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Abstract

In this paper, we propose principled weight learning algo-
rithms for Markov logic networks that can easily scale to
much larger datasets and application domains than existing
algorithms. The main idea in our approach is to use approx-
imate counting techniques to substantially reduce the com-
plexity of the most computation intensive sub-step in weight
learning: computing the number of groundings of a first-order
formula that evaluate to true given a truth assignment to all
the random variables. We derive theoretical bounds on the
performance of our new algorithms and demonstrate experi-
mentally that they are orders of magnitude faster and achieve
the same accuracy or better than existing approaches.

Markov logic networks (MLNs) (Domingos and Lowd
2009) compactly represent a large family of Markov net-
works using a set of weighted first-order logic formulas.
They are routinely used in a wide variety of application do-
mains including natural language understanding, social net-
works, and computer vision for modeling relational and un-
certain knowledge. A key task that impacts their success in
these applications is weight learning: given data and for-
mulas, find a setting of weights such that the likelihood or
an approximation to it (e.g., contrastive divergence (Hinton
2002), pseudo log-likelihood (Besag 1975), etc.) is maxi-
mized. Unfortunately, existing weight learning approaches
(Singla and Domingos 2005; Lowd and Domingos 2007;
Huynh and Mooney 2009) are extremely time consuming
and are unable to scale “out of the box” to large domains
such as information extraction (Poon and Domingos 2007).

The main reason for the poor scalability of existing tech-
niques is the high polynomial complexity of algorithms
used for computing the gradient. Specifically, a sub-step in
gradient computation is computing the number of ground-
ings of a first-order formula that evaluate to TRUE given
a truth assignment to all the ground predicates. Exact al-
gorithms for solving this #SG (short for #SatisfiedGround-
ings) problem have high polynomial complexity. For ex-
ample, given a formula ∀d∀a1∀a2 HasAuthor(d, a1) ∧
HasAuthor(d, a2) ⇒ Coauthor(a1, a2) (if a1 and a2
are authors of document d, then they are likely to be coau-
thors), even an advanced, exact algorithm such as the one
proposed in (Venugopal, Sarkhel, and Gogate 2015) will in-
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cur a complexity of O(nm2) where n is number of docu-
ments and m is the number of authors.

Currently, the most prevalent approach for achieving scal-
ability is to use background knowledge, which is incorpo-
rated in the MLN as hard evidence. Hard evidence sub-
stantially reduces the complexity of solving the #SG prob-
lem, reducing it from O(sk) to O(rk) where r << s.
This is because most ground formulas that contain evi-
dence atoms will evaluate to either TRUE or FALSE, and they
can be deleted from consideration. For example, in the en-
tity resolution domain, Singla et al. (Singla and Domingos
2006) achieve scalability by adding hard evidence, setting
all atoms that are likely to be false (true) with high proba-
bility to FALSE (TRUE). These atoms are identified using the
canopy approach of McCallum et al. (McCallum, Nigam,
and Ungar 2000) – a cheap, domain-specific heuristic. The
main drawbacks of using background knowledge are: (1) the
added evidence may be incorrect and thus the approach in-
troduces errors, and (2) the approach will not scale to large
domains if the number of evidence atoms is small.

In this paper, we present a principled approach, which can
scale seamlessly to large domains, even when background
knowledge is not available. Our contributions are three-fold:

• We propose new objective functions for weight learning
that approximate well known functions such as likelihood,
psuedo likelihood and contrastive divergence. The key
idea in these new functions is to use approximate instead
of exact approaches for solving the #SG problem. We an-
alyze the complexity of our new algorithms and show that
they are highly scalable.

• We provide theoretical bounds on how far our solutions are
from the solutions obtained using existing exact methods.

• We demonstrate experimentally that our new algorithms
are superior to existing weight learning algorithms imple-
mented in Alchemy (Kok et al. 2008) and Tuffy (Niu et al.
2011), two state-of-the-art systems for learning and infer-
ence in Markov logic. More importantly, our results show
that our new methods do not require background knowl-
edge to scale to large domains.

