
Model Checking Probabilistic
Knowledge: A PSPACE Case

Xiaowei Huang and Marta Kwiatkowska
University of Oxford, UK

Abstract

Model checking probabilistic knowledge of memoryful se-
mantics is undecidable, even for a simple formula concerning
the reachability of probabilistic knowledge of a single agent.
This result suggests that the usual approach of tackling un-
decidable model checking problems, by finding syntactic re-
strictions over the logic language, may not suffice. In this pa-
per, we propose to work with an additional restriction that
agent’s knowledge concerns a special class of atomic propo-
sitions. A PSPACE-complete case is identified with this ad-
ditional restriction, for a logic language combining LTL with
limit-sure knowledge of a single agent.

Introduction

For a system with multiple agents, the properties concern-
ing agents’ knowledge can be important for its correctness.
For instance, for a system with a diagnosis component, it
is essential to have the property that, when a failure of the
system occurs, the component can eventually know it. Some
specific action (e.g., recover or terminate) can then be taken
once the component gains the knowledge. Temporal epis-
temic logic (Fagin et al. 1995) has been developed to express
these properties.

When considering stochasticity in the environment, e.g.,
imprecise sensor information, component failure or the oc-
currence of random events, it is necessary to formalise prob-
abilistic knowledge. To work with such stochastic multia-
gent systems, the knowledge modality needs to be endowed
with probabilistic measures, to express properties such as
“once a failure occurs, the diagnosis component can eventu-
ally know this with probability greater than 90%”.

However, it has been shown in (Huang, Su, and Zhang
2012; Huang 2013) that the model checking problem for
a logic of probabilistic knowledge and discrete time is un-
decidable: the emptiness problem of probabilistic finite au-
tomata (Paz 1971) can be reduced to the model checking of
a very simple formula concerning the reachability of a single
agent’s probabilistic knowledge over an atomic proposition.
Moreover, due to the undecidability of value 1 problem of
probabilistic finite automata (Gimbert and Oualhadj 2010)
it is a reasonable conjecture that model checking limit-sure

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

knowledge is also undecidable. Intuitively, we say that agent
i has limit-sure knowledge over φ to mean that i knows φ
with probability arbitrarily close to 1. These pessimistic re-
sults suggest that the usual approach of achieving decidabil-
ity for an undecidable model checking problem, by finding
syntactic restrictions over the logic language, may not suf-
fice in this particular case.

The goal of this paper is to identify a sufficiently general
decidable logic fragment for partial information stochas-
tic multiagent systems that admits efficient model check-
ing. More specifically, we suggest working with formulas
in which the agent’s limit-sure knowledge concerns a special
class of atomic propositions, named resource propositions to
denote that they have the same value in all initial states and
can change their value at most once in a run. These propo-
sitions have been the subject of many studies, e.g., diagnos-
ability of discrete-event systems and winning of multiplayer
games, and can express a wide range of properties such as
safety, reachability and diagnosability. With this additional
restriction, we obtain a logic combining LTL and an agent’s
limit-sure knowledge with PSPACE-complete model check-
ing complexity, same as LTL model checking.

Preliminaries: Stochastic MAS and PLTLK

A multiagent system (MAS) consists of a set of agents run-
ning simultaneously within an environment (Fagin et al.
1995). At each time point, every agent is in some local state,
and the environment is in some environment state. A global
state is formed from an environment state and local states,
one for each agent. At a global state, every agent will make
an observation over the system, take a local action and up-
date its local state, and the environment will update the en-
vironment state according to the joint local action of the
agents.

A stochastic multiagent system (SMAS) (Huang, Su, and
Zhang 2012; Huang 2013) introduces probabilistic charac-
teristics into a multiagent system: initial probability and
transition probability. Initial probability assumes a proba-
bilistic distribution over the states. Transition probability as-
sumes a probabilistic distribution over the next possible en-
vironment states after considering the joint action from the
agents. Moreover, (Huang, Luo, and van der Meyden 2011)
defines a stochastic multiagent system in which agents take
randomised protocol. Formally, a finite SMAS is a tuple

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

2516

M = (Agt, Prop, S , {Acti}i∈Agt, {Ni}i∈Agt, {Oi}i∈Agt, PI, PT, π),
where Agt is a finite set of agents, Prop is a finite set of
atomic propositions, S is a finite set of environment states,
Acti is a finite set of local actions of agent i ∈ Agt such that
Act = Act1 × ... × Actn is a set of joint actions, Ni : S →
P(Acti) \ {∅} provides on every state a nonempty set of lo-
cal actions that are available to agent i, PI : S → [0..1] is
an initial probability distribution such that

∑
s∈S PI(s) = 1,

PT : S × Act × S → [0, 1] is a probabilistic transition
function such that

∑
s′∈S PT (s, a, s′) = 1 for all s ∈ S and

a ∈ Act, Oi : S → O is an observation function for each
agent i ∈ Agt such that O is a set of possible observa-
tions, and π : S → P(Prop) is an interpretation of the
atomic propositions Prop at the states. We require that, for
all states s1, s2 ∈ S and i ∈ Agt, Oi(s1) = Oi(s2) implies
Ni(s1) = Ni(s2): an agent can distinguish two states with dif-
ferent sets of next available actions. A state s is an initial
state if PI(s) > 0. Note that the set of states S is the set of
environment states rather than the set of global states. Agent
i’s local states are derived from the observation function Oi.

