ0,M ex-
plicitly. Indeed, for the (known) interpretation L(q) of the
state q currently visited, we have that: (i) the truth values
of fluents after an action (as defined by successors state ax-
ioms) are fully determined by the truth values in the current
state, i.e., by L(q); and (ii) action types are finitely many.
Thus, we can compute Trans and Final directly from L(q)
and the successor state axioms for each possible action type.
Finally, evaluating FO formulas against L(q) is decidable.
Indeed, it can be reduced to evaluating a formula on the in-
terpretation of fluents given by L(q) (Libkin 2007), which
contains finitely many (in fact, bounded) elements, com-

pletely disregarding the remaining (infinite) object domain.
Hence, each step of the procedure is computable. For termi-
nation, we observe that the for all loop need not iterate over
all (the infinitely many) states. Indeed, as discussed above,
since isomorphic states behave in the same way, it is suffi-
cient to consider only one representative per isomorphism
type. As there are finitely many of them, the loop can be
completed in a finite number of steps. Hence Fδ0,M can be
effectively (symbolically) constructed. It can be shown that
Fδ0,M is indeed bisimilar to Tδ0,M which in turn is bisimilar
to T o

δ0,M
. Using these results we prove that:

Theorem 6 For every ConGolog program over a situation
calculus bounded action theory D and every μL formula,
checking (δ0,D ∪ C) |= Φ is decidable.
PROOF (SKETCH). Under complete information on S0, all
models of D are isomorphic wrt the interpretation of con-
stants and fluents, and differ only on the number of objects
(which needs to be at least countably infinite) in the ob-
ject domain. All such models M generate TSs T o

δ0,M
that

are bisimilar. Thus, we can elect one of them, M ′, and ex-
ploit the fact that T o

δ0,M ′ ≈ Tδ0,M ′ ≈ Fδ0,M ′ , together with
bisimulation invariance (Theorem 4), to check Φ against
Fδ0,M ′ , which is finite-state and can be checked with stan-
dard model checking techniques. Under incomplete infor-
mation, since D0 is bounded, there are only finitely many
isomorphically distinct types for models of D0 wrt the in-
terpretation of constants and fluents. Hence, we can take a
representative for each isomorphism type, and proceed as in
the complete information case.

Compiling Programs into Action Theories
Next we focus on situation-determined ConGolog pro-
grams (De Giacomo, Lespérance, and Muise 2012)
for which the remaining program is determined by
the resulting situation: SituationDetermined(δ, s) .

=
∀s′, δ′, δ′′.Trans∗(δ, s, δ′, s′) ∧ Trans∗(δ, s, δ′′, s′) ⊃ δ′ =
δ′′, where Trans∗ denotes the reflexive transitive closure of
Trans. For example, assuming all actions are executable,
program (a; b) | (a; c) is not situation-determined in
situation S0, as it is not possible to determine the remaining
program in do(a, S0), whereas program a; (b | c) is.
Compiling situation-determined programs. Let D be a
situation calculus basic action theory and δ0 a situation de-
termined ConGolog program. We show how to compile δ0
into a variant theory Dδ0 of D that includes a fluent to store
the program counter and environment, stepping through the
finite set of possible remaining programs of δ0 (which must
belong to the syntactic closure Γδ0 of δ0).

We introduce a new fluent PCEnv(δ, �x, s), where δ is the
current program (counter value), �x is a tuple of objects as-
signed to the pick variables, and s is the current situation.
Its successor state axiom is as follows (see below regarding
quantification on programs):

PCEnv(δ′, �x′, do(a, s)) ≡
∃δ, �x.PCEnv(δ, �x, s) ∧ ΦTrans(δ, �x, s, δ

′, �x′, do(a, s)),

where ΦTrans(δ, �x, s, δ
′, �x′, do(a, s)) is the uni-

form situation calculus formula equivalent to

954

Trans(δ, �x, s, δ′, �x′, do(a, s)) discussed before. We maintain
the same successor state axioms for all the other fluents
appearing in the original theory. As for the precondition
axioms, we replace them with the following one:

Poss(a, s) ≡ ∃δ, δ′, �x, �x′.PCEnv(δ, �x, s) ∧
ΦTrans(δ, �x, s, δ

′, �x′, do(a, s)),

which states that an action is possible if the current program
can do it (in the Trans abbreviation we still use the right-
hand side of the original precondition axioms).

The initial situation description is as before with the addi-
tion of fact sentence PCEnv(δ0, �x0, S0), for some arbitrary
tuple of object values �x0. Finally, we introduce an abbrevia-
tion to denote whether a situation s is final, i.e., the situation-
determined program δ0 can be considered terminated in s:

Final(s) .
= ∃δ, �x.PCEnv(δ, �x, s) ∧ ΦFinal(δ, �x, s)

where ΦFinal(δ, �x, s) is the uniform situation calculus for-
mula equivalent to Final(δ, �x, s). Note that when we quan-
tify over programs, e.g., in the above formulas, we are ac-
tually quantifying over the finite domain Γδ0 , hence we can
actually replace such quantifications with finite disjunctions
(for ∃) and conjunctions (for ∀).