Background and Preliminaries

Markov Logic Networks (MLNs). MLNs soften the con-
straints expressed by a first-order knowledge base by attach-
ing a weight to each formula in the knowledge base. Higher
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the weight, higher the probability of the clause (we assume
the knowledge base to be in clausal form) being satisfied,
all other things being equal. MLNs can also be seen as first-
order templates for generating large Markov networks. For-
mally, an MLN is a set of pairs (fi, θi) where fi is a for-
mula in first-order logic and θi is a real number. Given a set
of constants, an MLN represents a ground Markov network
which has one random variable for each grounding of each
predicate and one propositional feature for each grounding
of each formula. The weight associated with a feature is the
weight attached to the corresponding formula. The ground
MLN represents the following probability distribution:

Pθ(ω) =
1

Zθ
exp

(∑
i

θiNi(ω)

)
(1)

where Ni(ω) is the number of groundings of fi that evalu-
ate to TRUE given a world ω (an assignment to each ground
atom) and Zθ is the normalization constant. We call this the
#SG problem. Important inference queries over MLNs are
computing the partition function, finding the marginal prob-
ability of a variable given evidence (where evidence is an as-
signment to a subset of variables), and finding the most prob-
able assignment to all variables given evidence, also called
the MAP inference problem.

Solving the #SG problem. The main computational bot-
tleneck in popular inference algorithms for MLNs such as
Gibbs sampling for marginal inference and MaxWalksat
(Kautz, Selman, and Jiang 1997) for MAP inference, is com-
puting Ni(ω). Until recently, the #SG problem was solved
using the following naive method: given a clause fi and a
world ω, generate all possible ground clauses of fi and count
only those that are satisfied in ω. Venugopal et al. (Venu-
gopal, Sarkhel, and Gogate 2015) showed that the problem
can be solved efficiently by reducing it to the problem of
computing the number of solutions of a constraint satisfac-
tion problem (0/1 Markov network in which all potentials
have just two values: 0 and 1). Formally, given a first-order
clause fi and a world ω, the corresponding constraint net-
work Ci has a variable for each (universally quantified) log-
ical variable in fi. The domain of each variable in Ci is the
set of constants in the domain of the corresponding logical
variable. For each atom R(x1, . . . , xu) in fi, we have a con-
straint φ in C defined as follows: φ(xu) = ωR(X1,...,Xu)

if R is negated in f and φ(xu) = 1 − ωR(X1,...,Xu) oth-
erwise. Here, xu = (x1 = X1, . . . , xu = Xu) denotes
an assignment to the variables in the constraint network
and ωR(X1,...,Xu) is the projection of the world ω on the
ground atom R(X1, . . . , Xu). Thus, ωR(X1,...,Xu) = 1 if
R(X1, . . . , Xu) is true in ω and 0 otherwise.
Example 1. Figure 1 shows an encoded constraint network.

Venugopal et al. (Venugopal, Sarkhel, and Gogate 2015)
showed that if #Ci denotes the number of solutions of the
constraint network Ci associated with a clause fi and world
ω then: Ni(ω) =

∏
xj∈V (fi)

|Δ(xj)| − #Ci where V (fi)

denotes the set of logical variables in fi and Δ(xj) is the
set of constants in the domain of xj . Thus, if a junction tree
algorithm is used to compute #Ci, then its time and space

x y

z

(a) Constraint
Net

x y val
A A 0
A B 1
B A 1
B B 0
(b) φ(x, y)

y z val
A A 1
A B 0
B A 1
B B 1
(c) φ(y, z)

x z val
A A 1
A B 0
B A 1
B B 1

(d) φ(x, z)

Figure 1: (a) Constraint network for f =
∀x, ∀y, ∀z ¬R(x, y) ∨ S(y, z) ∨ T(x, z). The domain
of each logical variable is {A,B}; (b), (c) and (d): Con-
straints φ(x, y), φ(y, z) and φ(x, z) corresponding to
the possible world in which the ground atoms R(A,B),
R(B,A), S(A,B) and T(A,B) are true and the rest are
false.