To specify the properties of an SMAS, we have a logic
PLTLK that combines temporal operators, knowledge oper-
ator, and probability measures. Its syntax is given by

φ ::= p | ¬φ | φ1 ∧ φ2 | Xφ | φ1 U φ2 | Kiφ | E��hi φ | A��hi φ

where p ∈ Prop, i ∈ Agt, h is a rational constant in [0, 1],
and �� is a relation symbol in the set {≤, <, >,≥}. Intuitively,
formula Xφ expresses that φ holds in the next time instant,
φ1 U φ2 expresses that φ1 holds until φ2 becomes true, Kiφ
expresses that agent i knows φ, E��hi φ expresses that there ex-
ists a resolution of nondeterminism such that agent i knows
φ with probability in relation �� with constant h, and A��hi φ
expresses that for all resolutions of nondeterminism agent i
knows φ with probability in relation �� with constant h. The
concept of resolution of nondeterminism will be explained
later. Other operators can be obtained in the usual way, e.g.,
Fφ ≡ True U φ, Gφ ≡ ¬F¬φ, etc.

A probability space is a triple (W, F, μ) such that W is a set,
F ⊆ P(W) is a set of measurable sets in P(W), closed under
countable union and complementation, and μ : F → [0, 1] is
a probability measure, such that μ(W) = 1 and μ(U ∪ V) =
μ(U)+μ(V) if U∩V = ∅. As usual, we define the conditional
probability μ(U |V) = μ(U∩V)

μ(V) when μ(V) � 0.
The semantics of the language PLTLK is based on a vari-

ant of interpreted system (Fagin et al. 1995), named prob-
abilistic interpreted system (PIS). A PIS introduces into an
interpreted system additional information: every transition
relation is labelled with a probability.

A path ρ is a finite or infinite sequence of states s0s1 . . .
such that, for all k ≥ 0, there exists some a ∈ Act such
that PT (sk, a, sk+1) > 0. Given a path ρ = s0s1 . . ., we
use s(ρ,m) to denote the state sm, and s(ρ, 0..m) to denote
the sequence s(ρ, 0)...s(ρ,m) of states. A path ρ is initial-
ized if PI(s(ρ, 0)) > 0. For a finite path ρ, we write last(ρ)
for its last state. Without loss of generality, we assume that
Agt = {1, ..., n}. Let Li be the set of local states of agent
i ∈ Agt. A global state s of an SMAS is an (n + 1)-tuple
(se, s1, . . . , sn) such that se ∈ S and si ∈ Li for all i ∈ Agt. At

a global state, each agent independently takes some local ac-
tion, which represents the decision it makes. A joint action
of a multi-agent system in some global state is an n-tuple
a = (a1, . . . , an) such that ai ∈ Acti for all i ∈ Agt. The en-
vironment responds to the joint action by updating its state
according to the probabilistic distribution defined in PT .

From each initialized infinite path ρ, one may define a
run in a PIS. Time is represented discretely by using natural
numbers. A run is a function r : N → S × L1 × . . . × Ln
from time to global states. A pair (r,m) consisting of a run
r and time m is called a point, which may also be written as
r(m). If r(m) = (se, s1, . . . , sn) then we define sx(r,m) = sx
and sx(r, 0..m) = sx(r, 0) . . . sx(r,m), for x ∈ {e} ∪ Agt. Let a
system R be a set of runs, and we call R×N the set of points
of R. Relative to a system R, we define the set Ki(r,m) =
{(r′,m′) ∈ R ×N | si(r′,m′) = si(r,m)} to be the set of points
that are, for agent i, indistinguishable from the point (r,m).

We work with the memoryful assumption mf, i.e., agents
have sufficient memory to remember all the past observa-
tions. Note that we interpret the states of the SMAS as
states of the environment. Given an initialized infinite path
ρ, we obtain a run ρmf by defining each point (ρmf,m) with
m ∈ N as follows. The environment state at time m is
se(ρmf,m) = s(ρ,m). The local state of agent i at time m
is si(ρmf,m) = Oi(s(ρ, 0)) · . . . ·Oi(s(ρ,m)), representing that
the agent remembers all its observations.

In a system with both nondeterminism and probability
such as an SMAS, we need to carefully handle the issue of
measurability: runs of such a system are not measurable un-
less all the nondeterministic choices are resolved. The usual
treatment, e.g., that of Halpern and Tuttle (Halpern and Tut-
tle 1993), introduces adversaries to resolve nondeterminism.
The set of runs that are consistent with the behaviour of a
given adversary consist of a measurable space. In an SMAS,
we assume that the nondeterminism in the system is resolved
by agents taking actions. A joint strategy σ : S ∗ → Act of
the agents provides for every finite path a joint action such
that σ(ρ)i ∈ Ni(last(ρ)) for all i ∈ Agt. We write PathI(M, σ)
for the set of initialized infinite paths in M which are consis-
tent with the strategy σ. For every joint strategy σ, we define
an associated cell c as follows. First, we define a subset of
runs

Rc = {ρmf | ρ ∈ PathI(M, σ)}.
We now define a probability space (Rc, Fc, μc) using a well-
known construction (e.g., that of (Vardi 1985)). Given a fi-
nite initialized path ρ of m + 1 states and m actions, write
Rc(ρ) = {r ∈ Rc | se(r, 0..m) = s(ρ, 0..m)} for the set of runs
with prefix ρ. (One may view this as a cone of runs shar-
ing the same prefix ρ.) Let Fc be the minimal algebra with
basis the sets {Rc(ρ) | ρ prefixes some ρ′ ∈ Rc}, i.e., Fc is
the set of all sets of runs that can be constructed from the
basis by using countable union and complement. We define
the measure μc on the basis sets by

μc(Rc(ρ)) = PI(s(ρ, 0)) ×
m−1∏
i=0

PT (s(ρ, i), σ(s(ρ, 0..i)), s(ρ, i + 1)).