We can prove that the new basic action theory Dδ0—the
compilation of situation-determined ConGolog program δ0
into D—generates exactly the same configurations as those
generated by the program δ0 running over D. In fact, using
the results in (De Giacomo, Lespérance, and Patrizi 2012),
we can verify a μL property Φ of program δ0 running over
the theory D by verifying Φ directly over the compiled ac-
tion theory Dδ0 (interpreting Final as abbreviation above).
Theorem 7 Let D be a basic action theory, δ0 a situation-
determined ConGolog program, and Dδ0 as above. Then, for
every μL formula Φ: (δ0,D ∪ C) |= Φ iff Dδ0 |= Φ.

In (De Giacomo, Lespérance, and Patrizi 2012), μL formu-
las are interpreted over the tree of executable situations (e.g.,
〈−〉Φ holds in a situation if there exists an executable action
in it such that Φ holds afterwards). But, if the program is
situation-determined, then there is a unique program config-
uration for each executable situation in a model of the com-
piled theory, so a μL formula holds in a situation iff it holds
in the associated configuration.
Non-situation-determined programs. The above compila-
tion technique actually works to a certain extent also for non-
situation-determined programs. For those programs, Theo-
rem 7 fails, since one cannot reconstruct the actual con-
figuration that the program is in at each step—only the
“possible” ones can be obtained. For example, consider the
program δ0

.
= (a; a) | (a; b), where primitive action a

causes fluent P to become true while action b makes it
false. Consider the μL property Φ

.
= 〈−〉[−]P ∧ 〈−〉[−]¬P

(i.e., P can be forced true and can be forced false). This
property does hold for δ0, i.e., (δ0,D ∪ C) |= Φ. To
see this, observe that if we perform a step using the left
branch of δ0, the remaining program is a, and after per-
forming one more step (another a), P must hold. If in-
stead we perform a step using the right branch, the re-
maining program is b, and after doing one more step, ¬P

must hold. However for the compiled action theory, we have
Dδ0 �|= Φ. This is because both PCEnv(a, �x0, do(a, S0)) and
PCEnv(b, �x0, do(a, S0)) are true in Dδ0 , so neither [−]P nor
[−]¬P hold in do(a, S0). In fact, this example shows that we
would need nondeterministic effects to specify the remain-
ing program in a given execution, whereas Reiter’s situation
calculus requires actions to be deterministic.

Nevertheless, the compiled theory Dδ0 can still be
used to check properties such as whether a given ac-
tion sequence/situation can be produced in an execution
of the program. In particular, consider Do(δ0, S0, s)

.
=

∃δ.Trans∗(δ0, S0, δ, s) ∧ Final(δ, s) as defined in (De Gia-
como, Lespérance, and Levesque 2000). Then we have:

Theorem 8 Let D by a basic action theory, δ0 a ConGolog
program, C the original axioms for Trans and Final, and
Dδ0 the compiled theory as above (with Poss renamed in the
original theory to avoid clashing). Then, the following are
logically implied by D ∪ C ∪ Dδ0 :

Do(δ0, S0, s) ≡ Executable(s) ∧ Final(s);

Trans∗(δ0, S0, δ̂, s) ≡
∃δ, �x.Executable(s) ∧ PCEnv(δ, �x, s) ∧ δ̂ = δ[�x];

where Executable(s) states that s is an executable situation
(Reiter 2001). The first equivalence gives a characterization
of ConGolog’s standard offline semantics, while the second
can be used to check whether a sequence of actions amounts
to a partial execution of a program, as often needed in plan
conformance checking (Goultiaeva and Lespérance 2007).

Discussion and Conclusion

There has been significant interest in reasoning about and
verifying agent programs, such as Shapiro, Lespérance,
and Levesque (2002; 2010)’s CASLve verification envi-
ronment for multi-agent ConGolog programs, Alechina et
al. (2010)’s PDL-like logic for SimpleAPL programs, Bor-
dini et al. (2003)’s and Yadav and Sardina (2012)’s model-
checking frameworks for BDI programs, and the work in
(Claßen and Lakemeyer 2008; Claßen et al. 2014; De Gi-
acomo, Lespérance, and Pearce 2010; Sardina and De Gi-
acomo 2009) based on ConGolog programs “characteristic
graphs”. 4 However, these approaches generally impose im-
portant restrictions, such as propositional agents and/or sim-
ple programs (e.g., with pick variables ranging over finite
domains), or resort to verification via theorem proving and
fixpoint approximation with no decidability guarantees.

