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Abstract

STRIPS-like languages (SLLs) have fostered immense
advances in automated planning. In practice, SLLs are
used to express highly abstract versions of real-world
planning problems, leading to more concise models and
faster solution times. Unfortunately, as we show in the
paper, simple ways of abstracting solvable real-world
problems may lead to SLL models that are unsolvable,
SLL models whose solutions are incorrect with respect
to the real-world problem, or models that are inexpress-
ible in SLLs. There is some evidence that such limi-
tations have restricted the applicability of AI planning
technology in the real world, as is apparent in the case
of task and motion planning in robotics. We show that
the situation can be ameliorated by a combination of
increased expressive power—for example, allowing an-
gelic nondeterminism in action effects—and new kinds
of algorithmic approaches designed to produce correct
solutions from initially incorrect or non-Markovian ab-
stract models.

1 Introduction

The need for using abstract models of systems for compu-
tational advantages is well appreciated in the planning lit-
erature. The vast majority of ongoing research in planning
is focused on abstract models specified in STRIPS-like lan-
guages (SLLs), e.g. STRIPS, PDDL, SAS, etc.. In these lan-
guages, actions are defined using a set of effects that pre-
scribe the atoms (e.g. variable assignments) that should be
added to a state and those that should deleted from the state
on which the action is applied. The use of a common repre-
sentation language has led to immense progress in planners
that can solve SLL problems, particularly through meth-
ods for automated synthesis of heuristic functions from do-
main specifications (Bonet and Geffner 2000; Hoffmann and
Nebel 2001; Helmert, Haslum, and Hoffmann 2007).

Most researchers assume that domain experts intuitively
formulate an abstraction of their systems into an SLL. For
instance, the blocks-world model abstracts a situation where
the robot needs to achieve a certain configuration of blocks
on a table. Each “pickup” action in this model is imple-
mented in the real world by a sequence of physical robot
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arm and gripper movements, each of which is implemented
by lower-level control inputs to motors controlling various
joints, each of which in turn is implemented by a specific
pattern of voltages being applied, and so on. The SLL de-
scription of “pickup”, on the other hand, mentions only a
few logical preconditions and effects: if the gripper is empty
and the block does not have anything on top of it, the gripper
will end up holding the block.

However, abstractions of solvable problems can result in
models that are unsolvable and also models whose solutions
cannot actually be executed. The standard SLL specifica-
tion of blocks world illustrates this by permitting solutions
that cannot be executed. This is because the discrete SLL
model cannot express real preconditions for picking up a
block, which include geometric constraints resulting from
collision avoidance, even in the absence of stacking.1 Thus,
a “pickup” action in a plan computed using an SLL model
may not be executable because all paths between the robot’s
current base pose and the target block are obstructed. Al-
though there do exist real-world scenarios for which the
standard blocks-world specification is valid, they are ex-
tremely unusual: the robot should be either infinitely tall or
attached to the ceiling, which in turn should be infinitely
high and the robot should be able to pick objects using a
suction/magnetic gripper. In this sense, one could argue that
the true blocks-world problem has never been addressed by
research on planning for SLLs. More generally, the problem
of computing feasible plans using models that are imprecise
abstractions of real-world problems has not received much
research attention.

In this paper, we investigate the relationship between
models in SLLs and the real-world systems that they are
meant to abstract. In order to discuss the adequacy of SLLs
for abstract models, we utilize the principles of metaphysics:
in order to examine how the process of doing “physics” (aka,
writing the rules of a domain) relates to the universe (aka,
the real-world scenario) it purports to describe, one may as-

1The set of blocks obstructing the pickup of a block depends
on several continuous variables such as the poses of the robot’s
base and the target block, the geometries of the robot’s arm and
the block, and finally, action arguments including the grasping pose
and the trajectory to be used for a pickup; similar considerations are
required when determining the obstructions “added” by a putdown
action.
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sume a particular kind of universe. Here, we begin by as-
suming a universe that is describable using an SLL at the
concrete level, and show their inadequacy even under this
assumption. The problems addressed in this paper arise be-
cause the process of abstraction tends to make action mod-
els imprecise (this is orthogonal to the problem of handling
errors in modeling when the model has an accurate expres-
sion in the SLL (Nguyen and Kambhampati 2014)). In or-
der to plan using the resulting imprecise action models, we
need to express imprecision without inducing incorrectness.
Inability to do so hinders progress and reduces the utility
of the field, as evidenced by literature in task and motion
planning that focuses on making solutions obtained using
SLL models usable in real systems and in more accurate
simulation models (Alami et al. 1998; Volpe et al. 2001;
Plaku and Hager 2010; Hauser 2010).