There is a unique extension of μc that satisfies the constraints
on probability measures (i.e., countable additivity and uni-

2517

versality), and we also denote this extension by μc. For a
joint strategy σ, we define a cell c as its corresponding prob-
ability space (Rc, Fc, μc). A point (r,m) is in c if r ∈ Rc. The
set of indistinguishable points for agent i in (r,m) assuming
c is K c

i (r,m) = Ki(r,m) ∩ {(r,m) | r ∈ Rc,m ∈ N}.
The probability space (Rc, Fc, μc) provides a common

prior over the set of runs in the cell c for all agents. Based
on this, we can define a probability space for every agent i
and every point (r,m) such that r ∈ Rc. Let R(U) = {r ∈
R | ∃m : (r,m) ∈ U} be the set of runs in R going through
some point in the set U ⊆ R × N. The probability informa-
tion over c is Pc = {PRc

i | i ∈ Agt}, where PRc
i is a func-

tion mapping each point (r,m) in c to a probability space
PRc

i (r,m) = (R(K c
i (r,m)), Fc

i (r,m), μc
r,m,i) such that

1. Fc
i (r,m) ⊆ P(R(K c

i (r,m))). Intuitively, at each point, each
agent has a probability space in which the carrier is the set
of runs going through points K c

i (r,m).
2. The measure μc

r,m,i is defined by μc as

μc
r,m,i(W) = μc(W | R(K c

i (r,m)))

where W ∈ Fc
i (r,m) is a set of runs.

Given an SMAS M, a probabilistic interpreted system (PIS)
is a tuple I(M) = (R,C, {Pc}c∈C, π), where R is a system of
runs, C is a set of cells in R such that R = ⋃{Rc | c ∈ C},
{Pc}c∈C is a set defining probability information for cells in
C, and π : R × N → P(Prop) is an interpretation such that
π(r,m) = π(se(r,m)).

The semantics of the language PLTLK in a PIS I =
(R,C, {Pc}c∈C, π) is given by interpreting formulas φ at points
(r,m) of I, using a satisfaction relation I, (r,m) |= φ, which
is defined inductively as follows.

• I, (r,m) |= p if p ∈ π(r,m),
• I, (r,m) |= ¬φ if not I, (r,m) |= φ
• I, (r,m) |= φ ∧ ψ if I, (r,m) |= φ and I, (r,m) |= ψ
• I, (r,m) |= Xφ if I, (r,m + 1) |= φ.
• I, (r,m) |= φU ψ if there exists a time m′ ≥ m such that
I, (r,m′) |= ψ and I, (r,m′′) |= φ for all m′′ with m ≤
m′′ < m′

• I, (r,m) |= Kiφ if for all points (r′,m′) ∈ Ki(r,m) we have
that I, (r′,m′) |= φ.
• I, (r,m) |= A��hi φ if for all cells c ∈ C, either K c

i (r,m) = ∅,
or μc

r,m,i(R({(r′,m′) | I, (r′,m′) |= φ})) �� h.
Intuitively, the agent i has a certain probabilistic knowl-
edge if, for all cells that the agent i thinks possible, the
conditional probability of satisfying the property φ given
the indistinguishability of agent i satisfies the specified re-
lation ��.
• I, (r,m) |= E��hi φ if there exists some cell c ∈ C such that
K c

i (r,m) � ∅ and μc
r,m,i(R({(r′,m′) | I, (r′,m′) |= φ})) �� h.

We will be interested in the problem of model checking
formulas in this system. A formula φ is said to hold on
M, written as M |= φ, if I(M), (r, 0) |= φ for all r ∈ R.
The model checking problem is then to determine, given an
SMAS M and a formula φ, whether M |= φ.

We write < for >, > for <, ≤ for ≥, and ≥ for ≤, and write
<̂ for ≤, >̂ for ≥, ≤̂ for <, and ≥̂ for >.

Proposition 1 We have the following deduction rules for
probabilistic knowledge operators.

1. I, (r,m) |= A��hi φ if and only if I, (r,m) |= A��1−h
i ¬φ.

2. I, (r,m) |= E��hi φ if and only if I, (r,m) |= E��1−h
i ¬φ.

3. I, (r,m) |= ¬A��hi φ if and only if I, (r,m) |= E�̂�1−h
i ¬φ.

4. I, (r,m) |= ¬E��hi φ if and only if I, (r,m) |= A�̂�1−h
i ¬φ

It has been shown in (Huang, Su, and Zhang 2012;
Huang 2013) that model checking PLTLK with memoryful
semantics is undecidable, even for its single-agent fragment.
Single-agent PLTLK is the fragment of PLTLK which al-
lows only a fixed agent in a formula. Given a probabilistic
finite automaton PA and a constant λ ∈ [0, 1], the empti-
ness problem (Paz 1971) is to determine the existence of a
finite word such that it is accepted by PA with a probabil-
ity greater than λ. The emptiness problem can be reduced to
the model checking problem M(PA) �|= GA≥1−λ

i ¬p such that
M(PA) is obtained from PA by a PTIME construction and p
is an atomic proposition.