complexity are exponential in treewidth. Since the treewidth
can be much smaller than the number of logical variables,
Venugopal et al.’s method may be orders of magnitude bet-
ter than the naive approach, which is exponential in the num-
ber of logical variables. Unfortunately, since the number of
constants can be quite large (thousands), even treewidth of 3
may be infeasible.
Iterative Join Graph Propagation (IJGP): IJGP (Ma-
teescu et al. 2010) is a type of generalized Belief propagation
algorithm that can perform approximate solution counting
in constraint networks. IJGP runs the same message pass-
ing as join or junction tree propagation over the clusters of
a join graph rather than a join tree, iteratively. A join graph
is a decomposition of functions (constraints) of a constraint
network into a graph of clusters that satisfies all the prop-
erties required of a valid join tree decomposition except the
tree requirement. IJGP is particularly useful since its time as
well as space complexity can be controlled using a param-
eter i called the i-bound. As we increase i, the complexity
increases exponentially but so does the accuracy. If i equals
treewidth of the network plus one (w∗ + 1), IJGP is exact.

Weight Learning. A dataset in MLNs is a relational
database, which defines a world ω. We assume that the
database contains only TRUE ground atoms and is closed
world, namely all ground atoms not in the database are false.
Note that we can learn to generalize from even a single world
because the clause weights are shared across their ground-
ings. The weights can be learned generatively (or discrim-
inatively) by maximizing the log-likelihood (or conditional
log-likelihood) of the database:1

�(θ : ω) = logPθ(ω) =
∑
i

θiNi(ω)− logZθ (2)

=
∑
i

θiNi(ω)− log

(∑
ω′

exp

(∑
i

θiNi(ω
′)

))

Weights that optimize the log-likelihood (a convex function)
can be learned using a standard gradient ascent procedure.

1We show the equations for generative learning noting that they
can be easily derived similarly for discriminative learning
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The gradient of the log-likelihood w.r.t θi is given by:

∂

∂θi
�(θ : ω) = Ni(ω)−

∑
ω′

Pθ(ω
′)Ni(ω

′)

= Ni(ω)− Eθ[Ni(ω)]

where the sum is over all possible databases ω′, and
Pθ(ω

′) is computed using the current weight vector θ =
(θ1, ..., θi, ...). The second term in the gradient requires
(marginal) inference over the ground Markov network and
is #P-hard in the worst-case. Therefore, in practice, the ex-
pectation is approximated using either Markov Chain Monte
Carlo (MCMC) sampling or MAP inference. The idea is to
replace the expectation by either an average over the worlds
sampled using a MCMC procedure or the MAP tuple. The
former yields a class of algorithms called contrastive diver-
gence (CD) (Hinton 2002), while the latter yields a class
of algorithms called Voted Perceptron (VP) (Collins 2002).
An alternative approach is to change the likelihood (objec-
tive) function such that the gradient is tractable. An example
of such a function is pseudo log-likelihood (PLL) (Besag
1975). For lack of space, we describe PLL in the a longer
technical report (Sarkhel et al. 2015).

Existing weight learning algorithms, even those that use
alternative criteria such as CD, VP and PLL are imprac-
tical because all algorithms require solving the #SG prob-
lem in order to compute the gradient. As described earlier,
even advanced algorithms (Venugopal, Sarkhel, and Gogate
2015) for solving #SG have high polynomial complexity,
bounded by O(nw∗+1) where w∗ is the treewidth of the as-
sociated constraint network. Specifically, in CD (and VP),
in order to generate a a sample (MAP tuple) via Gibbs sam-
pling (MaxWalksat), one has to visit all ground formulas at
least once. In PLL, one has to solve the #SG problem, once
for each ground atom. However, in terms of computational
complexity, a key advantage of PLL over CD and VP is that
the counts remain constant over iterations and therefore they
can be precomputed. Thus, PLL will be more scalable than
VP and CD if the gradient ascent procedure requires a large
number of iterations to converge.