Unlike the original ConGolog semantics, our new seman-
tics avoids the use of a complex encoding of programs
as terms. This allows us to compile programs away into
standard basic action theories when these are situation-
determined. This is similar to Fritz, Baier, and McIl-
raith (2008), who showed how to compile arbitrary programs
as Petri-nets (plus unbounded stacks for recursion), and en-
code these into a basic action theory. Also it is related to

4Interestingly, these graphs include an uninstantiated version of
pick operators, which are then instantiated in the labeling model-
checking-like verification algorithm.

955

Lin (2014), who recently showed that programs can be com-
piled into action theories using an extra situation parame-
ter. Both proposals yield a correctness result for Do, like
our Theorem 8, but not for temporal verification, i.e., our
Theorem 7, though the notion of situation-determined pro-
grams could be used to get one. Nor do they generate action
theories that are bounded, so one cannot use (De Giacomo,
Lespérance, and Patrizi 2012) to get decidability results.

References

Alechina, N.; Dastani, M.; Khan, F.; Logan, B.; and Meyer,
J.-J. 2010. Using theorem proving to verify properties of
agent programs. In Specification and Verification of Multi-
agent Systems. Springer US. 1–33.
Baier, C., and Katoen, J.-P. 2008. Principles of model check-
ing. MIT Press.
Bordini, R. H.; Fisher, M.; Pardavila, C.; and Wooldridge,
M. 2003. Model checking AgentSpeak. In Proc. of AAMAS,
409–416. ACM Press.
Claßen, J., and Lakemeyer, G. 2008. A logic for non-
terminating Golog programs. In Proc. of KR, 589–599.
Claßen, J.; Liebenberg, M.; Lakemeyer, G.; and Zarrieß, B.
2014. Exploring the boundaries of decidable verification of
non-terminating Golog programs. In Proc. of AAAI, 1012–
1019.
De Giacomo, G.; Lespérance, Y.; and Levesque, H. J. 2000.
ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2):109–
169.
De Giacomo, G.; Lespérance, Y.; and Muise, C. J. 2012.
On supervising agents in situation-determined ConGolog. In
Proc. of AAMAS, 1031–1038.
De Giacomo, G.; Lespérance, Y.; and Patrizi, F. 2012.
Bounded situation calculus action theories and decidable
verification. In Proc. of KR.
De Giacomo, G.; Lesperance, Y.; and Patrizi, F. 2016.
Bounded situation calculus action theories. Artificial Intel-
ligence. To appear. Preliminary version available at http:
//arxiv.org/abs/1509.02012.
De Giacomo, G.; Lespérance, Y.; and Pearce, A. R. 2010.
Situation calculus based programs for representing and rea-
soning about game structures. In Proc. of KR.
De Giacomo, G.; Ternovskaia, E.; and Reiter, R. 1997. Non-
terminating processes in the situation calculus. In Proc. of
the AAAI’97 Workshop on Robots, Softbots, Immobots: The-
ories of Action, Planning and Control.
Emerson, E. A. 1996. Model checking and the mu-calculus.
In Descriptive Complexity and Finite Models, 185–214.
Fritz, C.; Baier, J. A.; and McIlraith, S. A. 2008. ConGolog,
Sin Trans: Compiling ConGolog into basic action theories
for planning and beyond. In Proc. of KR, 600–610.
Goultiaeva, A., and Lespérance, Y. 2007. Incremental plan
recognition in an agent programming framework. In Proc.
of PAIR.

Levesque, H. J.; Reiter, R.; Lesperance, Y.; Lin, F.; and
Scherl, R. 1997. GOLOG: A logic programming language
for dynamic domains. J. of Logic Programming 31:59–84.
Libkin, L. 2007. Embedded finite models and constraint
databases. In Finite Model Theory and Its Applications.
Springer.
Lin, F. 2014. A first-order semantics for Golog and Con-
Golog under a second-order induction axiom for situations.
In Proc. of KR, 39–46.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2009. MCMAS:
A model checker for the verification of multi-agent systems.
In Proc. CAV, 682–688.
McCarthy, J., and Hayes, P. J. 1969. Some philosophical
problems from the standpoint of Artificial Intelligence. Ma-
chine Intelligence 4:463–502.
Reiter, R. 2001. Knowledge in Action. Logical Foundations
for Specifying and Implementing Dynamical Systems. The
MIT Press.
Sardina, S., and De Giacomo, G. 2009. Composition of
ConGolog programs. In Proc. of IJCAI, 904–910.
Shapiro, S.; Lespérance, Y.; and Levesque, H. J. 2002. The
cognitive agents specification language and verification en-
vironment for multiagent systems. In Proc. of AAMAS, 19–
26.
Shapiro, S.; Lespérance, Y.; and Levesque, H. 2010. The
cognitive agents specification language and verification en-
vironment. In Specification and Verification of Multi-agent
Systems. Springer US. 289–315.
Stirling, C. 2001. Modal and Temporal Properties of Pro-
cesses. Springer.
Yadav, N., and Sardina, S. 2012. Reasoning about BDI agent
programs using ATL-like logics. In Proc. of JELIA, volume
7519 of LNCS, 437–449. Springer.

956