In this paper, we identify a decidable fragment for this un-
decidable problem by placing restrictions on both the multi-
agent system and the specification formula.

Almost-Sure and Limit-Sure Knowledge

The usual approach for tackling high complexity of a prob-
lem having a formula as one of its inputs is to find syntactic
constraints on the logic language and show that the problem
is computationally easier if the input formula satisfies the
constraints. For temporal logic model checking, we work
with CTL instead of CTL* whenever possible, since CTL
model checking is PTIME-complete while CTL* model
checking is PSPACE-complete. For temporal logic synthe-
sis, the general problem is 2-EXPTIME complete (Pnueli
and Rosner 1989), whereas there is a working fragment in
polynomial time (Piterman, Pnueli, and Sa’ar 2006). For
temporal epistemic model checking, the general problem is
undecidable, with many decidable fragments obtained by re-
ducing the expressiveness of the logic or the memory re-
quirement of the agents (van der Meyden and Shilov 1999).

For probabilistic model checking, syntactic restrictions on
logic languages can also be found by working with qual-
itative properties, see e.g., (Courcoubetis and Yannakakis
1995). In this paper, we write A≥1

i φ and A≤0
i φ for limit-sure

knowledge, to express that agent i’s knowledge about φ is ar-
bitrarily close to 1 and 0, respectively. Given a system M and
a formula φwith a set of limit-sure knowledge sub-formulas,
we write M |= φ if, for any ε > 0, there is M |= φε , where φε
is obtained from φ by substituting limit-sure knowledge sub-
formula A≥1

i φ and A≤0
i φ with A≥1−ε

i φ and A≤εi φ, respectively.
Other than limit-sure knowledge, we may consider almost-
sure knowledge (i.e., A=1

i φ or A=0
i φ)

1. The following theorem

1Please note that the almost-sure knowledge in (Huang 2013) is
the limit-sure knowledge of this paper. We follow the definitions in
(Chatterjee and Henzinger 2012) to differentiate almost-sure prob-
ability and limit-sure probability.

2518

states that, for the problem we consider (i.e., agent’s knowl-
edge about atomic propositions), the almost-sure knowledge
can be reduced to the usual nondeterministic knowledge.
Theorem 1 Let p ∈ Prop be an atomic proposition. Then
we have that I, (r,m) |= A=1

i p if and only if I, (r,m) |= Ki p,
and I, (r,m) |= A=0

i p if and only if I, (r,m) |= Ki¬p.
For the limit-sure knowledge, we notice that the value 1

problem of probabilistic finite automata, which is to deter-
mine the existence of a finite word such that it is accepted by
PA with a probability arbitrarily close to 1, has been shown
to be undecidable (Gimbert and Oualhadj 2010). It is there-
fore a reasonable conjecture that model checking limit-sure
knowledge may also be undecidable in general.

These results suggest that, except for almost-sure knowl-
edge, imposing restrictions over the input formulas may not
be sufficient to obtain a decidable problem. In this paper, we
propose to study the problem which concerns agents’ limit-
sure knowledge over a special class of atomic propositions.

Systems with Resource Propositions

An atomic proposition p is a resource proposition if it satis-
fies the following two conditions:
• for all states s1, s2 with PI(s1) > 0 and PI(s2) > 0, we

have that p ∈ π(s1) if and only if p ∈ π(s2).
• for all runs r ∈ R, there exists at most one time m ∈ N such

that either p ∈ se(r,m) and p � se(r,m+1), or p � se(r,m)
and p ∈ se(r,m + 1).

Intuitively, a resource proposition has the same value on all
initial states, and can change its value at most once on a run.
As the name suggests, a resource proposition may be used
to simulate a certain resource of the system that may or may
not be consumed during a system execution. The resource,
however, cannot be recovered once consumed.

The resource propositions are the subject of many studies
and can express a wide range of properties. The results of the
paper can therefore be applied to a large class of SMASs.
Example 1 In a two-player game of reachability and safety
objectives, the winning of an agent can be regarded as a
resource proposition: for reachability, it is False at the ini-
tial states and turns into True when a goal state is reached;
for safety, it is True at the initial states and turns into False
whenever an unsafe state is reached.

Example 2 In the diagnosability of discrete-event systems,
the occurrence of a failure event can be regarded as a re-
source proposition: it is False at the initial state and turns
into True once a failure event occurs.

In both examples, the value of a resource proposition can
be changed at most once in a run. Let KProp ⊆ Prop be
a set of resource propositions. The checking of whether a
given proposition p is a resource proposition can be done
by standard LTL model checking. First of all, we trans-
form the SMAS M into a nondeterministic system U(M) by
substituting probabilistic distributions with nondeterministic
choices. The construction of U(M) can follow the approach
of constructing Ni(M, ∅), which will be given in the next sec-
tion. Then, we have the following conclusion.