Relaxed Learning Formulation with

Approximate Counts

Next, we consider a simple modification of the likelihood
function in which instead of computing the exact counts
Ni(ω), we assume that we have access to a procedure that
computes approximate counts Mi(ω) such that the absolute
error between the two is bounded by ε. Namely, ∀ω |Ni(ω)−
Mi(ω)| ≤ ε where ε ≥ 0. In this case, our relaxed learning
objective is defined as:

maximize
θ

�̂(θ : ω) =
∑
i

θiMi(ω)− log Ẑθ

subject to ∀ω |Ni(ω)−Mi(ω)| ≤ ε

where Ẑθ =
∑

ω′ exp(
∑

i θiMi(ω
′)).

We show that this relaxed learning objective is a reason-
able approximation to the original objective in that the dif-
ference in the log-likelihood between the parameters learned

using the relaxed and original objective is bounded linearly
by the sum of parameter values and ε. In other words, if
the data is generated from an MLN that is fairly smooth
in that it does not have large weights, then the distribution
learned using the relaxed objective will be fairly close to the
one learned using the original objective. We assume that all
weights are positive for simplicity of exposition. Note that
this is not a limitation of our result since we can easily con-
vert an arbitrary MLN to an equivalent MLN having posi-
tive weights by negating each clause having negative weight
along with its weight2. Formally, if we replace a weighted
formula (f,−θ) by (¬f, θ), where 0 < θ < ∞ then the
distribution represented by the MLN does not change.
Formally, (proof is included in a longer technical report
(Sarkhel et al. 2015))

Theorem 1. Let α = (α1, . . . , αm) and β = (β1, . . . , βm)
denote the parameters (weights) that optimize the function
�(θ : ω) and �̂(θ : ω) respectively (α is the maximum like-
lihood estimate of θ) and let ε be an upper-bound on the er-
ror of the approximate counting algorithm used to estimate
Ni(ω), then

�(α : ω)− �(β : ω) ≤ 2ε
∑
i

(αi + βi)

The power of Theorem 1 is that as the approximate count-
ing algorithm becomes more accurate, the bound specified
in Theorem 1 becomes tighter. This allows us to leverage
significant advances in approximate counting algorithms to
improve the quality of our learning algorithms. Numerous
studies have shown that algorithms such as loopy Belief
propagation (Murphy, Weiss, and Jordan 1999) and its gen-
eralizations (Yedidia, Freeman, and Weiss 2005) often yield
highly accurate estimates of the counts and we can use them
instead in practice. In our experiments, we use IJGP to com-
pute the approximate counts. It should be noted that IJGP
is remarkably effective in practice in estimating the parti-
tion function. For instance, it won the 2010 and 2012 UAI
approximate inference competitions (Elidan and Globerson
2010; 2011).3

Scalable Learning Algorithms using

Approximate Counts

In this section, we describe how to scale up the contrastive
divergence algorithm using IJGP as the solution counter.

Our approach for scaling up Contrastive Divergence is de-
scribed in Algorithm 1. The algorithm takes as input a MLN
M , an i-bound for IJGP, which determines its complexity,
number of samples N for Gibbs sampling, and a dataset ω
(world) and outputs the learned weights. The algorithm has

2Negating a clause makes it a conjunction. We can easily extend
Venugopal et al.’s method for solving #SG to this case.

3Another option is to use sampling based algorithms for com-
puting the counts including rejection sampling and advanced al-
gorithms such as SampleSearch (Gogate and Dechter 2011),
and Appoxcount (Gomes et al. 2007). Unfortunately, these algo-
rithms work with binary domains and are very inefficient at pro-
cessing multi-valued variables.
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Algorithm 1 Scalable Contrastive Divergence
(MLN M , i-bound for IJGP, Number of samples N , dataset
or world ω, learning rate η, update frequency K)

Initialize all weights {θj} using a prior.
/* Compute the data counts */
for all formulas fj do:

Convert (fj , ω) to a constraint network Cj

Compute Mj(ω) using the algorithm IJGP(i)
and store it in a lookup table.