We consider two main abstraction operations: removing
predicates and removing action arguments (Sec. 2). These
operations capture are sufficient for expressing a broad range
of problems in SLLs, including tasks in robotics. We iden-
tify the conditions under which such abstractions satisfy fun-
damental, desirable properties such as the Markov property
(Sec. 3.1). In order to correctly express abstract models, we
draw upon two concepts from hierarchical planning (Marthi,
Russell, and Wolfe 2007): angelic non-determinism in ac-
tion effects 4, and the expression of super-sets or sub-sets of
the truly possible action effects (Sec 4.2). Finally, we show
that using information about the abstraction process together
with representations that are imprecise (but not incorrect),
allows the development of approaches for solving problems
that don’t have correct abstractions in SLLs (Sec 5).

2 Abstraction Framework

We focus on deterministic problems in this paper, and use
a compact representation of conditional effects that can be
compiled into SLLs. Let c and e be conjunctions of atoms.
The conditional effect c → e indicates that if c holds in
the state where the action is applied, positive literals in e are
added to the state and negative literals in e are removed from
it. Quantifiers can be used to compactly express conjunc-
tions in this representation. The conditional effect � → e is
written as e. We illustrate our notation and the key ideas of
abstraction using a running example.

Example 1 We illustrate the effects of abstraction on a sim-
ple model that is assumed to be accurate (Fig. 1(a)). We use
the variables bi, li and d to denote a block, a location, and a
direction (left or right), respectively. In this problem, pickup
and place actions require a direction of approach as an ar-
gument. In a state where both sides of a block are free, if it
is picked up from the left, it’s right portion remains free af-
ter the pickup and vice versa. Similarly, if a block is placed
at a location l1 from the left, the gripper ends up at the left
of l1. Suppose the original specification (a) is accurate. If
an abstraction process drops the in gripper predicate, we
get the representation (b), where the most accurate descrip-
tion of place(b1, l1, d) depends on whether or not it followed
pickup(b1): the place action affects a block’s location iff it
is followed by a pickup action on that block. In this way,

a) “Original” specification:
pickup(b1, l1, d):

empty(gripper) → in gripper(b1).
equals(d, left), gripper at(d, l1),
at(b1, l1), empty(gripper),
free(b1, left)

→ ¬ free(b1, left).

equals(d, right),gripper at(d, l1),
at(b1, l1), empty(gripper),
free(b1, right)

→ ¬ free(b1, right).

place(b1, l1, d):
in gripper(b1) → at(b1, l1), ¬ in gripper(b1).
equals(d, left) → gripper at(left, l1).
equals(d, right) → gripper at(right, l1).

b) If the abstraction drops in gripper in (a) we get a non-
deterministic, pseudo-Markovian place action:
place(b1, l1, d):
� →ND{at(b1, l1); ∅}
equals(d, left) → gripper at(left, l1)
equals(d, right) → gripper at(right, l1)

c) If the abstraction drops equals in (a) we get an operator
with angelic choice:
pickup(b1, l1, d):

empty(gripper) → in gripper(b1).
AngelicND{

gripper at(d, l1), at(b1, l1),
empty(gripper), free(b1, left) → ¬ free(b1, left);
gripper at(d, l1), at(b1, l1),
empty(gripper),free(b1, right) → ¬ free(b1, right)}

place(b1, l1, d):
in gripper(b1) → at(b1, l1), ¬ in gripper(b1),
� → AngelicND{gripper at(left, l1);

gripper at(right, l1)}

Figure 1: Effects of abstraction on a model specification

this level of abstraction is not truly Markovian (Eg. 2 pro-
vides a more formal description using Def. 3). The descrip-
tion in Fig. 1(b) uses non-determinism to describe all pos-
sible effects of place. The operator ND(η1; ...; ηk) denotes
the non-deterministic selection of one of the conditional ef-
fects ηi. However this can make the model incomplete w.r.t.
the existence of a contingent solution since no operation is
guaranteed to change the location of a block. Clearly, this is
undesirable.