Theorem 2 A given proposition p ∈ Prop is a resource
proposition if and only if one of the following conditions
holds:

• U(M) |= p ∧ ((p U G¬p) ∨Gp)
• U(M) |= ¬p ∧ ((¬p U Gp) ∨G¬p)

Although a resource proposition may start with either False
or True, we only discuss the case where it starts with False.
The other case can be obtained by introducing a new propo-
sition which takes the negated value of the current proposi-
tion in all states.

Language with Restrictions

The following language is a fragment of the PLTLK lan-
guage, named LTL(PKls

i) in the paper,

φ ::= p | ¬p | φ1 ∨ φ2 | φ1 ∧ φ2 | Xφ | φ1 U φ2 | ψ
ψ ::= A≥1

i q | A≤0
i q | ψ1 ∨ ψ2 | ψ1 ∧ ψ2

for p ∈ Prop and q ∈ KProp. Intuitively, it imposes the
following syntactic restrictions2 on PLTLK: 1) temporal op-
erators cannot appear in the scope of a probabilistic knowl-
edge operator, 2) probabilistic knowledge operator can only
express the limit-sure knowledge of a fixed agent i over
resource propositions, and 3) the formulas are in negation
normal form such that all probabilistic knowledge operators
are positive (that is, A��hi φ instead of E��hi φ). The expressive-
ness of the language LTL(PKls

i) subsumes the LTL language.
Moreover, it should also be noted that, although the formula
can only express a fixed agent’s knowledge, the system may
be composed of multiple agents.

Example 3 For the diagnosability of a stochastic discrete-
event system, the following LTL(PKls

i) formula expresses a
diagnosability notion:

G(p f ⇒ F A≥1
obsr p f) (1)

which states that, once a failure event occurs, the observer
obsr will eventually know this with probability arbitrarily
close to 1.

The rule 1 of Proposition 1 enables the transformation be-
tween formulas of the form A≥1

i φ and A≤0
i φ. Therefore, we

assume in the following that all limit-sure knowledge for-
mulas are of the form A≥1

i φ, where φ is p or ¬p for some
resource proposition p.

In the following sections, we will show that model check-
ing LTL(PKls

i) is PSPACE-complete. It seems that the prob-
lem is not harder than LTL model checking. However, we
show that, while LTL model checking is NL-complete when
the formula is fixed, model checking LTL(PKls

i) is PSPACE-
complete when the formula is fixed.

2These constraints can also be seen as semantic restrictions be-
cause they consider limit-sure knowledge. For the pure syntactic
restrictions of almost-sure knowledge, by Theorem 1, the model
checking problem can be reduced to the problem of nondetermin-
istic knowledge.

2519

s0

s1

s2

a

a

a

1.0

1.0
0.5

0.5

(s0, {s0}) (s1, {s1, s2}) (s0, {s0, s2})

(s2, {s1, s2}) (s2, {s0, s2})

a

a

a

a

a

a

a

Figure 1: A stochastic multiagent system and its expanded
knowledge-state system

PSPACE Upper Bound

Let φ be a formula and ϕ = ¬φ its negated formula. W.l.o.g.,
assume that ϕ is of negation normal form, which can be
achieved by applying negation propagation rules of LTL for-
mulas and the deduction rules of Proposition 1. Recall that
¬A≥1

i φ ≡ E>0
i ¬φ. All knowledge formulas in ϕ are of the

form E>0
i φ, for φ being p or ¬p for some resource proposi-

tion p.
For every knowledge subformula E>0

i φ of ϕ, we introduce
a new atomic proposition q+, if φ = q, or q−, if φ = ¬q. Let
Hϕ be the set of new atomic propositions of the formula ϕ.
We use kq to range over propositions in Hϕ.

Limit-Sure Knowledge Needs More Than A Subset Con-
struction The usual approach (van der Meyden and Shilov
1999) of handling knowledge operators for a single agent
proceeds by attaching to every state a set of states, called
knowledge-state, representing the agent’s knowledge at that
state. Formally, a system M = (S , I,→, π) is expanded into
a knowledge-state system N(M) = (S × P(S), {(s, P) | s ∈
I, P = {t ∈ I | Oi(s) = Oi(t)}},→′, π′) such that (s, P) →′
(t,Q) if s → t and Q = {t′ | s′ ∈ P, s′ → t′,Oi(t′) = Oi(t)},
and π′((s, P)) = π(s). The model checking problem of mem-
oryful semantics can then be reduced to the model check-
ing problem of memoryless semantics. However, as we will
show in the following example, this construction is insuffi-
cient when working with limit-sure knowledge.

Example 4 Consider a system of a single agent i with 3
states {s0, s1, s2}. The transition relation is given in the left
diagram of Figure 1. The agent is blind, i.e., Oi(s0) =
Oi(s1) = Oi(s2). A resource proposition p is such that
p ∈ π(s2) but p � π(s0) ∪ π(s1). For this system, a spec-
ification formula FA≥1

i p says that the agent i’s knowledge
about p will be arbitrarily close to 1. The right diagram
of Figure 1 gives its expanded knowledge-state system. All
knowledge-states of the expanded states contain one of the
states in {s0, s1}. This means that ¬p is always considered
possible in these states, and therefore a wrong conclusion
may be reached that FA≥1

i p is unsatisfiable. However, we
notice that FA≥1

i p is satisfiable, because the probability of
the runs satisfying ¬p will be arbitrarily close to 0.