ω(0) = ω
/* Gradient Ascent */
Repeat until convergence

/* Gibbs sampling using Approximate counts */
for t = 0 to N − 1 do:

Select a random ground atom S

Compute Pr(S|ω(t)
−S) using Equation (3)

Sample a value S = s from Pr(S|ω(t)
−S)

Set ω(t+1) = (ω
(t)
−S, S = s)

/* Weight update */
for each weight θj do

θj = θj + η(Mj(ω)− 1
K

∑K
t=1 Mj(ω

(t)))
return {θj}.

three major steps: (1) computing the data counts, (2) the gra-
dient ascent procedure, and (3) Gibbs sampling which is a
sub-step of gradient ascent.

To scale up the computation of the data counts, we first
convert each formula into a constraint network and then use
IJGP(i) instead of an exact algorithm to compute the counts
Mj(ω). We store these counts in a look-up table since they
will be used at each iteration of gradient ascent.

The most time consuming sub-step in the gradient ascent
procedure is Gibbs sampling (Geman and Geman 1984).
In Gibbs sampling, we start with a complete assignment
ω(0) (world) and in each subsequent iteration t, we compute
the conditional distribution over a randomly chosen ground
atom S, given assignments to all other atoms except S, de-
noted by ω−S. To scale up Gibbs sampling, instead of using
an exact algorithm to compute the conditional distribution,
we use an approximate algorithm. Specifically, the distribu-
tion is computed using the following equation:

P (S = s|ω(t)
−S) ∝ exp

( ∑
fj∈MB(S)

θjMj(ω
(t)
−S, S = s)

)
(3)

where s ∈ {0, 1}, MB(S) are the formulas in the Markov
Blanket of S (namely the formulas that S is involved in),
θj is the (current) weight attached to fj , (ω(t)

−S, S = s) is
the composition of the assignments ω

(t)
−S and S = s and

Mj(ω
(t)
−S, S = s) is computed by running IJGP(i) over the

constraint network associated with fj and (ω
(t)
−S, S = s).

Note that all CSPs associated with fj have the same func-
tion scopes (set of variables involved in a function is called
its scope). Thus, we can use the same cluster graph to run
Belief propagation via IJGP over all iterations, indexed by
t. Moreover, since ω(t) and ω(t+1) differ only by an assign-
ment to just one ground atom, only a few function (potential)

values will be different between the CSPs of fj at iterations t
and t+1. As a result, we can reuse the messages in iteration
t for message passing in iteration t+1. In fact, if we use ad-
vanced message passing strategy such as the one by Elidan
et al. (Elidan, McGraw, and Koller 2006), where messages
are ordered by how much each message has changed from
one iteration to the next, IJGP is likely to converge quickly.
We used this advanced ordering strategy in our experiments
and found that IJGP converges within 3 iterations in most
cases. Moreover, we do not have to calculate a large number
of messages because they are guaranteed not to change be-
tween subsequent iterations. For example, if all the incoming
messages at a cluster have not changed, the outgoing mes-
sage will be the same as in the previous iteration.

For lack of space, we skip the description of scaling up
VP and PLL, noting that they can be similarly extended us-
ing the scalable CD algorithm detailed here as a guide. The
time and space complexity of the various weight learning
algorithms is described in Table. 1.

Experiments
The fundamental question that we seek to answer through
our experiments is, can approximate counting (within learn-
ing) improve scalability while learning a highly accurate
model? We perform a detailed evaluation to answer the
above question and compare the performance of our learn-
ing algorithms with those implemented in Alchemy (Kok et
al. 2008) and Tuffy (Niu et al. 2011), two state-of-the-art
MLN learning systems. We conducted our experiments on
three datasets publicly available on the Alchemy website.
We used three datasets: WebKB, Entity Resolution (ER) and
Protein Interaction (Protein). For sanity check, we added an-
other dataset called Smoker, that we generated randomly for
the Friends and Smokers MLN in Alchemy. Table 2 shows
the details of our datasets.