On the other hand, if the abstraction process drops equals
(Fig. 1(c)), the agent can choose arguments to place so as to
satisfy the premise of either conditional effect in the real ac-
tion specification. This can be expressed using angelic non-
determinism indicating that the agent can choose to obtain a
desired effect (the operator AngelicND) with syntax similar
to the ND operator). This allows us to preserve solvability
when expressing an abstracted model. The use of angelic
non-determinism is discussed in Sec. 4.1.

Definition 1 Let X and S be sets such that |S| � |X|. An
abstraction from X to S is defined by a surjective function
f : X → S. For any s ∈ S, the concretization function
γf (s) = {x ∈ X : f(x) = s} denotes the set of states
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represented by the abstract state s. For a set C ⊆ X , [C]f
denotes the smallest set of abstract states representing C.

When considering abstractions from X to S, we refer to
X as the set of “concrete” states and S as the set of “ab-
stract” states. Each abstract state s ∈ S can be written as
[x]f for any state x such that f(x) = s, since the sets of
concrete states corresponding to distinct abstract states are
disjoint. For convenience we denote the abstract state space
constructed by applying f on a set of states X as [X]f . We
abbreviate c ∈ γf (s) as c ∈ s when the abstraction function
is clear from context. Predicate abstraction is an example of
an abstraction function employed in situations where states
are represented using logical structures and the abstraction
projects out some of the predicates. Another example is the
substitution abstraction, where a formula, whenever true in
a state, is replaced with a term.
Definition 2 A deterministic transition system T =
〈X,A〉 consists of a set of states X and a set of actions A,
where each a is a function from X to X . The abstraction
of an action ai ∈ A w.r.t an abstraction function f is de-
noted as [ai]f ; for any abstract state s ∈ S, [ai]f (s) :=
[{ai(c) : c ∈ s}]f . Given an abstraction function f , the ab-
straction of a transition system T = 〈X,A〉 is defined as
[T ]f = 〈[X]f , {[a]f : a ∈ A}〉.

Unless otherwise noted, concrete transition systems used
in this paper are deterministic. However, the abstraction of
an action may be non-deterministic (mapping an abstract
state to a set of abstract states) even when the original ac-
tion is deterministic. We abbreviate the composition of ab-
stract actions, [a1](. . . ([ak](s)) . . .) as [a1] . . . [ak](s). We
will drop the subscript f unless it is clear from the context.

3 Properties of Abstractions

Intuitively, an abstraction f is Markovian iff the abstract ef-
fect of an abstract action on an abstract state doesn’t depend
on the path through which the abstract state was reached.
Definition 3 An abstraction f is a Markovian abstrac-
tion of a transition system T defined over a set of states
S and a set of actions A iff for every sequence of instan-
tiated actions a1, . . . , ak ∈ A, and abstract state s ∈ [S]f ,
[a1 . . . ak]f (s) = [a1]f . . . [ak]f (s).

Example 2 Returning to the example in Fig. 1, the se-
quence of actions pickup(b1, l1, d1);place(b1, l2, d2) has
the unique effects at(b1, l2) and gripper at(d2, l2). Hence,
this composition of actions can be specified as follows in an
abstraction that drops the in-gripper predicate:
[pickup[(b1, l1, d1); place(b1, l2, d2)]:

equals(d2, left) → at(b1, l2), gripper at(left, l2)
equals(d2, right) → at(b1, l2), gripper at(right, l2)

[pickup(b1, l1, d1)] has the same description as pickup in
Fig. 1(a), except for the absence of the atom in gripper(b1).
On any abstract state s, application of the abstraction
action [pickup(b1, l1, d1)] followed by applicaton of the
abstract action [place(b1, l2, d2)] (defined in Fig. 1(b)),
results in two possible outcomes corresponding to the
non-deterministic effects for the second action: either the
block was not in the gripper and it remains at l1, or it

was in the gripper and moves to l2. This is because the
abstract state after picking up b1 does not indicate whether
or not b1 is in the gripper. Thus, we have a situation where
the composition of abstract actions is different from the
abstraction of their composition, which implies that the
abstraction that drops in gripper is not Markovian.