In the next example, we present an approach for dealing
with limit-sure knowledge by a 2-subset construction.

Example 5 Consider a system of a single agent i with 4
states {s0, s1, s2, s3}. The transition relation is given in the
top diagram of Figure 2. The agent is blind, i.e., Oi(s0) =
Oi(s1) = Oi(s2) = Oi(s3). A resource proposition p is such

s0

s1

s2

a

a

1.0

1.0
0.5

0.5

(s0, {s0}, ∅)

(s1, {s1, s2}, ∅) (s1, {s1, s2, s3}, {s1})

(s2, {s1, s2}, ∅)
(s2, {s1, s2, s3}, {s1})

a

a

a

a

a

a

s3

0.5

0.5

a

a

(s3, {s1, s2, s3}, {s1})
a a

Figure 2: A stochastic multiagent system and its expanded
probabilistic-knowledge-state system

that p ∈ π(s1) but p � π(s0) ∪ π(s2) ∪ π(s3). For this sys-
tem, a specification formula FA≥1

i ¬p says that the agent i’s
knowledge about ¬p will be arbitrarily close to 1.

Its knowledge-state system includes infinite paths in which
the knowledge states in the loop contain the state s1. Ac-
cording to Example 4, we cannot conclude that FA≥1

i ¬p is
unsatisfiable. The unsatisfiability can be justified with a 2-
subset construction, as shown in the bottom of Figure 2.
Each probabilistic-knowledge-state contains a state and two
sets of states. The first two components are the same as those
of knowledge-state systems. For the last component, it is a
subset of the knowledge state, and once it is nonempty, it
will be used to keep those states whose probability cannot
be leaked by taking joint actions. See the algorithm for the
explanation of how to prevent the probability leakage.

For this example, on any of the three loop states, we let
{s1} be the subset of states in which the probability cannot
be leaked. Therefore, we can conclude that FA≥1

i ¬p is un-
satisfiable. On the other hand, for the system in Example 4,
there exists no subset of a knowledge state which can keep
the probability. Therefore, the formula is satisfiable.

Every Limit-Sure Knowledge Needs A 2-Subset Con-
struction For a formula with multiple knowledge opera-
tors of a single agent, the knowledge-state system is suf-
ficient. However, for a formula with multiple limit-sure
knowledge of a single agent, the probabilistic-knowledge-
state system with a single 2-subset construction can be in-
sufficient. In fact, for every limit-sure knowledge, a 2-subset
construction is necessary. The reason is that different limit-
sure knowledge may have counterexamples from different
cells, which represent different joint strategies of the agents.
Due to the space limit, we omit an example for this case.

Algorithm The above observations contribute to the fol-
lowing model checking algorithm. We describe the general
idea first. As for the usual LTL model checking, we work
with a product system of the probabilistic-knowledge-state
system Ni(M,H) and the formula automatonAϕH . The algo-
rithm proceeds through a depth-first search from an initial
state s0 to a state s1, from which another depth-first search
is performed to find a looping path back to s1. The differ-

2520

ence is that, for a new atomic proposition satisfiable on one
of the loop states, its probability may be arbitrarily close to
0, see Example 4. So the looping path is required to have
a second subset of states to record the probability. We use
H ⊆ Hϕ to denote the subset of new atomic propositions
that are required to be satisfiable on the looping path. Note
that, for different counterexamples, there can be different H.
In the nondeterministic algorithm, we will guess such a set
and verify whether they are exactly those propositions satis-
fiable on the looping path.

Given a set H ⊆ Hϕ, we can construct nondeterminis-
tic system Ni(M,H) inductively as follows3. Let Ni(M, ∅) =
({i}, Prop, S , Acti,Ni,Oi, I, T, π) such that I = {s | PI(s) > 0}
is a set of initial states and, for any two states s, t and a joint
action a, there is (s, a, t) ∈ T if PT (s, a, t) > 0. Other com-
ponents are the same as those of M.

Given Ni(M,H′) = ({i}, Prop′, S ′, Acti,N′i ,O
′
i , I
′, T ′, π′)

and an atomic proposition kq ∈ H \H′, we construct system
Ni(M,H′ ∪ {kq}) = ({i}, Prop′′, S ′′, Acti,N′′i ,O

′′
i , I
′′, T ′′, π′′)

such that

• Prop′′ = Prop′ ∪ {kq}, S ′′ = S ′ × P(S) × P(S),
N′′i ((s, P,Q)) = N′i (s), O′′i ((s, P,Q)) = O′i(s),

• (s, P,Q) ∈ I′′ if s ∈ I′, P = {t ∈ S | PI(t) > 0,Oi(t) =
O′i(s)}, and Q ⊆ P,

• ((s1, P1,Q1), a, (s2, P2,Q2)) ∈ T ′′ if (s1, a, s2) ∈ T ′ and
there exists a joint action a′ ∈ Act such that P2 = {t | s ∈
P1, PT (s, a′, t) > 0,Oi(t) = O′i(s2)}, Q2 ⊆ P2, and Q2 =
{t | s ∈ Q1, PT (s, a′, t) > 0} if Q1 � ∅, and

• for all p ∈ Prop′, there is p ∈ π′′((s, P,Q)) if p ∈ π′(s);
kq ≡ q+ ∈ π′′((s, P,Q)), if ∃t ∈ P : q ∈ π(t), ∀t ∈ Q :
q ∈ π(t), and Q � ∅; and kq ≡ q− ∈ π′′((s, P,Q)), if
∃t ∈ P : q � π(t), ∀t ∈ Q : q � π(t), and Q � ∅.