Methodology

We implemented three different algorithms: Contrastive Di-
vergence (CD), Voted Perceptron (VP) and Pseudo Log
Likelihood based learning (PLL). Each algorithm performed
approximate counting using IJGP. In each algorithm, we im-
plemented the diagonal newton method (Lowd and Domin-
gos 2007) to adapt the learning rate dynamically. For all
these algorithms, on all four datasets, we performed five-
fold cross-validation. In each fold’s test set, we measured
the conditional log-likelihood (CLL). The advantage of the
CLL is that it directly measures the quality of the probabil-
ity estimates produced. The CLL of a query predicate is the
average log-probability over all ground atoms of the query
predicate given the evidence. It should be noted that com-
puting the CLL is also intractable. Therefore, we use Gibbs
sampling to estimate the probability of each ground atom
corresponding to the query predicate. We collected 100, 000
Gibbs samples to estimate each probability.

For approximate counting within our learning algorithms,
we used the IJGP algorithm. Specifically, for any formula
f and world ω, when to estimate the number of satisfied
groundings of f in ω, we run IJGP on the CSP encoding
for (f, ω) for up to 10 iteration.
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Algorithm Space Complexity Time Complexity

Contrastive Divergence O(F exp(min(i, w∗))) O(MNFT exp(min(i, w∗ + 1)))
Voted Perceptron O(F exp(min(i, w∗))) O(MNFT exp(min(i, w∗ + 1)))

Pseudo Likelihood O(F exp(min(i, w∗)) +AF ) O(AFT exp(min(i, w∗ + 1)) +MAF )

Table 1: Time and Space Complexities for different learning algorithms (showing their scalability potential). M is the number
of gradient ascent steps, N is the number of samples (contrastive divergence via Gibbs sampling) or MaxWalkSAT flips (voted
perceptron), F is the number of formulas in the MLN, A is the total ground atoms in the MLN and T be the number of IJGP
iterations. i is a parameter that controls the maximum cluster size for IJGP and w∗ is the maximum treewidth of the encoded
CSPs.

Dataset #Clauses #Atoms #Parameters #Evidence

Smoker 125K 63K 5 7.5K
WebKB 892 million 20 million 64 227.5K
Protein 408 million 3.3 million 211 25.8K

ER 1.7 trillion 5.5 million 15 56K

Table 2: Dataset sizes.#Evidence is number of true evidence
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Figure 2: Convergence plots. (a) shows a plot of conver-
gence time vs data size for Protein; (b) shows a plot of
change in weights vs time (in hours) for WebKB. ALY cor-
responds to Alchemy and CDw corresponds to contrastive
divergence with i-bound w

Results

Table 3 illustrates our results on the different benchmarks.
For each benchmark, we divide the data into 5 sets and use
cross-validation to obtain the CLL value for each fold. For
each algorithm, we also put a time bound of 96 hours (4
days) and a memory bound of 8 GB. Table 3 shows the aver-
age CLL value obtained from the 5 folds along with the stan-
dard deviation. We compare the results of our 3 learning al-
gorithms with 3 other algorithms implemented in Alchemy:
VP, CD and a variant of CD using MC-SAT instead of Gibbs
sampling, as well as the MC-SAT based learning algorithm
implemented in Tuffy.