3.1 Markovian Abstractions

A particularly desirable type of abstraction is one where ev-
ery concrete member of s witnesses every abstract transition
caused by [a] from s.

Definition 4 An abstraction is a forall-exists abstraction
iff for every s′ ∈ [a1](s), for every c ∈ s, there exists a
c′ ∈ a1(c) such that c′ ∈ s′.

In other words, the concretization of the abstract action’s
result always has something in common with the action’s
result on a concretization: γ([a1](s)) ∩ a1(γ(s)) 
= 0.
Bäckström and Jonsson (2013) consider such abstractions
for the case of atomic state representations. In this paper
we focus on predicate abstractions that result in forall-exists
abstractions, and the relationship of these abstractions with
Markovian abstractions. Forall-exists abstractions can also
be seen as simulation relations.

Definition 5 (Milner 1971) A relation R ⊆ S × S is a sim-
ulation relation iff for all (s, c) ∈ R, for all a ∈ A, and for
all s′ ∈ S such that s ∈ a(s′), there exists a c′ ∈ S such that
c ∈ a(c′) and (s′, c′) ∈ R.

Theorem 1 Forall-exists abstractions are simulation rela-
tions.

PROOF Define the transition system T ′(S,A) where S is
the union of the abstract states and the concrete states. The
set of actions A only contains the set of concrete action sym-
bols. For each a ∈ A, and abstract state s, a(s) := [a](s) Let
R ⊆ S × S be defined as follows: (s, c) ∈ R iff c ∈ γ(s).
The result then follows from the definition of forall-exists
abstractions and simulation relations. �

Theorem 2 Forall-exists abstractions are Markovian.

PROOF By the forall-exists property, in every sequence of
abstract states generated by [a1][a2] . . . [ak](s) has a wit-
ness thread of concrete transitions. Thus, for every re-
sult state in [a1] . . . [ak](s), there is at least one concrete
member reachable from an element of γ(s) via a1 . . . ak.
Thus, [a1 . . . ak](s) = [a1 . . . ak(γ(s))] must include all
result states in [a1] . . . [ak](s). The other direction al-
ways holds because [a1] . . . [ak](s) cannot be smaller than
[a1 . . . ak](s). �

We now show that a special class of predicate abstractions
generate forall-exists abstractions.

Definition 6 A predicate abstraction is precondition pre-
serving if it doesn’t drop any predicate that is used in the
precondition of an action.

Lemma 1 Every precondition-preserving abstraction of a
deterministic transition system will be deterministic.
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PROOF Consider the application of an action on each mem-
ber of an abstract state. They all satisfy the same set of
preconditions, so the effects of the concrete action add and
delete the same sets of predicates on each, even when there
are conditional effects. The subsequent abstraction retains
only the abstraction predicates which will be the same on
all states because the same deltas were applied on the same
initial set of abstracted predicates. Thus the set of abstract
states capturing the result will be a singleton. �

Theorem 3 Every precondition-preserving abstraction is a
forall-exists abstraction.

PROOF Since the abstraction is precondition preserving,
a1’s preconditions do or do not hold in all members of s.
In either case, all members represented by the initial state
get carried to the same result states. �

Thus, precondition-preserving abstractions are Marko-
vian.

3.2 Non-Markovian Abstractions

In this section we derive conditions under which an ab-
straction will be non-Markovian. A non-Markovian residue
constitutes the evidence for an abstraction’s being non-
Markovian. It is a set of states that does not reach any mem-
ber of an abstract state that the abstract transition system
”thinks” is included in the result of an action application.
Definition 7 Let X be a set of states, f be an abstraction
function, s1, s2 ∈ [X]f , and a be an action in a transition
system T defined using X such that s2 ∈ [a](s1). The set
Cs1,s2,a,f,T = {c : c ∈ s1 ∧ a(c) ∩ s2 = ∅} when non-
empty, is referred to as the non-Markovian residue of s1,
s2, a, f and T .

The non-Markovian residue therefore contains concrete
states that have no post-image in one of the resulting abstract
states for an abstract action.
Definition 8 A non-Markovian residue Cs1,s2,a,f,T is
reachable in T iff there is an abstract state s ∈ [T ]f
and a sequence of concrete actions α such that α(γ(s)) ⊆
Cs1,s2,a,f,T .