Note that, in the transition relation, the set Q2 contains all
possible next states of Q1 and is a subset of P2. With this
constraint, the probability does not leak. The property of re-
source propositions is useful to guarantee that, once a new
atomic proposition kq holds on a state of a loop, it will be
satisfiable on all the states of the loop.

For the formula ϕ = ¬φ, we obtain ϕ′ by substituting
knowledge formulas E>0

i φ with their corresponding atomic
propositions kq. Then we define

ϕH ≡ ϕ′ ∧
∧
kq∈H

GF kq (2)

For those atomic propositions in H, we need to make sure
that they are satisfiable infinitely often.

We can see that ϕH is a pure LTL formula. We can turn it
into a Büchi automaton AϕH = (Q,P(Prop), δ, B, F) such
that Q is a set of states, δ : Q × P(Prop) → P(Q) is
a transition relation, B ⊆ Q is a set of initial states, and
F ⊆ Q is a set of sets of acceptance states. Let k = |H|.
Then from Ni(M,H) and AϕH , we construct a product sys-
tem Ni(M,H) ×AϕH = (S ′′, I′′, T ′′, π′′) such that

• S ′′ = S × Πq∈H(P(S) × P(S)) × Q,

3We describe it in an inductive way simply to ease notations.

• (s0, P1,Q1, ..., Pk,Qk, t) ∈ I′′ if (s0, P1,Q1, ..., Pk,Qk) ∈ I′
and (t0, π′((s0, P1,Q1, ..., Pk,Qk)), t) ∈ δ for some t0 ∈ B,

• ((s, P1, ...,Qk, t), (a1, ..., ak), (s′, P′1, ...,Q
′
k, t
′)) ∈ T ′′ if we

have ((s, P1, ...,Qk), (a1, ..., ak), (s′, P′1, ...,Q
′
k)) ∈ T ′ and

t′ ∈ δ(t, π′((s′, P′1, ...,Q
′
k))), and

• π′′((s, P1, ...,Qk, t)) = π′((s, P1, ...,Qk)).

Note that, in the above, to simplify the notation, we
write a state (((s0, P1,Q1), ...), Pk,Qk) of Ni(M,H) as
(s0, P1,Q1, ..., Pk,Qk).

Now we have the following algorithm. Most details are
omitted, including the collection of satisfiable new atomic
propositions during the second depth-first search. The algo-
rithm follows a similar pattern to that of collecting Büchi
conditions held on the looping path, see e.g., (Gaiser and
Schwoon 2009).

Theorem 3 The checking of M |= φ can be done by nonde-
terministically guessing a set H ⊆ Hϕ and then verifying the
following three conditions:

1. there exists an initial state s0 in Ni(M,Hϕ) × AϕH , from
which a loop can be reached,

2. the loop satisfies all Büchi constraints, and
3. the loop requires exactly those atomic propositions in H

to be satisfiable.

For the complexity, we notice that the product system
Ni(M,H)×Aϕ is of size exponential with respect to both the
system M and the formula φ. The computation can be done
on-the-fly by taking a polynomial size of space. Therefore,
the complexity is in NPSPACE=PSPACE.

PSPACE Lower Bound

In this section, we show that PSPACE is the lower bound
for program complexity of model checking LTL(PKls

i). We
reduce a PSPACE-complete problem to model checking a
fixed formula, which does not vary with the problem size.

Theorem 4 The checking of M |= φ is PSPACE-hard for
program complexity.

We present the proof idea only. It is reduced from the prob-
lem of deciding if, for a given nondeterministic finite state
automaton A over an alphabet Σ, the language L(A) is equiv-
alent to the universal language Σ∗. Let A = (Q, q0, δ, F) be
an NFA such that Q is a set of states, q0 ∈ Q is an initial
state, σ : Q × Σ→ P(Q) is a transition function, and F ⊆ Q
is a set of final states.

The proof proceeds by constructing a system M(A) for a
single agent i. M(A) starts from an initial state s0 and moves
into two subsystems M1(A) and M2(A) by taking action pass
and test, respectively. Intuitively, the subsystem M1(A) is
to run any possible transition to simulate the universal lan-
guage Σ∗, and the subsystem M2(A) is to simulate the au-
tomaton A. The initial states of the subsystems M1(A) and
M2(A) are l0 and (l0, q0), respectively, for some l0 ∈ Σ.

In M1(A), from every state l ∈ Σ, one can reach a state
(l′, u) such that l′ ∈ Σ is any symbol and u � Σ is a new sym-
bol representing that the current state is an intermediate state
from which two actions pass and test are available. Taking

2521

any of the actions will lead to the state l′. In M2(A), from ev-
ery state (l1, q1), one can reach a state (l2, qu

2) if q2 ∈ δ(q1, l2).
Similarly to M1(A), the state (l2, qu

2) is an intermediate state
from which two actions pass and test are available. If the
action pass is taken then the state (l2, q2) is reached. If the
action test is taken then there are two cases depending on
whether l2 ∈ F or not. If l2 ∈ F then both the state (l0, q0)
and the state l2 (in M1(A)) are reached with probability 0.5.
If l2 � F then the state (l0, q0) is reached.