As seen in Table 3, we could only run Alchemy on the
Smoker dataset, as it ran out of memory while creating the
ground Markov network from the data for all other datasets.
For the same reason we could only run Tuffy on WebKB
and Smoker only (since our methods do not require ground-
ing the MLN, we could scale up to larger MLNs). Among
CD, VP and PLL, the results were fairly similar for We-
bKB, Protein and the ER datasets. CD was marginally bet-
ter (larger CLL) than VP and PLL on these datasets. For
the smokers problem, CD was much better than VP or PLL.
The Alchemy learning algorithms performed similar to VP
and PLL for the Smoker dataset. However, we could not ob-
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Figure 3: Accuracy plots. (a) shows a plot of CLL vs data
size for Protein; (b) shows a plot of CLL vs training time
(in hours) for WebKB. ALY corresponds to Alchemy and
CDw corresponds to contrastive divergence with i-bound w

tain the results for Alchemy-CD since the weights it learned
were infinite for the Smoker dataset. In the case of Tuffy, our
CD algorithm performed better than Tuffy (which uses MC-
SAT as its inference subroutine) in both WebKB as well as
the Smoker datasets. VP performed marginally worse than
Tuffy for WebKB and PLL performed marginally better than
Tuffy for WebKB. For the Smoker dataset, Tuffy performed
better than VP and PLL.

As mentioned in earlier sections, we can control the
space/time complexity in IJGP using a parameter (i-bound)
that specifies the maximum cluster-size of the join graph that
IJGP operates on. The complexity of learning increases as
we increase the value of i-bound. Table 4 illustrates the re-
sults of using different i-bound values in IJGP with the CD
algorithm. For larger i-bounds, the counts are exact (indi-
cated by a ∗ in Table 4). We can see that for the WebKB and
ER datasets, for i-bound > 1, the weights did not converge.
For the Protein dataset, the weights converged for all values
of i-bound. For i-bound = 1, the algorithm converged very
quickly on all three datasets. Furthermore, the CLL scores
did not vary by much as we increase the i-bound. Thus, the
difference in results when using approximate counts is al-
most as good as the results obtained using exact counts. Em-
pirically, this suggests that we only need a “reasonably good
estimate” of the partition function from each encoded con-
straint network to move along the correct gradient direction.

We further illustrate the scalability and accuracy of our
approach through a set of 4 experiments shown in figures 2
and 3. Owing to space constraints, we only show results for
the Protein and WebKB datasets with the CD algorithm.

In Fig. 2 (a), we vary the size of the training data by sub-
sampling the original datasets according to the parameter k

1071



System WebKB Protein ER Smoker

Alchemy-VP X X X −1.21± 0.03
Alchemy-MCSAT X X X −1.21± 0.02
Alchemy-CD X X X ∗
Tuffy-MCSAT −0.89± 0.05 X X −0.698± 0.04
CD −0.66± 0.004(i = 2) −0.779± 0.0002(i = 2) −0.694± 1× 10−6(i = 2) −0.695± 0.01(i = 2)
VP −0.91± 0.001(i = 3) −0.78± 0.001(i = 2) −0.693± 2× 10−6(i = 3) −1.16± 0.18(i = 3)
PLL −0.72± 0.001(i = 3) −0.74± 0.0004(i = 3) −0.693± 2× 10−5(i = 3) −1.61± 0.08(i = 3)

Table 3: Results on benchmark datasets. The average and standard deviation of the CLL score for five-fold cross validation is
shown. Alchemy-VP is the Alchemy version of VP, Alchemy-CD is the Alchemy version of CD using Gibbs sampling and
Alchemy-MCSAT is a version of contrastive divergence using MC-SAT, Tuffy-MCSAT is the Tuffy version of contrastive
divergence using MC-SAT. X means that we ran out of memory when running the algorithm. ∗ indicates that Alchemy-CD
gave us an error during weight learning.(i = ∗) reports the i-bound that gave the best result for our respective algorithms.

Benchmark i-bound CLL Time (seconds)

ER
1 -0.6943 653
2 -0.693 X

3∗ -0.693 X

WebKB
1 -0.788 92,327

2∗ -0.664 X
3∗ -1.686 X

Protein
1 -0.9948 178.2

2∗ -0.7797 293
3∗ -0.7795 260

Table 4: Effect of IJGP i-bound on convergence. Conver-
gence times for the CD algorithm when using different
IJGP bounds for approximate counting. Larger bounds im-
ply larger complexity. X indicates that we could not con-
verge. ∗ indicates that counting is exact as that i-bound is
larger than the treewidth of the formulas.