Lemma 2 If a transition system T has a reachable NMR
w.r.t. an abstraction function f , then f is not a Markovian
abstraction for T .

PROOF Let the NMR be Cs1,s2,a,f,T , and let α(γ(s)) =
Cs1,s2,a,f,T . [a(α(γ(s)))] ⊆ [a(Cs1,s2,a,f,T )] does not in-
clude s2 but [a][α(s)] = [a][Cs1,s2,a,f,T ] = [a](s1) includes
s2. Thus, the abstraction f is not Markovian. �

We now show the converse, that non-Markovian abstrac-
tions must present a reachable NMR.
Lemma 3 If an abstraction f for a transition system defined
by a set of states X and a set of actions A is not Markovian,
then there is a sequence of actions α ∈ A∗ and an abstract
state s1 ∈ [X] such that α(γ(s)) ∩ γ(s1) is an NMR.

PROOF Suppose the abstraction is non-Markovian. Let
a1, . . . , ak ∈ A be the smallest sequence such that
[a1, . . . , ak](s) 
= [a1](. . . ([ak](s)). Thus, there must exist

an s2 such that s2 
∈ [a1 . . . ak](s) but s2 ∈ [a1] . . . [ak](s).
(Note that any abstract state contained in [a1 . . . ak](s)
will be contained in [a1] . . . [ak](s), because the abstrac-
tion can only add additional states to the result of an ac-
tion application on an abstract state). Let s1 be a mem-
ber of [a2] . . . [ak](s) such that [a1](s1) includes s2, and let
C1 = a2 . . . ak(γ(s)). Since a1 . . . ak is the smallest non-
Markovian sequence, [a2 . . . ak](s) = [a2] . . . [ak](s). Thus,
s1 ∈ [a2 . . . ak](s). Since [a2 . . . ak](s) = [a2 . . . ak(γ(s))]
by definition, this implies that s1 ∈ [C1]. Now a1(C1)∩s2 =
∅. If that was not true, [a1 . . . ak](s) = [a1 . . . ak(γ(s))]
would contain s2 and we get a contradiction. Let R =
γ(s1) ∩ C1. R is non-empty because s1 ∈ [C1]; R is reach-
able from s because C1 = a2 . . . ak(γ(s)). Now a1(R) does
not intersect with γ(s2) and R is a subset of γ(s1), therefore
R is contained in the NMR of s1, s2, a1, f and T , and T has
a reachable NMR. �

The lemmas above provide necessary and sufficient condi-
tions for non-Markovian abstractions.
Theorem 4 An abstraction f of a transition system T is
non-Markovian iff T has a reachable NMR w.r.t. f .

4 Abstraction of Implicit Transition Systems

In general it is not feasible to express planning problems as
explicit transition systems and one uses SLLs to describe
transition systems implicitly by defining an initial state and
a set of parameterized action operations. Our results about
abstraction from the previous sections carry over to SLL
representations. In addition, abstractions of SLL represen-
tations of transition systems introduce considerations about
accuracy that do not arise for explicit transition systems.

Continuing with the principles of metaphysics described
in the introduction, we consider abstractions of concrete
transition systems that are expressed using SLLs. Since the
operation of dropping action arguments necessitates drop-
ping predicates, we focus on abstractions that drop predi-
cates. To simplify the presentation we make the following
assumptions without loss of generality: each predicate oc-
curs with the same arguments in the action description. Dif-
ferent argument versions are considered to be different pred-
icates for the purpose of the transformation. This imposition
of uniformity effectively allows us to treat each occurrence
of a predicate in the operator specification as a proposition.

In an SLL representation, suppose the predicate p is
dropped in the abstraction. Then, for each conditional effect
of an action, consider the following transformations:

T-ND1 if p occurs in the precondition or in the premise of
a conditional effect, the effect e is replaced by the non-
deterministic effect ND{e, ∅}, denoting that the operator
may or may not take effect depending on the value of the
dropped predicate.

T-ND2 if p occurs in the effect e, e is replaced by e′ that has
only the non-p components of e.