The agent i can see and only see the symbols on the states,
i.e., Oi(l) = Oi((l, u)) = Oi((l, q)) = Oi((l, qu)) = l for l ∈ Σ
and q ∈ Q. All states in M1(A) are labeled with proposition
f inished. We can show that the language of A is universal if
and only if

M(A) |= FA≥1
i f inished. (3)

Related Work

Epistemic logic (Halpern and Moses 1990; Parikh and Ra-
manujam 1985) is a well known formalism for reasoning
about partial observation multiagent systems, which pro-
vides means to state what agents know. When considering
stochasticity in the environment (e.g., imprecise sensor in-
formation, the occurrence of random events, etc), it is nec-
essary to formalise probabilistic knowledge. There has been
little work to date on combining probabilistic and epistemic
reasoning. This paper builds on the formalism of (Huang,
Su, and Zhang 2012; Huang 2013) that defines probabilis-
tic knowledge by quantifying over all possible adversaries,
a typical approach employed to resolve nondeterminism for
systems containing both nondeterminism and probability, as
in e.g. (Halpern and Tuttle 1993).

Model checking and strategy synthesis for the related
model of stochastic multiplayer games has been considered
by several authors, e.g. (Chatterjee and Henzinger 2012;
Chen et al. 2013; Basset et al. 2015), mainly focusing on
multiobjective properties and the use of the strategy opera-
tor of ATL. However, all these papers reason about complete
information systems, and therefore the corresponding logics
do not include the knowledge operator. For partial obser-
vation games, existing work (Chatterjee and Doyen 2014)
concerns memory requirement for a successful strategy to
qualitatively win the game. It is unclear whether the verifi-
cation of probabilistic knowledge can be directly reduced to
the winning of a game.

Conclusions

The paper presents the first decidable logic fragment for
probabilistic knowledge over partial information stochastic
multiagent systems. The logic combines LTL with a single
agent’s limit-sure knowledge over resource propositions and
its model checking is shown to be PSPACE-complete. In
contrast to LTL model checking, the program complexity
(by fixing the formula) is also PSPACE-complete.

Acknowledgments. The authors are supported by ERC
Advanced Grant VERIWARE and EPSRC Mobile Auton-
omy Programme Grant EP/M019918/1. We also gratefully

acknowledge the anonymous referees for their helpful com-
ments.

References

Basset, N.; Kwiatkowska, M.; Topcu, U.; and Wiltsche, C.
2015. Strategy synthesis for stochastic games with multiple
long-run objectives. In TACAS 2015, 256–271.
Chatterjee, K., and Doyen, L. 2014. Partial-observation
stochastic games: How to win when belief fails. ACM Trans-
actions on Computational Logic 15(2):16.
Chatterjee, K., and Henzinger, T. A. 2012. A survey of
stochastic -regular games. Journal of Computer and System
Sciences 78(2):394–413.
Chen, T.; Forejt, V.; Kwiatkowska, M.; Parker, D.; and
Simaitis, A. 2013. Automatic verification of competi-
tive stochastic systems. Formal Methods in System Design
43(1):61–92.
Courcoubetis, C., and Yannakakis, M. 1995. The complexity
of probabilistic verification. Journal of the ACM 42(4):857–
907.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning About Knowledge. The MIT Press.
Gaiser, A., and Schwoon, S. 2009. Comparison of algo-
rithms for checking emptiness on buchi automata.
Gimbert, H., and Oualhadj, Y. 2010. Probabilistic automata
on finite words: Decidable and undecidable problems. In
ICALP 2010, 527–538.
Halpern, J. Y., and Moses, Y. 1990. Knowledge and
Common Knowledge in a Distributed Environment. JACM
37(3):549–587.
Halpern, J. Y., and Tuttle, M. R. 1993. Knowledge, proba-
bility, and adversaries. Journal of the ACM 40(3):917–962.
Huang, X.; Luo, C.; and van der Meyden, R. 2011. Symbolic
model checking of probabilistic knowledge. In TARK XII,
177–186.
Huang, X.; Su, K.; and Zhang, C. 2012. Probabilistic
Alternating-time Temporal Logic of Incomplete information
and Synchronous Perfect Recall. In AAAI 2012, 765–771.
Huang, X. 2013. Diagnosability in concurrent probabilistic
systems. In AAMAS 2013, 853–860.
Parikh, R., and Ramanujam, R. 1985. Distributed Processes
and the Logic of Knowledge. In Logics of Programs 1985,
256–268.
Paz, A. 1971. Introduction to probabilistic automata (Com-
puter science and applied mathematics). Academic Press.
Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of
reactive(1) designs. In VMCAI 2006, 364–380.
Pnueli, A., and Rosner, R. 1989. On the synthesis of a
reactive module. In POPL1989, 179–190.
van der Meyden, R., and Shilov, N. V. 1999. Model Check-
ing Knowledge and Time in Systems with Perfect Recall. In
FSTTCS 1999, 432–445.
Vardi, M. Y. 1985. Automatic verification of probabilistic
concurrent finite-state programs. In FOCS 1985, 327–338.

2522