(0 ≤ k ≤ 1) and plot the convergence times for different
data-sizes. k, known as Sampling fraction, is the ratio of
sample size to population size. As Fig. 2 (a) shows, Alchemy
cannot scale up beyond k = 0.1, Tuffy on the other hand is
slightly more scalable and stops after k = 0.3. In contrast
our approach can easily scale up to all values of k. Even
more importantly, it converges much faster than Tuffy and
Alchemy as seen for small k. Fig. 2 (b) shows similar results
and the weights learned by our approach converges rapidly
while the variance in the weights learned by Tuffy is much
larger. Further, as shown in our results, even for lower i-
bound values (which means increased scalability), the con-
vergence times during learning are fairly comparable.

Finally, Fig. 3 illustrates the accuracy of our approach as
compared to Alchemy and Tuffy. Fig 3 (a) shows the CLL
for different sizes of training data (controlled using the pa-
rameter k). Similar to the previous result, Alchemy cannot
process training data beyond k = 0.1 while Tuffy fails af-
ter k = 0.3. In contrast our approach is much more scal-
able. At the same time, the accuracy of our approach is
higher as compared to Tuffy/Alchemy. Further, as shown
in our results, using approximate counting (i-bound is less
than treewidth) the learning accuracy is quite comparable to
the accuracy obtained using exact counting (i-bound equal
to treewidth). This proves, apart from our theoretical result,
that the accuracy of our approach is not diminished as a
result of our approximate counting. Similar results are ob-

served in Fig. 3 (b) where we illustrate CLL vs training time.

Discussion

The #SG problem can be modeled quite easily as comput-
ing an aggregate query in databases. Therefore, query op-
timization techniques (Vardi 1982; Niu et al. 2011) can be
leveraged for solving #SG. However, these methods are ex-
act and thus have the same drawbacks as the approach in
(Venugopal, Sarkhel, and Gogate 2015). In contrast, here
we proposed an approximate solution that is far more scal-
able. Combining our approximation with database query op-
timization is an interesting direction for future work.

Recently, lifted inference methods have been proposed to
scale up weight learning in MLNs (Ahmadi et al. 2013;
Van den Broeck, Meert, and Davis 2013). However, a ma-
jor disadvantage with these approaches is that they fail to
scale up when the MLN does not have exploitable sym-
metries. For instance, in the case of discriminative learn-
ing, it is well-known that evidence breaks symmetries in
the MLN (Van den Broeck and Darwiche 2013) and thus,
lifted inference methods are ineffective in such cases. As a
result, all lifted approaches to weight learning learn weights
generatively. Our approach on the other hand, is applicable
for both generative and discriminative learning (as well as
alternative learning objectives such as PLL). Further, since
our approach complements lifted approaches (#SG is re-
quired in lifted inference), in future, we aim to combine our
approach with lifted methods (especially approximate lift-
ing methods such as, (Van den Broeck and Darwiche 2013;
Sarkhel, Singla, and Gogate 2015; Venugopal and Gogate
2014)) to further enhance scalability.

Conclusion

Weight learning in MLNs is a challenging task. Even algo-
rithms that optimize alternate, approximate learning objec-
tives such as CD, VP and PLL are unable to scale up to large
datasets and complex MLNs. To address this scalability is-
sue, practitioners often have to employ background knowl-
edge and ad-hoc solutions. In this paper, we presented a
principled approach using approximate counting for scaling
up weight learning to much larger datasets than is possible
today. We empirically and theoretically showed the power
of our approach and that it is not only orders of magnitude
more scalable but also much more accurate when compared
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to state-of-the-art weight learning algorithms implemented
in MLN software packages such as Alchemy and Tuffy.
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