Applying these transformations yields abstracted actions
in the sense that a(γ(s)) ⊆ γ([a(s)]). This is easy to verify
since the abstract transition system only loses information
w.r.t p, and each abstract state without p represents sets of
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concrete states with each grounding of p set to true or false.
This leads to the disjunction in action effects in T-ND1.

4.1 Angelic Non-Determinism

The transformations T-ND1 and T-ND2 use non-
determinism to capture sets of reachable states. The
conventional (demonic) semantics of non-determinism,
however, are sometimes incorrect for such abstractions.
Consider the example in Fig. 1. Using the syntactic trans-
formation rules state above, dropping the equals predicate
in the original specification (Fig. 1(a)) would result in:
placeND(b1, l1, d):

in gripper(b1) → at(b1, l1), ¬ in gripper(b1).
� → ND{gripper at(left, l1);∅},

ND{gripper at(right, l1);∅}.

In this formulation, no contingent plan can be guaranteed
to achieve the goal at(b1, l1) ∧ gripper at(left, l1) because
gripper at is provided only by placeND in the model. This
results in an incorrect model because the goal is achievable
even in the abstract transition system: regardless of the state
in which place is applied, the agent can choose the argument
d so as to achieve the desired version of gripper at. In or-
der to express imprecision without making the model incor-
rect, we can use angelic non-determinism operators to cap-
ture such abstractions. Angelic non-determinism in an action
effect specifies the variations that are necessarily achievable
by the agent as opposed to those that are not in the agent’s
control. E.g., recall Fig. 1(c):
place(b1, l1, d):

in gripper(b1) → at(b1, l1), ¬ in gripper(b1).
� → AngelicND{ gripper at(left, l1);

gripper at(right, l1)}
We formalize this transformation as follows. Recall that

we rename predicates if necessary, to ensure each predicate
occurs in the set of conditional effect rules of an operator
with a unique set and ordering of variables. Suppose a pred-
icate p(x̄) occurs in a set of conditional effect rules E. Let
Σx̄→U be the set of all instantiations of the variables in x̄
to objects U . We then define the syntactic abstraction of E
w.r.t. p, a set of states S, and U as follows:

[E](p(x̄),S,U) = AngelicND{ND{E[σ, p]s : s ∈ S} : σ ∈ Σx̄→U}

where E[σ, p]s is the version of E where σ is applied and
all occurrences of p in the conditional premises are replaced
by their truth values in s. In the rest of the paper we omit the
arguments x̄ from the subscript unless required for clarity.
This leads to the following syntactic rule:

T-Angelic When S and U are known, replace the set of ef-
fects E with [E](p,S,U)

The angelic operator appears because the substitution σ
is in the agent’s control. This transformation expresses a
tighter abstraction of reachable states than T-ND1 and T-
ND2. T-Angelic generalizes the transformations T-ND1 and
T-ND2. Indeed, T-ND1 and T-ND2 are obtained when An-
gelicND in the definition of [E](p,S,U) is replaced by the less
precise ND and {E[σ, p]s : s ∈ S} is replaced by the set of

all versions of E obtained by substituting all possible evalu-
ations of p in the premises of conditional rules in E. We can
now define the transformation of the transition system that
results from predicate abstraction.

Definition 9 Let P be a planning problem with a set of ob-
jects U ; C be its state space; f be an abstraction that drops
the predicate p and [C]f be the abstract state space produced
by applying f on C. Let a be an action with the effect de-
scription E then ∀s ∈ [C]f , we define the angelic represen-
tation of [a(s)] as [E](p,γ(s),U).

The angelic abstraction [a]p1,...,pk
of an action a pro-

duced by dropping an ordered set of predicates p1, . . . , pk
is defined by treating the angelic abstraction of each pred-
icate as a distinct abstraction function and composing the
resulting transformations in order [. . . [a(s)]p1

. . .]pk
, where

s is a state in the abstract state space without p1, . . . , pk.
Computation of optimal orderings of abstractions is a sub-
ject for future work. Note that the representation in Def. 9
may not be the most accurate possible representation of the
abstract transition system, but it guaranteed to be an over-
approximation: ∀c ∈ s, a(c) ∈ γ([a(s)]p1,...,pk

).
The definition of [E](p,S,U) implies that when p is a static

fluent, then p[σ] has the same truth value in all states and T-
Angelic is independent of S. This is precisely what occurs in
Fig. 1(c). To see this, note that AngelicND{p → q ∧ w, p →
q ∧ v} is equivalent to p → q ∧ AngelicND{w, v}. We for-
malize the arguments above as follows.

Theorem 5 If the predicate p is a static fluent w.r.t. S, then
[E](p,S,U) introduces necessarily angelic non-determinism.

The premise of this result is a sufficient, but not necessary
condition for obtaining purely angelic non-determinism. We
say that a predicate p occurring in the premises of condi-
tional effects for an action a is in the agent’s control in a
w.r.t. a set of states S if in every s ∈ S, for every literal
form of p used in a conditional premise in a, there exists an
assignment of the arguments of a which makes that literal
form true. In other words, in every state action arguments
can be chosen to satisfy the form of p used in the premise
of any desired conditional rule. In such cases also the ef-
fect of dropping p can be expressed as an angelic choice
among the possible effects obtained for each evaluation of
p because the agent can achieve each evaluation in every
state. However, the form of E(p,S,U) written above doesn’t
directly produce such a purely angelic effect. This is indica-
tive of non-trivial distributive properties of angelic and de-
monic non-deterministic operators.

4.2 When Angelic Representations are Infeasible

In some situations abstraction can result in too many angelic
choices corresponding to different combinations of truth val-
ues for the dropped predicates. For such cases, we need an
intermediate representation that is not as intractable to com-
pute as the one generated by T-Angelic, but avoids the in-
correctness resulting from a demonic non-determinismistic
operator. Consider a more realistic model where the descrip-
tion of the act of placing an object uses a geometric predicate
to determine whether or not an obstruction is introduced:
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pickup-clear(b1, l1, d):
at(b1, l1),
empty(gripper),
(∀b2¬obstructs(b2, b1, d))

→ in gripper(b1), ¬at(b1, l1),
∀b2, d¬obstructs(b1, b2, d).

place-clear(b1, l1, o1):
in gripper(b1), open(l1) → at(b1, l1),

¬in gripper(b1),
¬open(l1).

in gripper(b1), open(l1),
shape obstructs(b1, l1, o1, b2, l2),
relative direction(l1, l2, d)

→ obstructs(b1, b2, d).

Note that pickup-clear requires a block to be unob-
structed. This specification uses new variables: b2 de-
notes an arbitrary block; and l2 denotes an arbitrary lo-
cation for a block. Unbound variables denote an implicit
conjunction of the rules in which they occur, over all
of their possible instantiations. The geometric predicate
shape obstructs(b1, l1, o1, b2, l2) is true iff placing b1 at l1
in the orientation o1 will obstruct the gripper from picking
b2 at l2 from the direction of l1. Expressing states with such
predicates would require expensive geometric computations
for all possible groundings, and it is therefore desirable
to abstract such predicates away. Angelic non-determinism
could be used to express the possible combinations of ob-
structs predicates introduced when shape obstructs and
relative direction are dropped. However, in order to do so,
one must compute the truth values of these predicates for
every choice of b2, l1 and l2, which can be computation-
ally expensive (and infeasible when l1 or l2 range over high-
dimensional poses in the configuration space of a real robot).
On the other hand, a non-deterministic representation would
have no contingent solutions due to cyclic obstructions re-
sulting from non-deterministic choices.

We therefore need an intermediate representation that
is not as intractable to compute as the one generated by
T-Angelic, that remains imprecise but is not incorrect.
This can be achieved by indicating that the effects of an
abstract action on certain predicates are deterministic, but
undetermined in the current abstraction:
place-clear-un(b1, l1):

in gripper(b1),
open(l1)

→ at(b1, l1), ¬in gripper(b1),
¬open(l1), ̂+{obstructs}.

The ̂+ indicates that this action may add some obstructs
facts. Retaining this information is useful: since the unde-
termined effects are annotated and are deterministic, custom
reasoning tools can be used to determine the exact effects.
Such an action model is sound in the sense of theorem prov-
ing: the portion outside ̂+ asserts only the properties that are
guaranteed to be achieved by the action.

5 Planning Modulo Abstractions

We now consider the problem of planning in the presence of
abstractions. Early work in this direction (Sacerdoti 1974;
Knoblock 1991) addresses special cases of this problem,
where abstraction hierarchies can be assumed to satisfy cer-
tain properties that aid reasoning algorithms. More recent
approaches use abstractions in heuristics for guiding search
algorithms that operate on transition systems described in
SLLs (e.g., (Helmert, Haslum, and Hoffmann 2007)). In or-
der to develop general algorithms for planning across a pair

of concrete and abstract models, we can draw upon the lit-
erature on SAT modulo theories (SMT), which deals with
the similar problem of pairing SAT solvers with reasoning
engines for theories whose translations into SAT would be
intractable or impossible. The input formula for an SMT
solver can include literals that represent atoms from a theory
(e.g. a() + 2 < b() is an atom that belongs to the theory of
arithmetic). The basic DPLL(T ) algorithm (Nieuwenhuis,
Oliveras, and Tinelli 2006) used by modern SMT solvers
proceeds as follows. A SAT solver is used to search for a sat-
isfying model of the input formula without any constraints
on the atoms that are actually constrained by T . If no model
is found, the formula is unsatisfiable. If a model M is found,
a decision procedure for T (T -solver) is used to decide if
M is T -consistent. If it is, the problem is solved. Other-
wise, T -solver provides a lemma precluding M , which is
then added to the theory. The process is then repeated until
the SAT solver finds a T -consistent model or proves unsat-
isfiability.

We build upon the general principles of SMT to use any
pair of planning algorithms where one operates on an ab-
straction of another’s theory, as follows. The algorithm that
uses the abstract model representation to generate high-level
plans (partial models) plays the role of the SAT solver. Let
each action take the form a(x̄, ȳ), where ȳ are the argu-
ments to be dropped, and P be the predicates that are ab-
stracted. Each high-level plan produced by the search algo-
rithm corresponds to a formula of the form ∃ȳ1,...,ȳn

ϕs0 ∧
a1(ō1, ȳ1, 1)∧ϕs1∧. . .∧an(ōn, ȳnn)∧ϕgoaln , where the last
action-arguments are timesteps, ȳi are the dropped action ar-
guments, ōi are instantiations of constants to the remaining
arguments, and ϕsi are formulas representing intermediate
states and assignments for predicates in P , and ϕgoaln is a
formula asserting that the goal is achieved at time n. Any
algorithm that determines low-level feasibility of such plans
and produces high-level lemmas in case of infeasibility can
be used in place of the T -solver to mimic the SMT process.

There is ample evidence for the viability of this paradigm.
In fact, the paradigm described above unifies several ap-
proaches in the literature on task and motion planning. (Gre-
gory et al. 2012) develop a planning-modulo-theories ap-
proach that factors models into pieces that come from spe-
cific theories and uses callouts to low-level theories during
search. (Erdem et al. 2011) explore various implementations
of SMT style architectures, while using an ASP solver for
high-level reasoning with a discretized space of possible ac-
tion arguments. The approach presented by (Srivastava et al.
2014) is also similar to the SMT design outlined above; they
identify a class of abstracted, imprecise models where high-
level plans can be computed efficiently using classical plan-
ners. While these approaches have been focused on task and
motion planning, the underlying problems being addressed
are various forms of planning across abstractions and the
analysis presented in this paper lends directly to expanding
the scope and scalability of this methodology.

6 Conclusions
We presented an analysis of representational abstractions
for planning problem specifications and proved several re-
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sults categorizing abstraction mechanisms that exhibit de-
sirable properties such as the Markov property. We showed
that expressing a large class of solvable real-world problems
in SLLs results in unsolvable or incorrect models, and pre-
sented methods for overcoming these limitations. We also
showed that together with information about the abstraction
process, such models can be utilized in solving an entirely
new class of problems that were not expressible in SLLs.
Our analysis presents several directions for future work, in-
cluding refinement of the planning paradigm and methods
for searching in the space of abstract representations.

7 Acknowledgements

The funding provided by the United Technologies Research
Center is greatly appreciated. Opinions, findings, and con-
clusion or recommendations expressed in this material are
those of the authors and do not necessarily reflect the view
of the United Technologies Research Center.

References

Alami, R.; Chatila, R.; Fleury, S.; Ghallab, M.; and Ingrand,
F. 1998. An architecture for autonomy. IJRR 17:315–337.
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